Ecology and Environment ›› 2023, Vol. 32 ›› Issue (10): 1842-1853.DOI: 10.16258/j.cnki.1674-5906.2023.10.013
• Research Articles • Previous Articles Next Articles
HOU Dongmei1,2(), ZHANG Lan1,2, LI Chuncheng1,2, CHEN Lutong1,2, WANG Panpan1,2, ZOU Jianping1,2,*(
)
Received:
2023-07-27
Online:
2023-10-18
Published:
2024-01-16
Contact:
ZOU Jianping
侯冬梅1,2(), 张兰1,2, 李春成1,2, 陈露童1,2, 王盼盼1,2, 邹建平1,2,*(
)
通讯作者:
邹建平
作者简介:
侯冬梅(1984年生),女,讲师,博士,主要从事重金属及有机污染物的生物处理技术研究。E-mail: hou_dong_mei@126.com
基金资助:
CLC Number:
HOU Dongmei, ZHANG Lan, LI Chuncheng, CHEN Lutong, WANG Panpan, ZOU Jianping. Enhanced Removal of Sb(III) and Sb(V) Using Biological Iron and Manganese Oxides Modified Chitosan: Performance and Mechanism Study[J]. Ecology and Environment, 2023, 32(10): 1842-1853.
侯冬梅, 张兰, 李春成, 陈露童, 王盼盼, 邹建平. 壳聚糖-生物铁锰氧化物去除水体中锑的性能及机理研究[J]. 生态环境学报, 2023, 32(10): 1842-1853.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.10.013
样品 | 比表面积/ (m2∙g−1) | 孔体积/ (cm3∙g−1) | 平均孔径/ (r∙nm−1) |
---|---|---|---|
BFMO | 79.2 | 0.15 | 3.12 |
CH-BFMO | 91.3 | 0.20 | 3.54 |
Table 1 Specific surface area parameters of BFMO and CH-BFMO
样品 | 比表面积/ (m2∙g−1) | 孔体积/ (cm3∙g−1) | 平均孔径/ (r∙nm−1) |
---|---|---|---|
BFMO | 79.2 | 0.15 | 3.12 |
CH-BFMO | 91.3 | 0.20 | 3.54 |
[1] |
ANWAR Y, 2018. Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite[J]. International Journal of Biological Macromolecules, 111: 1140-1145.
DOI PMID |
[2] |
CHENG M S, FANG Y, LI H P, et al., 2022. Review of recently used adsorbents for antimony removal from contaminated water[J]. Environmental Science and Pollution Research, 29(18): 26021-26044.
DOI |
[3] | DUAN S X, LI J X, LIU X, et al., 2016. HF-free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent[J]. ACS Sustainable Chemistry & Engineering, 4(6): 3368-3378. |
[4] |
FU L, SHOZUGAWA K, MATSUO M, 2018. Oxidation of antimony (III) in soil by manganese (IV) oxide using X-ray absorption fine structure[J]. Journal of Environmental Sciences, 73: 31-37.
DOI PMID |
[5] | GUO W J, FU Z Y, WANG H, et al., 2018. Environmental geochemical and spatial/temporal behavior of total and speciation of antimony in typical contaminated aquatic environment from Xikuangshan[J]. China. Microchemical Journal, 137: 181-189. |
[6] |
GUO X J, WU Z J, HE M C, et al., 2014. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure[J]. Journal of Hazardous Materials, 276: 339-345.
DOI PMID |
[7] |
IKRAM M, SHUJAIT S, HAIDER A, et al., 2022. Molybdenum and chitosan-doped MnO2 nanostructures used as dye degrader and antibacterial agent[J]. Applied Nanoscience, 12: 3909-3924.
DOI |
[8] |
LAI L, LIU X T, REN W B, et al., 2023. Efficient removal of Sb(III) from water using β-FeOOH-modified biochar: Synthesis, performance and mechanism[J]. Chemosphere, 311(Part 1): 137057.
DOI URL |
[9] |
LEUZ A K, JOHNSON C A, 2005. Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions[J]. Geochimica et Cosmochimica Acta, 69(5): 1165-1172.
DOI URL |
[10] |
LUO J M, LUO X B, CRITTENDEN J, et al., 2015. Removal of antimonite(Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2)[J]. Environmental Science and Technology, 49(18): 11115-11124.
DOI URL |
[11] |
MANYANGADZE M, CHIKURUWO N H M, NARSAIAH T B, et al., 2020. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review[J]. South African Journal of Chemical Engineering, 31: 25-32.
DOI URL |
[12] |
NAGA JYOTHI M S V, HARAFAN A, SEN GUPTA S, et al., 2022. Chitosan immobilised granular FeOOH-MnxOy bimetal-oxides nanocomposite for the adsorptive removal of lead from water[J]. Journal of Environmental Chemical Engineering, 10(2): 107353.
DOI URL |
[13] |
NUNDY S, GHOSH A, NATH R, et al., 2021. Reduced graphene oxide (rGO) aerogel: Efficient adsorbent for the elimination of antimony (III) and (V) from wastewater[J]. Journal of Hazardous Materials, 420: 126554.
DOI URL |
[14] |
PENG L, XU Y, ZHOU F, et al., 2016. Enhanced removal of Cd(II) by poly(acrylamide-co-sodium acrylate) water-retaining agent incorporated nano hydrous manganese oxide[J]. Materials and Design, 96: 195-202.
DOI URL |
[15] |
PENG Y Z, LUO L, LUO S, et al., 2021. Efficient removal of antimony(III) in aqueous phase by nano-Fe3O4 modified high-iron red mud: Study on its performance and mechanism[J]. Water, 13(6): 809.
DOI URL |
[16] |
TU Y H, REN L F, LIN Y X, et al., 2020. Adsorption of antimonite and antimonate from aqueous solution using modified polyacrylonitrile with an ultrahigh percentage of amidoxime groups[J]. Journal of Hazardous Materials, 388: 121997.
DOI URL |
[17] |
VAKILI M, DENG S, CAGNETTA G, et al., 2019. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review[J]. Separation and Purification Technology, 224: 373-387.
DOI URL |
[18] |
WANG L, WANG J Y, WANG Z X, et al., 2019. Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: Performance and mechanism[J]. Powder Technology, 345: 501-508.
DOI URL |
[19] |
WANG X Q, HE M C, LIN C Y, et al., 2012. Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite[J]. Geochemistry, 72(Supplement 4): 41-47.
DOI URL |
[20] |
WANG Y Q, KONG L H, HE M C, et al., 2023. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands[J]. Water Research, 242(20): 120296.
DOI URL |
[21] |
XIAO F F, CHENG J H, CAO W, et al., 2019. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars[J]. Journal of Colloid and Interface Science, 540: 579-584.
DOI PMID |
[22] |
XIE Y, LI P Y, ZENG Y, et al., 2018. Thermally treated fungal manganese oxides for bisphenol A degradation using sulfate radicals[J]. Chemical Engineering Journal, 335: 728-736.
DOI URL |
[23] |
XU A L, SUN X, FAN S Y, et al., 2023a. Bio-FeMnOx integrated carbonaceous gas-diffusion cathode for the efficient degradation of ofloxacin by heterogeneous electro-Fenton process[J]. Separation and Purification Technology, 312: 123348.
DOI URL |
[24] |
XU R, LI Q, NAN X L, et al., 2022. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms[J]. Journal of Hazardous Materials, 422: 126821.
DOI URL |
[25] |
XU Y H, OHKI A, MAEDA S, 2001. Adsorption and removal of antimony from aqueous solution by an activated Alumina: 1. Adsorption capacity of adsorbent and effect of process variables[J]. Toxicological and Environmental Chemistry, 80(3-4): 133-144.
DOI URL |
[26] |
XU Z B, SUN M Z, XU X Y, et al., 2023b. Electron donation of Fe-Mn biochar for chromium(VI) immobilization: Key roles of embedded zero-valent iron clusters within iron-manganese oxide[J]. Journal of Hazardous Materials, 456: 131632.
DOI URL |
[27] |
YAN L, SONG J Y, CHAN T S, et al., 2017. Insights into antimony adsorption on {001} TiO2: XAFS and DFT Study[J]. Environmental Science & Technology, 51(11): 6335-6341.
DOI URL |
[28] |
YANG K L, LIU Y L, LI Y Z, et al., 2019. Applications and characteristics of Fe-Mn binary oxides for Sb(V) removal in textile wastewater: Selective adsorption and the fixed-bed column study[J]. Chemosphere, 232: 254-263.
DOI PMID |
[29] |
YANG K L, ZHOU J S, LOU Z M, et al., 2018. Removal of Sb(V) from aqueous solutions using Fe-Mn binary oxides: The influence of iron oxides forms and the role of manganese oxides[J]. Chemical Engineering Journal, 354: 577-588.
DOI URL |
[30] | YUAN M, GU Z L, MINALE M, et al., 2022. Simultaneous adsorption and oxidation of Sb(III) from water by the pH-sensitive superabsorbent polymer hydrogel incorporated with Fe-Mn binary oxides composite[J]. Journal of Hazardous Materials, 423(Part A): 127013. |
[31] |
ZHANG J, DENG R J, REN B Z, et al., 2019. Preparation of a novel Fe3O4/HCO composite adsorbent and the mechanism for the removal of antimony (III) from aqueous solution[J]. Scientific Reports, 9: 13021.
DOI |
[32] | ZHAO X X, XIE Z M, LI Y W, et al., 2022. Synergy of Fe and biogenic Mn oxide components mediated by a newly isolated indigenous bacterium to enhance As(III/V) immobilization in groundwater[J]. Applied Geochemistry, 140: 105266. |
[33] | 蔡维炯, 曹长春, 陈朋铭, 2020. 覆铁砂对锑的吸附性能研究[J]. 广东化工, 47(21): 13-14. |
CAI W J, CAI C C, CHEN P M, 2020. Study on adsorption of Sb(III) by iron oxide coated sand[J]. Guangdong Chemical Industry, 47(21): 13-14. | |
[34] | 陈元铉, 2022. 零价锰及零价锰铁复合材料对水中锑的去除研究[D]. 广州: 广州大学:36-57. |
CHEN Y X, 2022. The study of nanoscale zerovalent manganese and zerovalent manganese-iron composite remove antimony from water[D]. Guangzhou: Guangzhou University:36-57. | |
[35] | 黄嘉慧, 2018. 铁氧化物的改性与制备及其对重金属锑(III)的吸附研究[D]. 上海: 东华大学:29-31. |
HUANG J H, 2018. The modification and preparation of iron-based oxides and its application for the adsorption of heavy metal antimony(III)[D]. Shanghai: Donghua University:29-31. | |
[36] | 邓仁健, 陈依琳, 张俊, 等, 2022. HCO-(Fe3O4)x复合吸附剂吸附去除Sb(III)和Sb(V)的差异及机理[J]. 中国有色金属学报, 32(5): 1430-1443. |
DENG R J, CHEN Y L, ZHANG J, et al., 2022. Difference and mechanism of Sb(III) and Sb(V) adsorption and removal by HCO-(Fe3O4)x[J]. The Chinese Journal of Nonferrous Metals, 32(5): 1430-1443. | |
[37] | 何扬洋, 王刚, 罗仕成, 等, 2023. 二硫代羧基化小麦秸秆对水中Cr(VI)的吸附性能及机理[J]. 环境科学学报, 43(6): 366-379. |
HE Y Y, WANG G, LUO S C, et al., 2023. Adsorption performance and mechanism of dithiocarboxylated wheat straw to Cr(VI) in water[J]. Acta Scientiae Circumstantiae, 43(6): 366-379. | |
[38] |
孔天乐, 孙晓旭, 孙蔚旻, 2020. 锑和砷对固氮菌的毒性效应及其机制研究[J]. 生态环境学报, 29(3): 589-595.
DOI |
KONG T L, SUN X X, SUN W M, 2020. Toxicity and mechanism of antimony and arsenic on Azotobacter[J]. Ecology and Environmental Sciences, 29(3): 589-595. | |
[39] | 冉钟吕, 苍岩, 戴晨, 等, 2022. 生物炭负载铁锰氧化物吸附去除Cr(Ⅵ)的试验研究[J]. 工业用水与废水, 53(4): 28-33. |
RAN Z L, CANG Y, DAI C, et al., 2022. Experimental study on removal of Cr(VI) by adsorption of iron and manganese oxides supported by biochar[J]. Industrial Water and Waste Water, 53(4): 28-33. | |
[40] | 石松, 吴乾元, 李新正, 等, 2020. 天然黄铁矿吸附去除水中Sb(V): 性能与机制[J]. 环境科学, 41(9): 4124-4132. |
SHI S, WU Q Y, LI X Z, et al., 2020. Adsorption of Sb(V) in water by natural pyrite: Performance and mechanism[J]. Environmental Science, 41(9): 4124-4132.
DOI URL |
|
[41] | 王华伟, 李晓月, 李卫华, 等, 2017. pH和络合剂对五价锑在水钠锰矿和水铁矿表面吸附行为的影响[J]. 环境科学, 38(1): 180-187. |
WANG H W, LI X Y, LI W H, et al., 2017. Effects of pH and complexing agents on Sb(Ⅴ) adsorption onto birnessite and ferrihydrite surface[J]. Environmental Science, 38(1): 180-187.
DOI URL |
|
[42] | 王舒晗, 任伯帜, 2023. 典型锑冶炼厂周边土壤重金属分布和污染评价——以冷水江市中连乡为例[J]. 广东化工, 50(6): 125-129. |
WANG S H, REN B Z, 2023. Distribution and pollution assessment of heavy metals in soils around typical antimony smelters-a case study of Zhonglian Township, Lengshuijiang city[J]. Guangdong Chemical Industry, 50(6): 125-129. | |
[43] | 魏东宁, 2018. 纳米零价铁污泥基生物质炭的制备及其对水体中Sb(Ⅲ)的吸附行为研究[D]. 长沙: 湖南农业大学:39-40. |
WEI D N, 2018. Preparation of nano-zero-valent iron sludge-based biochar and its adsorption behavior for Sb(III) in water[D]. Changsha: Hunan Agricultural University:39-40. | |
[44] | 吴雅静, 王华伟, 孙英杰, 等, 2021. 原位形成生物铁锰氧化物对砷(Ⅲ/Ⅴ)的去除效果与机制[J]. 环境科学学报, 41(2): 526-535. |
WU Y J, WANG H W, SUN Y J, et al., 2021. Removal efficiency and mechanism of arsenic(III/V) by in-situ generated biogenic Fe-Mn oxides[J]. Acta Scientiae Circumstantiae, 41(2): 526-535. | |
[45] | 晏平, 2014. 化学及生物铁锰复合氧化物去除水中重金属钴的吸附氧化特性研究[D]. 杭州: 浙江工业大学:10-11. |
YAN P, 2014. Preparation of the chemical and biogenic Fe-Mn binary oxide and their’s adsorption and oxidation characteristics of Co(II)[D]. Hangzhou: Zhejiang University of Technology:10-11. | |
[46] |
阳涅, 孙晓旭, 孔天乐, 等, 2023. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 32(3): 609-618.
DOI |
YANG N, SUN X X, KONG T L, et al., 2023. Response of microbial communities to changes in antimony pollution concentrations in fluvial sediment[J]. Ecology and Environmental Sciences, 32(3): 609-618. | |
[47] | 易春龙, 叶欣, 李泰来, 等, 2021. 生物锰氧化物对4种重金属的吸附特性研究[J]. 工业安全与环保, 47(3): 94-98. |
YI C L, YE X, LI T L, et al., 2021. Study the adsorption characteristics of biomanganese oxide to four heavy metals[J]. Industrial Safety and Environmental Protection, 47(3): 94-98. | |
[48] | 张攀, 2020. 壳聚糖-生物铁锰氧化物复合材料对水中锑的吸附机理研究[D]. 长沙: 湖南农业大学:10-15. |
ZHANG P, 2020. Study on the adsorption mechanism of antimony in water by chitosan-biological iron manganese oxide composite material[D]. Changsha: Hunan Agricultural University:10-15. | |
[49] | 张莹雪, 胥思勤, 李佳霜, 2018. Sb(Ⅲ)和Sb(Ⅴ)在不同吸附剂上的吸附特征[J]. 土壤, 50(1): 139-147. |
ZHANG Y X, XU S Q, LI J S, 2018. Adsorption characteristics of trivalent and pentavalent antimony on different adsorbents[J]. Soils, 50(1): 139-147. | |
[50] | 周楚晨, 李成, 钱建英, 等, 2022. 氧化铁红对印染废水中锑(V)的吸附性能[J]. 浙江大学学报(理学版), 49(2): 201-209, 260. |
ZHOU C C, LI C, QIAN J Y, et al., 2022. The study of antimony (V) adsorption by commercial iron oxide red[J]. Journal of Zhejiang University (Science Edition), 49(2): 201-209, 260. | |
[51] | 周雪, 吴贵亮, 陈国和, 2022. 铁镧氢化物改性生物炭对锑的吸附性能研究[J]. 绍兴文理学院学报(自然科学), 42(8): 55-62. |
ZHOU X, WU G L, CHEN G H, 2022. Study on the adsorption properties of antimony on biochar modified by iron lanthanum hydride[J]. Journal of Shaoxing University (Natural Science), 42(8): 55-62. | |
[52] | 朱红钢, 朱建明, 谭德灿, 等, 2023. 铁锰铝氧化物对锑的吸附研究进展[J]. 矿物岩石地球化学通报, 42(4): 931-940. |
ZHU H G, ZHU J M, TAN D C, et al., 2023. Progress on the adsorption of antimony by iron, manganese, and aluminum oxides[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 42(4): 931-940. |
[1] | HE Wenxuan, LI Lei, SUN Siyu, LI Chang, LI Jiuyi, TIAN Xiujun. Distribution Characteristics of Microplastics in Water, Sediment and Fish in Beiyun River [J]. Ecology and Environment, 2023, 32(11): 1901-1912. |
[2] | LI Wenjing, HUANG Yuequn, HUANG Liangliang, LI Xiangtong, SU Qiongyuan, SUN Yangyan. Distribution Characteristics and Risk Assessment of Microplastics in Beibu Gulf Marine Fish [J]. Ecology and Environment, 2023, 32(11): 1913-1921. |
[3] | HAN Qian, ZHANG Yujiao, LAI Chengyue, YANG Luyao, MENG Xu. Pollution Characteristics and Ecological Risk Assessment of Tetracycline and Quinolone Antibiotics in Rivers of Chengdu [J]. Ecology and Environment, 2023, 32(11): 1922-1932. |
[4] | GAO Xiaoyu, WANG Lei. The Accumulation, Transfer and Elimination of Antibiotic Resistance Genes in Soil: A Review [J]. Ecology and Environment, 2023, 32(11): 2062-2071. |
[5] | LI Xuan, QIAN Xiuwen, HUANG Juan, WANG Mingyu, XIAO Jun. Responses of Operating Performance and Microbial Community in Constructed Wetlands to NiO NPs Exposure [J]. Ecology and Environment, 2023, 32(10): 1833-1841. |
[6] | LI Longfei, WEI Ying, ZHAO Jiannan, DONG Jing, ZHANG Jingxiao, GAO Xiaofei, ZHANG Man, YUAN Huatao, GAO Yunni, LI Xuejun. The Inhibition of Microcystis by the Three Submerged Hydrocharitaceae Species and the Response of Periphytic Algae [J]. Ecology and Environment, 2023, 32(10): 1822-1832. |
[7] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(10): 1802-1810. |
[8] | ZHOU Jiacheng, SONG Zhibin, MIAO Peng, TAN Lu, TANG Tao. Differences in Benthic Macroinvertebrate Communities and Their Driving Forces between the Edge and Center Positions of the Liujiang River Network [J]. Ecology and Environment, 2023, 32(10): 1794-1801. |
[9] | ZHAO Yanchu, WANG Fei, WU Dan, HUANG Xin, CHEN Jialin, ZHOU Linpu, KONG Fanqing. Health Assessment of Haihe River Basin Based on Benthic Index of Biotic Integrity [J]. Ecology and Environment, 2023, 32(10): 1785-1793. |
[10] | FAN Yanxiang, LEI Sheping, XIE Jiancang. Comprehensive Evaluation and Differentiation Characteristics of Eutrophication in River Waters of Guangdong Province: Based on Game Theory Combined Empowerment Method and VIKOR Model [J]. Ecology and Environment, 2023, 32(10): 1811-1821. |
[11] | CHEN Hongzhan, OU Hui, YE Sihua, ZHANG Qianhua, ZHOU Shujie, MAI Lei. Spatial-temporal Distribution and Ecological Risk Assessment of Microplastics in the Guangzhou Section of the Pearl River [J]. Ecology and Environment, 2023, 32(9): 1663-1672. |
[12] | LU Yanbo, CHEN Zhanfeng, LI Xiaofang. A Study on Water Quality Prediction Model of Cross-boundary Sections in Guangdong Province Based on GRU Improved with Particle Swarm Optimization [J]. Ecology and Environment, 2023, 32(9): 1673-1681. |
[13] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[14] | LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite [J]. Ecology and Environment, 2023, 32(8): 1478-1486. |
[15] | WANG Yuanzhe, HUA Chunlin, ZHAO Li, FAN Min, LIANG Xiaoying, ZHOU Lele, CAI Can, YAO Jing. Study on Water Quality Evaluation and Prediction of Major Rivers in Mountainous City: A Case Study of Mianyang City [J]. Ecology and Environment, 2023, 32(8): 1465-1477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn