Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 99-109.DOI: 10.16258/j.cnki.1674-5906.2023.01.011
• Research Articles • Previous Articles Next Articles
YOU Hongjian(), ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune*(
)
Received:
2022-08-01
Online:
2023-01-18
Published:
2023-04-06
Contact:
CAO Yune
游宏建(), 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥*(
)
通讯作者:
曹云娥
作者简介:
游宏建(1997年生),男,硕士研究生,主要从事设施蔬菜营养和土壤微生态调控。E-mail: 2215157672@qq.com
基金资助:
CLC Number:
YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms[J]. Ecology and Environment, 2023, 32(1): 99-109.
游宏建, 张文文, 兰正芳, 马兰, 张宝娣, 穆晓坤, 李文慧, 曹云娥. 蚯蚓原位堆肥与生物炭对黄瓜根结线虫及根际微生物的影响[J]. 生态环境学报, 2023, 32(1): 99-109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.011
pH | 有机质 w(Organic matter) (g·kg-1) | 全氮 w(Total N) (g·kg-1) | 全磷 w(Total P) (g·kg-1) | 速效氮 w(Available N) (g·kg-1) | 速效磷 w(Available P) (mg·kg-1) | 速效钾 w(Available K) (mg·kg-1) |
---|---|---|---|---|---|---|
7.94 | 9.43 | 0.78 | 0.31 | 24.2 | 67.4 | 185.9 |
Table 1 Basic properties of soil in the test site
pH | 有机质 w(Organic matter) (g·kg-1) | 全氮 w(Total N) (g·kg-1) | 全磷 w(Total P) (g·kg-1) | 速效氮 w(Available N) (g·kg-1) | 速效磷 w(Available P) (mg·kg-1) | 速效钾 w(Available K) (mg·kg-1) |
---|---|---|---|---|---|---|
7.94 | 9.43 | 0.78 | 0.31 | 24.2 | 67.4 | 185.9 |
处理 | 土壤处理 |
---|---|
CK | 未处理 |
V | 蚯蚓原位 |
B | 生物炭 (3 t·hm-2) |
VB | 蚯蚓原位+生物炭 (3 t·hm-2) |
Table 2 Experimental design
处理 | 土壤处理 |
---|---|
CK | 未处理 |
V | 蚯蚓原位 |
B | 生物炭 (3 t·hm-2) |
VB | 蚯蚓原位+生物炭 (3 t·hm-2) |
测序区域 | 引物 | 引物序列 |
---|---|---|
515F_806R | 515F | GTGCCAGCMGCCGCGG |
806R | GGACTACHVGGGTWTCTAAT | |
ITS1F_ITS2R | ITS1F | CTTGGTCATTTAGAGGAAGTAA |
ITS2R | CTTGGTCATTTAGAGGAAGTAA |
Table 3 Primer design for PCR amplification
测序区域 | 引物 | 引物序列 |
---|---|---|
515F_806R | 515F | GTGCCAGCMGCCGCGG |
806R | GGACTACHVGGGTWTCTAAT | |
ITS1F_ITS2R | ITS1F | CTTGGTCATTTAGAGGAAGTAA |
ITS2R | CTTGGTCATTTAGAGGAAGTAA |
试剂 | 快速PFU DNA 聚合酶 5×Fast Pfu Buffer 5 U·µL-1 | 脱氧核糖核苷三磷酸 2.5 mmol·L-1 | 正向引物 5 µmol·L-1 | 反向引物 5 µmol·L-1 | 快速PFU DNA 聚合酶 5 U·µL-1 | 牛血清蛋白 5 mg·mL-1 | 模板 DNA 100 µg·mL-1 | 无菌水补ddH2O至 1 g·mL-1 |
---|---|---|---|---|---|---|---|---|
体积 V/µL | 4 | 2 | 0.8 | 0.8 | 0.4 | 0.2 | 10 | 20 |
Table 4 PCR reaction system
试剂 | 快速PFU DNA 聚合酶 5×Fast Pfu Buffer 5 U·µL-1 | 脱氧核糖核苷三磷酸 2.5 mmol·L-1 | 正向引物 5 µmol·L-1 | 反向引物 5 µmol·L-1 | 快速PFU DNA 聚合酶 5 U·µL-1 | 牛血清蛋白 5 mg·mL-1 | 模板 DNA 100 µg·mL-1 | 无菌水补ddH2O至 1 g·mL-1 |
---|---|---|---|---|---|---|---|---|
体积 V/µL | 4 | 2 | 0.8 | 0.8 | 0.4 | 0.2 | 10 | 20 |
处理 | 定植前 | 盛果期 | 拉秧期 | |||||
---|---|---|---|---|---|---|---|---|
线虫数量 | 线虫数量 | 虫口减退率/% | 虫口防效/% | 线虫数量 | 虫口减退率/% | 虫口防效/% | ||
CK | 88.67a | 104.00a | -17.44c | — | 143.00a | -62.06d | — | |
V | 88.67a | 37.33c | 57.44a | 64.10a | 49.67c | 44.06b | 65.27b | |
B | 95.33a | 74.00b | 22.44b | 28.85b | 109.33b | -14.68c | 23.54c | |
VB | 90.01a | 30.33c | 66.51a | 70.83a | 28.00d | 68.93a | 80.42a |
Table 5 Control effects of different soil treatments on cucumber root-knot nematodes
处理 | 定植前 | 盛果期 | 拉秧期 | |||||
---|---|---|---|---|---|---|---|---|
线虫数量 | 线虫数量 | 虫口减退率/% | 虫口防效/% | 线虫数量 | 虫口减退率/% | 虫口防效/% | ||
CK | 88.67a | 104.00a | -17.44c | — | 143.00a | -62.06d | — | |
V | 88.67a | 37.33c | 57.44a | 64.10a | 49.67c | 44.06b | 65.27b | |
B | 95.33a | 74.00b | 22.44b | 28.85b | 109.33b | -14.68c | 23.54c | |
VB | 90.01a | 30.33c | 66.51a | 70.83a | 28.00d | 68.93a | 80.42a |
处理 | 发病率/% | 根结指数 | 防治效果/% |
---|---|---|---|
CK | 66.67b | 46.67b | — |
V | 13.33c | 13.33c | 71.42a |
B | 86.67a | 63.33a | -35.71b |
VB | 13.33c | 10c | 78.57a |
Table 6 Control effects of different soil treatments on cucumber root-knot nematodes
处理 | 发病率/% | 根结指数 | 防治效果/% |
---|---|---|---|
CK | 66.67b | 46.67b | — |
V | 13.33c | 13.33c | 71.42a |
B | 86.67a | 63.33a | -35.71b |
VB | 13.33c | 10c | 78.57a |
序列扩增区域 | 样本 | 有效序列/bp | 测序片段/bp | 平均长度/bp |
---|---|---|---|---|
338F_806R | 12 | 1645443 | 682947425 | 415 |
Table 7 Display of optimized data after quality control
序列扩增区域 | 样本 | 有效序列/bp | 测序片段/bp | 平均长度/bp |
---|---|---|---|---|
338F_806R | 12 | 1645443 | 682947425 | 415 |
序列扩增区域 | 样本 | 有效序列/bp | 测序片段/bp | 平均长度/bp |
---|---|---|---|---|
ITS1F_ITS2R | 12 | 2591024 | 627735197 | 242 |
Table 8 Display of optimized data after quality control
序列扩增区域 | 样本 | 有效序列/bp | 测序片段/bp | 平均长度/bp |
---|---|---|---|---|
ITS1F_ITS2R | 12 | 2591024 | 627735197 | 242 |
种类 | 处理 | 覆盖度/ % | Chao1 指数 | Ace | 香农 指数 | 辛普森 指数 |
---|---|---|---|---|---|---|
细菌 Bacteria | CK | 96.22a | 3595.22a | 3599.6b | 6.32c | 0.0032b |
V | 96.07a | 3479.87a | 4249.55a | 6.67b | 0.0049a | |
B | 95.88a | 3874.49a | 3917.35ab | 6.21c | 0.0024b | |
VB | 96.65a | 3490.29a | 4236.61a | 6.82a | 0.0059a | |
真菌 Fungus | CK | 99.96a | 307.05b | 303.37b | 3.35b | 0.098ab |
V | 99.89b | 581.58a | 572.93a | 3.65b | 0.12a | |
B | 99.96a | 314.99b | 308.25b | 3.62b | 0.071b | |
VB | 99.92b | 541.86a | 541.81a | 4.14a | 0.058b |
Table 9 Alpha diversity analysis of bacteria and fungi in soil samples
种类 | 处理 | 覆盖度/ % | Chao1 指数 | Ace | 香农 指数 | 辛普森 指数 |
---|---|---|---|---|---|---|
细菌 Bacteria | CK | 96.22a | 3595.22a | 3599.6b | 6.32c | 0.0032b |
V | 96.07a | 3479.87a | 4249.55a | 6.67b | 0.0049a | |
B | 95.88a | 3874.49a | 3917.35ab | 6.21c | 0.0024b | |
VB | 96.65a | 3490.29a | 4236.61a | 6.82a | 0.0059a | |
真菌 Fungus | CK | 99.96a | 307.05b | 303.37b | 3.35b | 0.098ab |
V | 99.89b | 581.58a | 572.93a | 3.65b | 0.12a | |
B | 99.96a | 314.99b | 308.25b | 3.62b | 0.071b | |
VB | 99.92b | 541.86a | 541.81a | 4.14a | 0.058b |
[1] |
CAO Y, TIAN Y Q, WU Q, et al., 2021. Vermicomposting of livestock manure as affected by carbon-rich additives (straw, biochar and nanocarbon): A comprehensive evaluation of earthworm performance, microbial activities, metabolic functions and vermicompost quality[J]. Bioresource Technology, 320(Part B): 124404.
DOI URL |
[2] |
CASTILLO J M, ROMERO E, NOGALES R, 2013. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agro-industrial lignocellulose wastes[J]. Bioresource Technology, 146(10): 345-354.
DOI URL |
[3] |
DETREY J, COGNARD V, MARTEU N, et al., 2022. Growth and root-knot nematode infection of tomato are influenced by mycorrhizal fungi and earthworms in an intercropping cultivation system with leeks[J]. Applied Soil Ecology, 169: 104181.
DOI URL |
[4] |
HUANG K, LI F S, WEI Y F, et al., 2013. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia fontina[J]. Bioresource Technology, 150: 235-241.
DOI URL |
[5] |
MAGOČ T, SALZBERG S L, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 27(21): 2957-2963.
DOI PMID |
[6] |
SUSANNE K, DORTE D, JULIA M, et al., 2016. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil[J]. Frontiers in Microbiology, 7: 1524.
PMID |
[7] |
TAO J, CHEN X Y, LIU M Q, et al., 2009. Earthworms change the abundance and community structure of nematodes and protozoa in a maize residue amended rice-wheat rotation agro-ecosystem[J]. Soil Biology &Biochemistry, 41(5): 898-904.
DOI URL |
[8] |
VERDENELLIR A, LAMARQUE A, MERILES J, et al., 2012. Short-term effects of combined iprodione and vermicompost applications on soil microbial community structure[J]. Science of the Total Environment, 414: 210-219.
DOI URL |
[9] | WANG X, WANG T T, WANG J C, et al., 2014. Morphological, molecular and biological characterization of Esteya vermicola, a hematophagous fungus isolated from intercepted wood packing materials exported from Brazil[J]. Mycosciences, 55(5): 367-377. |
[10] |
XIAO Z G, LIU M Q, JIANG L H, et al., 2016. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants[J]. Applied Soil Ecology, 105: 177-186.
DOI URL |
[11] |
YIN B, VALINSKY L, GAO X B, et al., 2003. Bacterial rRNA genes associated with soil suppressiveness against the plant parasitic nematode Heterodera schachtii[J]. Applied and Environmental Microbiology, 69(3): 1573-1580.
DOI URL |
[12] |
ZHANG Z J, WANG H, ZHU J, et al., 2012. Swine manure vermicomposting via housefly larvae (Musca domestica): The dynamics of biochemical and microbial features[J]. Bioresource Technology, 118: 563-571.
DOI PMID |
[13] |
毕艳孟, 孙振钧, 2018. 蚯蚓调控土壤微生态缓解连作障碍的作用机制[J]. 生物多样性, 26(10): 1103-1115.
DOI |
BI Y M, SUN Z J, 2018. Mechanisms of earthworms to alleviate continuous cropping obstacles through regulating soil microecology[J]. Biodiversity Science, 26(10): 1103-1115.
DOI |
|
[14] | 常海娜, 2019. 连作年限和施肥措施对番茄生长及根结线虫危害的影响[D]. 南京: 南京农业大学. |
CHANG H N, 2019. Effects of monocropping buration and fertilization regimes on tomato growth and root-knot nematodes[D]. Nanjing: Nanjing Agricultural University. | |
[15] |
陈威, 胡学玉, 张阳阳, 等, 2015. 番茄根区土壤线虫群落变化对生物炭输入的响应[J]. 生态环境学报, 24(6): 998-1003.
DOI URL |
CHEN W, HU X Y, ZHANG Y Y, et al., 2015. Rsponse of nematode community in tomato rhizosphere soil to biochar input[J]. Ecology and Environmental Sciences, 24(6): 998-1003. | |
[16] | 崔鑫, 岳向国, 李斌, 等, 2017. 蔬菜作物根结线虫病害防治研究进展[J]. 中国蔬菜 (10): 31-38. |
CUI X, YUE X G, LI B, et al., 2017. Research progress on controlling root-knot nematode in vegetable crops[J]. China Vegetables (10): 31-38. | |
[17] | 翟明娟, 李登辉, 马玉琴, 等, 2017. 绿色木霉菌株Tvir-6对黄瓜根结线虫的防治效果研究[J]. 中国蔬菜 (10): 67-72. |
DI M G, LI D H, MA Y Q, et al., 2017. Studies on biocontrol effect of Trichoderma viride tvir-6 against root knot nematode on cucumber[J]. China Vegetables (10): 67-72. | |
[18] | 韩冰洁, 张立君, 张建君, 2021. 作物根结线虫病防治研究进展[J]. 长江蔬菜 (22): 44-48. |
HAN B J, ZHANG L J, ZHANG J J, 2021. Research progress on control of root-knot nematode disease in crops[J]. Journal of Changjiang Vegetables (22):44-48. | |
[19] |
姜伟, 白红梅, 薛国萍, 等, 2021. 基于高通量测序的设施连作果类菜根际土壤细菌群落结构和多样性分析[J]. 华北农学报, 36(4): 82-89.
DOI |
JIANG W, BAI H M, XUE G P, et al., 2021. Analysis of bacterial community structure and diversity in rhizosphere soil of different fruit vegetables in greenhouse continuous cropping on high-throughput sequencing[J]. Acta Agriculturae Boreali-Sinica, 36(4): 82-89.
DOI |
|
[20] |
李天来, 杨丽娟, 2016. 作物连作障碍的克服——难解的问题[J]. 中国农业科学, 49(5): 916-918.
DOI |
LI T L, YANG L J, 2016. Overcoming continuous cropping obstacles: The difficult problem[J]. Scientia Agricultura Sinica, 49(5): 916-918. | |
[21] | 李戌清, 郑经武, 郑积荣, 等, 2012. 番茄根结线虫研究进展[J]. 浙江农业学报, 24(4): 748-752. |
LI X Q, ZHENG J W, ZHENG J R, et al., 2012. Research advances in tomato root knot nematode disease[J]. Acta Agriculturae Zhejiangensis, 24(4): 748-752. | |
[22] | 刘加红, 盘文政, 吕亚琼, 等, 2021. 具有烟草根结线虫防效的万寿菊秸秆生物有机肥配方及田间防控研究[J]. 江苏农业科学, 49(6): 92-98. |
LIU J H, PAN W Z, LÜ Y Q, et al., 2021. Study on the formula and field control of marigold straw bio-organic fertilizer with tobacco root knot nematode control effect[J]. Jiangsu Agricultural Sciences, 49(6): 92-98. | |
[23] | 刘勇鹏, 2018. 不同杀线虫剂对日光温室番茄根结线虫病防效研究[D]. 郑州: 河南农业大学. |
LIU Y P, 2018. Study on the control effect of different nematicide on tomato root-knot nematode disease in solar greenhouse[J]. Zhengzhou: Hennan Agricultural University. | |
[24] | 刘忠华, 赵帅翔, 刘会芳, 等, 2019. 条垛堆肥-蚯蚓堆肥联合处理对堆肥产品性状的影响[J]. 中国土壤与肥料 (4): 200-207. |
LIU Z H, ZHAO S X, LIU H F, et al., 2019. The effect of combined pre-composting and vermicomposting of dairy manure on properties of compost products[J]. Soil and Fertilizer Sciences in China (4): 200-207. | |
[25] | 路迎奇, 2020. 蚓粪对设施土壤酚酸类物质、酶活性和番茄产量的影响[D]. 沈阳: 沈阳农业大学. |
LU Y Q, 2021. Effect of vermicompost on phenolic acids, enzyme activity and tomato yield in soil[D]. Shenyang: Shenyang Agricultural University. | |
[26] | 牛亚茹, 付祥峰, 邱良祝, 等, 2017. 施用生物质炭对大棚土壤特性、黄瓜品质和根结线虫病的影响[J]. 土壤, 49(1): 57-62. |
NIU Y R, FU X F, QIU L Z, et al., 2017. Effects of biochar on soil properties, cucumber quality and root-knot nematode disease in plastic greenhouse[J]. Soils, 49(1): 57-62. | |
[27] | 秦雅馨, 李桂英, 安太成, 等, 2021. 生物炭环境应用过程中的生态和健康风险研究进展[J]. 科学通报, 66(1): 5-20. |
QIN Y X, LI G Y, AN T C, et al., 2021. Advances in ecological and health risks of biochar during environmental applications[J]. Chinese Science Bulletin, 66(1): 5-20. | |
[28] |
舒洁, 张仁军, 梁应冲, 等, 2021. 植物源与微生物源生物制剂复配防治根结线虫病[J]. 生物技术通报, 37(7): 164-174.
DOI |
SHU J, ZHANG R J, LIANG Y C, et al., 2021. Control of root-knot nematode disease by compounding biological agents from plant and microorganisms[J]. Biotechnology Bulletin, 37(7): 164-174.
DOI |
|
[29] |
王彩云, 武春成, 曹霞, 等, 2019. 生物炭对温室黄瓜不同连作年限土壤养分和微生物群落多样性的影响[J]. 应用生态学报, 30(4): 1359-1366.
DOI |
WANG C Y, WU C C, CAO X, et al., 2019. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse[J]. Chinese Journal of Applied Ecology, 30(4): 1359-1366. | |
[30] | 王萌萌, 周启星, 2013. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 32(5): 768-780. |
WANG M M, ZHOU Q X, 2013. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 32(5): 768-780. | |
[31] | 席先梅, 白全江, 李玉民, 等, 2021. 41.7%氟吡菌酰胺悬浮剂不同施药时期对黄瓜根结线虫的防治效果[J]. 植物保护, 47(5): 314-319. |
XI X M, BAI Q J, LI Y M, et al., 2021. Control effect of fluopyram 41.7% SC applied at different time on cucumber root-knot nematode[J]. Plant Protection, 47(5): 314-319. | |
[32] | 徐仲楠, 王冲, 朱逴, 等, 2019. 蚯蚓粪与土壤复配比例对基质微生物性状及韭菜生长和品质的影响[J]. 植物营养与肥料学报, 25(3): 519-524. |
XU Z N, WANG C, ZHU C, et al., 2019. Effects of vermicompost and soil proportion on the microbial property of substrate and the growth and quality of leek[J]. Journal of Plant Nutrition and Fertilizers, 25(3): 519-524. | |
[33] | 叶德友, 王暄, 侯栋, 等, 2013. 甘肃省蔬菜根结线虫种群鉴定及其对主栽品种的致病性测定[J]. 西北农业学报, 22(3): 188-193. |
YE D Y, WANG X, HOU D, et al., 2013. Species identification of root-knot nematodes and its pathogenicity to vegetable varieties in Gansu province[J]. Acta Agriculturae Boreali-occidentalis Sinica, 22(3): 188-193. | |
[34] | 曾立, 程万里, 余豪, 等, 2020. 多粘类芽孢杆菌KM2501-1发酵液对番茄根结线虫的防治效果[J]. 应用与环境生物学报, 26(5): 1046-1050. |
ZENG L, CHEN W L, YU H, et al., 2020. Controlling efficiency of Paenibacillus polymyxa KM2501-1 fermentation liquid against tomato root-knot nematode[J]. Chinese Journal of Applied and Environmental Biology, 26(5): 1046-1050. | |
[35] | 张勇群, 毛庆功, 王聪, 等, 2020. 氮沉降对土壤线虫群落影响的研究进展[J]. 热带亚热带植物学报, 28(1): 105-114. |
ZHANG Y Q, MAO Q G, WANG C, et al., 2020. Advances in effect of nitrogen deposition on soil nematode communities[J]. Journal of Tropical and Subtropical Botany, 28(1): 105-114. |
[1] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[4] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[5] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[6] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[7] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[8] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[9] | WEI Lan, HUANG Lianxi, LI Xiang, WANG Zehuang, CHEN Weisheng, HUANG Qing, HUANG Yufen, LIU Zhongzhen. Biochar Medium Could Significantly Improve Banana Seedling Growth [J]. Ecology and Environment, 2022, 31(4): 732-739. |
[10] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[11] | CHENG Wenyuan, LI Fayun, LÜ Jianhua, LIN Meixia, WANG Wei. Sorption Characteristics of Polycyclic Aromatic Hydrocarbons Phenanthrene on Sunflower Straw Biochar Modified with Alkali [J]. Ecology and Environment, 2022, 31(4): 824-834. |
[12] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[13] | CONG Xin, WANG Yu, LI Yao, HE Yangyang. Adsorption Characteristics of Biochars and Graphene Oxide/biochar Composites for Antibiotics from Aqueous Solution [J]. Ecology and Environment, 2022, 31(2): 326-334. |
[14] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[15] | MEI Chuang, CAI Kunzheng, LI Zishan, XU Meili, HUANG Fei. Effects of Rice-straw Biochar on the Transformation of Cadmium Fractions and Microbial Community in Paddy Soils [J]. Ecology and Environment, 2022, 31(2): 380-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn