Ecology and Environment ›› 2023, Vol. 32 ›› Issue (12): 2216-2227.DOI: 10.16258/j.cnki.1674-5906.2023.12.013
• Environment • Previous Articles Next Articles
LI Zhuoxuan1(), PENG Ziran1,2,*(
), HE Wenhui1,2,3, WEI Ruilu1, GAO Linxi1
Received:
2023-10-09
Online:
2023-12-18
Published:
2024-02-05
Contact:
PENG Ziran
李卓轩1(), 彭自然1,2,*(
), 何文辉1,2,3, 卫瑞璐1, 高琳茜1
通讯作者:
彭自然
作者简介:
李卓轩(1998年生),男,硕士研究生,研究方向为水污染控制及吸附材料。E-mail: zhuoxuan1998@163.com
基金资助:
CLC Number:
LI Zhuoxuan, PENG Ziran, HE Wenhui, WEI Ruilu, GAO Linxi. Response Surface Optimization and Adsorption Mechanism of Sheep Manure Charcoal on Nitrogen and Phosphorus Adsorption Conditions[J]. Ecology and Environment, 2023, 32(12): 2216-2227.
李卓轩, 彭自然, 何文辉, 卫瑞璐, 高琳茜. 羊粪炭对水体氮磷吸附条件的响应面优化及吸附机理研究[J]. 生态环境学报, 2023, 32(12): 2216-2227.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.12.013
标号 | 因素 | 水平 |
---|---|---|
A | 浸渍比 | 0.001、0.003、0.005 |
B | 吸附温度/℃ | 20、25、30 |
C | pH | 5、7、9 |
Table 1 Level of experimental factors in the nitrogen and phosphorus
标号 | 因素 | 水平 |
---|---|---|
A | 浸渍比 | 0.001、0.003、0.005 |
B | 吸附温度/℃ | 20、25、30 |
C | pH | 5、7、9 |
序号 | 浸渍比 | 摄氏度/ ℃ | pH | NH4+-N 吸附量/ (mg∙g−1) | PO43−-P 吸附量/ (mg∙g−1) | NO3−-N 吸附量/ (mg∙g−1) |
---|---|---|---|---|---|---|
1 | 0.001 | 20 | 7 | 8.14 | 1.66 | 0.89 |
2 | 0.005 | 20 | 7 | 11.38 | 4.26 | 2.02 |
3 | 0.001 | 30 | 7 | 7.66 | 2.52 | 0.91 |
4 | 0.005 | 30 | 7 | 12.38 | 4.52 | 2.08 |
5 | 0.001 | 25 | 5 | 6.23 | 2.35 | 1.17 |
6 | 0.005 | 25 | 5 | 8.22 | 3.80 | 2.37 |
7 | 0.001 | 25 | 9 | 6.38 | 2.84 | 0.83 |
8 | 0.005 | 25 | 9 | 10.27 | 4.92 | 1.79 |
9 | 0.003 | 20 | 5 | 8.77 | 3.68 | 1.98 |
10 | 0.003 | 30 | 5 | 11.17 | 3.95 | 2.01 |
11 | 0.003 | 20 | 9 | 11.25 | 4.73 | 1.35 |
12 | 0.003 | 30 | 9 | 11.01 | 4.90 | 1.32 |
13 | 0.003 | 25 | 7 | 14.11 | 4.84 | 1.88 |
14 | 0.003 | 25 | 7 | 13.94 | 4.55 | 1.77 |
15 | 0.003 | 25 | 7 | 13.86 | 4.66 | 1.87 |
16 | 0.003 | 25 | 7 | 14.39 | 4.88 | 1.75 |
17 | 0.003 | 25 | 7 | 13.88 | 4.93 | 1.88 |
Table 2 Adsorption experimental design and results of NH4+-N, NO3?-N and PO43?-P
序号 | 浸渍比 | 摄氏度/ ℃ | pH | NH4+-N 吸附量/ (mg∙g−1) | PO43−-P 吸附量/ (mg∙g−1) | NO3−-N 吸附量/ (mg∙g−1) |
---|---|---|---|---|---|---|
1 | 0.001 | 20 | 7 | 8.14 | 1.66 | 0.89 |
2 | 0.005 | 20 | 7 | 11.38 | 4.26 | 2.02 |
3 | 0.001 | 30 | 7 | 7.66 | 2.52 | 0.91 |
4 | 0.005 | 30 | 7 | 12.38 | 4.52 | 2.08 |
5 | 0.001 | 25 | 5 | 6.23 | 2.35 | 1.17 |
6 | 0.005 | 25 | 5 | 8.22 | 3.80 | 2.37 |
7 | 0.001 | 25 | 9 | 6.38 | 2.84 | 0.83 |
8 | 0.005 | 25 | 9 | 10.27 | 4.92 | 1.79 |
9 | 0.003 | 20 | 5 | 8.77 | 3.68 | 1.98 |
10 | 0.003 | 30 | 5 | 11.17 | 3.95 | 2.01 |
11 | 0.003 | 20 | 9 | 11.25 | 4.73 | 1.35 |
12 | 0.003 | 30 | 9 | 11.01 | 4.90 | 1.32 |
13 | 0.003 | 25 | 7 | 14.11 | 4.84 | 1.88 |
14 | 0.003 | 25 | 7 | 13.94 | 4.55 | 1.77 |
15 | 0.003 | 25 | 7 | 13.86 | 4.66 | 1.87 |
16 | 0.003 | 25 | 7 | 14.39 | 4.88 | 1.75 |
17 | 0.003 | 25 | 7 | 13.88 | 4.93 | 1.88 |
参数 | NH4+-N吸附量/(mg∙g−1) | PO43−-P吸附量/(mg∙g−1) | NO3−-N吸附量/(mg∙g−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | |||
模型 | 123.12 | 9 | 88.78 | <1×10−4 | 极显著 | 17.1 | 9 | 40.60 | <1×10−4 | 极显著 | 4.15 | 9 | 65.01 | <1×10−4 | 极显著 | ||
A | 23.95 | 1 | 155.43 | <1×10−4 | 极显著 | 8.24 | 1 | 176.14 | <1×10−4 | 极显著 | 2.12 | 1 | 419.04 | <1×10−4 | 极显著 | ||
B | 0.9 | 1 | 5.83 | 0.0465 | 显著 | 0.3 | 1 | 6.49 | 0.0383 | 显著 | 0.0046 | 1 | 0.16 | 0.7024 | |||
C | 2.57 | 1 | 16.70 | 0.0047 | 极显著 | 1.61 | 1 | 34.39 | 6×10−4 | 极显著 | 0.011 | 1 | 107.84 | <1×10−4 | 显著 | ||
AB | 0.54 | 1 | 3.53 | 0.1022 | 0.089 | 1 | 1.91 | 0.2098 | 0.004 | 1 | 0.078 | 0.7884 | |||||
AC | 0.89 | 1 | 5.78 | 0.0472 | 显著 | 0.1 | 1 | 2.16 | 0.1855 | 2.25×10−8 | 1 | 2.32 | 0.1719 | ||||
BC | 1.74 | 1 | 11.31 | 0.012 | 显著 | 0.0028 | 1 | 0.059 | 0.8152 | 0.0012 | 1 | 0.15 | 0.7084 | ||||
A2 | 50.4 | 1 | 327.05 | <1×10−4 | 极显著 | 5.89 | 1 | 125.78 | <1×10−4 | 极显著 | 1.32 | 1 | 40.79 | <4×10−4 | 极显著 | ||
B2 | 1.98 | 1 | 12.83 | 0.0089 | 显著 | 0.5 | 1 | 10.72 | 0.0136 | 显著 | 0.01 | 1 | 9.13 | 0.0193 | 显著 | ||
C2 | 33.06 | 1 | 214.56 | <1×10−4 | 极显著 | 0.054 | 1 | 1.15 | 0.3199 | 0.55 | 1 | 1.73 | <0.2296 | 不显著 | |||
残差 | 1.08 | 7 | 0.33 | 7 | 0.013 | 7 | |||||||||||
失拟项 | 0.88 | 3 | 5.89 | 0.0598 | 不显著 | 0.22 | 3 | 2.82 | 0.1714 | 不显著 | 0.0079 | 3 | 1.97 | 0.2605 | 不显著 | ||
纯误差 | 0.2 | 4 | 0.11 | 4 | 0.0049 | 4 | |||||||||||
总误差 | 124.2 | 16 | 17.43 | 16 | 4.16 | 16 |
Table 3 Analysis of variance of unit sorption of NH4+-N, NO3?-N, PO43?-P by YF600
参数 | NH4+-N吸附量/(mg∙g−1) | PO43−-P吸附量/(mg∙g−1) | NO3−-N吸附量/(mg∙g−1) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | 平方和 | 自由度 | F | P | 显著性 | |||
模型 | 123.12 | 9 | 88.78 | <1×10−4 | 极显著 | 17.1 | 9 | 40.60 | <1×10−4 | 极显著 | 4.15 | 9 | 65.01 | <1×10−4 | 极显著 | ||
A | 23.95 | 1 | 155.43 | <1×10−4 | 极显著 | 8.24 | 1 | 176.14 | <1×10−4 | 极显著 | 2.12 | 1 | 419.04 | <1×10−4 | 极显著 | ||
B | 0.9 | 1 | 5.83 | 0.0465 | 显著 | 0.3 | 1 | 6.49 | 0.0383 | 显著 | 0.0046 | 1 | 0.16 | 0.7024 | |||
C | 2.57 | 1 | 16.70 | 0.0047 | 极显著 | 1.61 | 1 | 34.39 | 6×10−4 | 极显著 | 0.011 | 1 | 107.84 | <1×10−4 | 显著 | ||
AB | 0.54 | 1 | 3.53 | 0.1022 | 0.089 | 1 | 1.91 | 0.2098 | 0.004 | 1 | 0.078 | 0.7884 | |||||
AC | 0.89 | 1 | 5.78 | 0.0472 | 显著 | 0.1 | 1 | 2.16 | 0.1855 | 2.25×10−8 | 1 | 2.32 | 0.1719 | ||||
BC | 1.74 | 1 | 11.31 | 0.012 | 显著 | 0.0028 | 1 | 0.059 | 0.8152 | 0.0012 | 1 | 0.15 | 0.7084 | ||||
A2 | 50.4 | 1 | 327.05 | <1×10−4 | 极显著 | 5.89 | 1 | 125.78 | <1×10−4 | 极显著 | 1.32 | 1 | 40.79 | <4×10−4 | 极显著 | ||
B2 | 1.98 | 1 | 12.83 | 0.0089 | 显著 | 0.5 | 1 | 10.72 | 0.0136 | 显著 | 0.01 | 1 | 9.13 | 0.0193 | 显著 | ||
C2 | 33.06 | 1 | 214.56 | <1×10−4 | 极显著 | 0.054 | 1 | 1.15 | 0.3199 | 0.55 | 1 | 1.73 | <0.2296 | 不显著 | |||
残差 | 1.08 | 7 | 0.33 | 7 | 0.013 | 7 | |||||||||||
失拟项 | 0.88 | 3 | 5.89 | 0.0598 | 不显著 | 0.22 | 3 | 2.82 | 0.1714 | 不显著 | 0.0079 | 3 | 1.97 | 0.2605 | 不显著 | ||
纯误差 | 0.2 | 4 | 0.11 | 4 | 0.0049 | 4 | |||||||||||
总误差 | 124.2 | 16 | 17.43 | 16 | 4.16 | 16 |
污染物 | CV/% | r2 | r2Adj | r2Pred | 精密度 |
---|---|---|---|---|---|
Y1 | 3.65 | 0.9913 | 0.9801 | 0.8842 | 26.862 |
Y2 | 5.41 | 0.9812 | 0.957 | 0.7865 | 19.371 |
Y3 | 4.68 | 0.9882 | 0.973 | 0.8797 | 28.447 |
Table 4 Reliability analysis
污染物 | CV/% | r2 | r2Adj | r2Pred | 精密度 |
---|---|---|---|---|---|
Y1 | 3.65 | 0.9913 | 0.9801 | 0.8842 | 26.862 |
Y2 | 5.41 | 0.9812 | 0.957 | 0.7865 | 19.371 |
Y3 | 4.68 | 0.9882 | 0.973 | 0.8797 | 28.447 |
参数 | qe(NH4+-N)/(mg∙g−1) | qe(PO43−-N)/(mg∙g−1) | qe(NO3−-N)/(mg∙g−1) |
---|---|---|---|
理论值 | 14.01 | 4.93 | 2.08 |
实际值1 | 14.00 | 4.91 | 1.98 |
实际值2 | 13.86 | 4.88 | 2.02 |
实际值3 | 13.98 | 4.88 | 2.01 |
平均值 | 13.95 | 4.89 | 2.00 |
偏差/% | 0.4±0.64 | 0.77±0.28 | 3.5±1.1 |
Table 5 Experimental results of optimized adsorption conditions of YF600
参数 | qe(NH4+-N)/(mg∙g−1) | qe(PO43−-N)/(mg∙g−1) | qe(NO3−-N)/(mg∙g−1) |
---|---|---|---|
理论值 | 14.01 | 4.93 | 2.08 |
实际值1 | 14.00 | 4.91 | 1.98 |
实际值2 | 13.86 | 4.88 | 2.02 |
实际值3 | 13.98 | 4.88 | 2.01 |
平均值 | 13.95 | 4.89 | 2.00 |
偏差/% | 0.4±0.64 | 0.77±0.28 | 3.5±1.1 |
污染物 类型 | Langmuir方程 | Freundlich方程 | |||||
---|---|---|---|---|---|---|---|
qm /(mg∙g−1) | KL/(L∙g−1) | r2 | KF | 1/n | r2 | ||
NH4+-N | 17.67 | 0.0116 | 0.9971 | 0.5215 | 0.6362 | 0.9931 | |
NO3−-N | 2.46 | 0.1024 | 0.9706 | 0.9173 | 0.1997 | 0.937 | |
PO43−-P | 4.89 | 0.1621 | 0.9946 | 1.3657 | 0.3293 | 0.9644 |
Table 6 Fitted parameters of isothermal adsorption model of YF600 on nitrogen and phosphorus
污染物 类型 | Langmuir方程 | Freundlich方程 | |||||
---|---|---|---|---|---|---|---|
qm /(mg∙g−1) | KL/(L∙g−1) | r2 | KF | 1/n | r2 | ||
NH4+-N | 17.67 | 0.0116 | 0.9971 | 0.5215 | 0.6362 | 0.9931 | |
NO3−-N | 2.46 | 0.1024 | 0.9706 | 0.9173 | 0.1997 | 0.937 | |
PO43−-P | 4.89 | 0.1621 | 0.9946 | 1.3657 | 0.3293 | 0.9644 |
污染物 | 拟一级动力学 | 拟二级动力学 | |||||
---|---|---|---|---|---|---|---|
qe/(mg∙g−1) | k1 | r2 | qe/(mg∙g−1) | k2 | r2 | ||
NH4+-N | 5.56 | 0.4776 | 0.9695 | 9.59 | 0.2583 | 0.9977 | |
NO3−-N | 1.29 | 0.3240 | 0.977 | 2.57 | 0.934 | 0.9972 | |
PO43−-P | 4.65 | 0.4653 | 0.9824 | 4.59 | 0.4266 | 0.9966 |
Table 7 Adsorption kinetics fitting parameters of YF600
污染物 | 拟一级动力学 | 拟二级动力学 | |||||
---|---|---|---|---|---|---|---|
qe/(mg∙g−1) | k1 | r2 | qe/(mg∙g−1) | k2 | r2 | ||
NH4+-N | 5.56 | 0.4776 | 0.9695 | 9.59 | 0.2583 | 0.9977 | |
NO3−-N | 1.29 | 0.3240 | 0.977 | 2.57 | 0.934 | 0.9972 | |
PO43−-P | 4.65 | 0.4653 | 0.9824 | 4.59 | 0.4266 | 0.9966 |
样品 | 产率/% | w(N)/% | w(C)/% | w(O)/% | w(P)/% | w(H)/% | w(Mg)/% | H/C | 比表面积/(m2∙g−1) | 平均孔径/nm |
---|---|---|---|---|---|---|---|---|---|---|
YF600 | 33.36 | 1.43 | 54.23 | 28.56 | 3.51 | 2.01 | 1.44 | 0.037 | 63.91 | 2.79 |
Table 8 Physicochemical characteristics of each biochar
样品 | 产率/% | w(N)/% | w(C)/% | w(O)/% | w(P)/% | w(H)/% | w(Mg)/% | H/C | 比表面积/(m2∙g−1) | 平均孔径/nm |
---|---|---|---|---|---|---|---|---|---|---|
YF600 | 33.36 | 1.43 | 54.23 | 28.56 | 3.51 | 2.01 | 1.44 | 0.037 | 63.91 | 2.79 |
[1] |
ALMAHBASHI N M Y, KUTTY S R M, AYOUB M, et al., 2021. Optimization of preparation conditions of sewage sludge based activated carbon[J]. Ain Shams Engineering Journal, 12(2): 1175-1182.
DOI URL |
[2] |
ANGAR, YASSMIN, DJELALI, et al., 2017. Investigation of ammonium adsorption on Algerian natural bentonite[J]. Environmental Science and Pollution Research, 24(12): 11078-11089.
DOI URL |
[3] |
AREF A, HE H P, ZHU J X, et al., 2018. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms[J]. Applied Clay Science, 159: 83-93.
DOI URL |
[4] |
CHENG N, WANG B, FENG Q W, et al., 2021. Co-adsorption performance and mechanism of nitrogen and phosphorus onto eupatorium adenophorum biochar in water[J]. Bioresource Technology, 340: 125696.
DOI URL |
[5] |
CUI X Q, HAO H L, HE Z L, et al., 2016. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation[J]. Journal of Environmental Management, 173: 95-104.
DOI PMID |
[6] |
DANIEL J, CONLEY, HANS W, et al., 2009. Controlling eutrophication: Nitrogenand phosphorus[J]. Science, 323(5917): 1014-1015.
DOI URL |
[7] |
DILEKOGLU M F, YAPICI M, 2023. Adsorption of naproxen pharmaceutical micropollutant from aqueous solutions on superior activated carbon synthesized from sheep manure: Kinetics, thermodynamics, and mechanism[J]. Journal of Molecular Liquids, 381: 121839.
DOI URL |
[8] |
EUFRASIO P, MARINA D C, DA S, et al., 2019. Biochar from carrot residues chemically modified with magnesium for removing phosphorus from aqueous solution[J]. Journal of Cleaner Production, 222: 36-46.
DOI URL |
[9] |
GAI X P, WANG H Y, LIU J, et al., 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate[J]. PLoS One, 9(12): e113888.
DOI URL |
[10] |
GELARDI D L, LI C Y, PARIKH S J, et al., 2019. An emerging environmental concern: Biochar-induced dust emissions and their potentially toxic properties[J]. Science of The Total Environment, 678: 813-820.
DOI URL |
[11] |
HASSAN M, LIU Y J, NAIDU R, et al., 2020. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis[J]. Science of The Total Environment, 744: 140714.
DOI URL |
[12] |
JENSEN W A, 2017. Response surface methodology: Process and product optimization using designed experiments 4th edition[J]. Journal of Quality Technology, 49(2): 186-187.
DOI URL |
[13] |
JUNG K W, HWANG M J, AHN K H, 2015. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media[J]. International Journal of Environmental Science and Technology, 12(10): 3363-3372
DOI URL |
[14] |
KHAIRUDDIN M I, SUHARDY D, NASRUL H, et al., 2011. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM)[J]. Industrial Crops and Products, 33(2): 481-487.
DOI URL |
[15] |
KIZITO S, WU S B, KIRUI W K, et al., 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry[J]. Science of The Total Environment, 505: 102-112.
DOI URL |
[16] |
LI H Q, HU J T, MENG Y, et al., 2017. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of The Total Environment, 603-604: 39-48.
DOI URL |
[17] |
LI Y, LIU Y, WANG H Y, et al., 2023. In situ remediation mechanism of internal nitrogen and phosphorus regeneration and release in shallow eutrophic lakes by combining multiple remediation techniques[J]. Water Research, 229: 119394.
DOI URL |
[18] |
LIAO P, YUAN S H, XIE W J, et al., 2013. Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: Kinetics, thermodynamics, and microwave regeneration[J]. Journal of Colloid and Interface Science, 390(1): 189-195.
DOI PMID |
[19] |
MAHTAB A, ANUSHKA U R, JUNG E L, et al., 2014. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 99: 19-33.
DOI PMID |
[20] |
NAUTIYAL, PIYUSHI, SUBRAMANIAN, et al., 2016. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry[J]. Journal of Environmental Management, 182: 187-197.
DOI PMID |
[21] |
NOVAIS S V, ZENERO M D O, BARRETO M S C, et al., 2018. Phosphorus removal from eutrophic water using modified biochar[J]. Science of The Total Environment, 633: 825-835.
DOI URL |
[22] |
QIN B Q, ZHANG Y L, ZHU G W, et al., 2023. Eutrophication control of large shallow lakes in China[J]. Science of The Total Environment, 881: 163494.
DOI URL |
[23] |
QU M J, LI N, LI H D, et al., 2018. Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment[J]. Chemosphere, 209: 439-448.
DOI PMID |
[24] |
SHEN Z F, LIU C L, YIN C C, et al., 2019. Facile large-scale synthesis of macroscopic 3D porous graphene-like carbon nanosheets architecture for efficient CO2 adsorption[J]. Carbon, 145(5867): 751-756.
DOI URL |
[25] | TAKAYA C A, FLETCHER L A, SINGH S, et al., 2016. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 145: 518-527. |
[26] |
WAN S, WANG S S, LI Y C, et al., 2017. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 47: 246-253.
DOI URL |
[27] | WANG B, LIAN G Q, LEE X Q, et al., 2020. Phosphogypsum as a novel modifier for distillers grains biochar removal of phosphate from water[J]. Chemosphere: Environmental Toxicology and Risk Assessment, 238: 124684. 1-124684.8. |
[28] | WANG Z F, WANG H, LI Q M, et al., 2016. pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite[J]. Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry, 73: 1-7. |
[29] |
WANG Z Y, BAKSHI S, LI C Y, et al., 2020. Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer[J]. Journal of Colloid and Interface Science, 579: 258-268.
DOI PMID |
[30] |
YANG H I, LOU K, RJAPAKSHA A U, et al., 2018. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research, 25(26): 25638-25647.
DOI |
[31] |
YE Y Y, NGO H H, GUO, W S, et al., 2017. Insight into chemical phosphate recovery from municipal wastewater[J]. Science of the Total Environment, 576: 159-171.
DOI URL |
[32] | ZENG Z, ZHANG S D, LI T Q, et al., 2013. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants[J]. Journal of Zhejiang University (Engineering Science), 14(12): 1152-1161. |
[33] |
ZHANG L F, HUANG X D, FU G K, et al., 2023. Aerobic electrotrophic denitrification coupled with biologically induced phosphate precipitation for nitrogen and phosphorus removal from high-salinity wastewater: Performance, mechanism, and microbial community[J]. Bioresource Technology, 372: 128696.
DOI URL |
[34] | ZHANG M, SONG G, GELARDI D L, et al., 2020. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water[J]. Water research: A journal of the international water association, 186: 116303. |
[35] |
ZHOU L, XU D F, Ll Y X, et al., 2019. Phosphorus and nitrogen adsorption capacities of biochars derived from feedstocksat different pyrolysis temperatures[J]. Water, 11(8): 1559.
DOI URL |
[36] | ZHUANG X Z, GAN Z Y, CEN K H, et al., 2022. Upgrading biochar by co-pyrolysis of heavy bio-oil and apricot shell using response surface methodology[J]. Fuel, 310(Part C): 122447. |
[37] | 陈刚, 朱赫特, 陈浩然, 等, 2023. 镁改性水生植物生物炭吸附水中的微囊藻毒素-LR[J]. 环境化学, 1-14 [2024-01-04] http://kns.cnki.net/kcms/detail/11.1844.X.20230424.2120.024.html. |
[38] | CHEN G, ZHU H T, CHEN H R, et al., 2023. Adsorption of microcystin-LR by Mg- modified aquatic plant biochar in water[J]. Environmental Chemistry, 1-14[2024-01-04]http://kns.cnki.net/kcms/detail/11.1844.X.20230424.2120.024.html. |
[39] | 陈梅, 王芳, 张德俐, 等, 2019. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 40(12): 5421-5429. |
CHEN M, WANG F, ZHANG D L, et al., 2019. Effect of biochar structure on adsorption characteristics of ammonia nitrogen[J]. Environmental Science, 40(12): 5421-5429. | |
[40] | 陈明茹, 黄应平, 张吉林, 等, 2022. 羊粪生物炭对水体中镉的吸附[J]. 武汉大学学报(理学版), 68(6): 612-620. |
CHEN M R, HUANG Y P, ZHANG J L, et al., 2022. Adsorption of cadmium in water by sheep manure biochar[J]. Journal of Wuhan University (Natural Science Edition), 68(6): 612-620. | |
[41] |
程文远, 李法云, 吕建华, 等, 2022. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 31(4): 824-834.
DOI |
CHENG W Y, LI F Y, LÜ J H, et al., 2022. Sorption Characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environment, 31(4): 824-834. | |
[42] | 冯弋洋, 罗元, 何秋平, 等, 2020. La改性羊粪生物炭吸附水体磷酸盐特性研究[J]. 农业环境科学学报, 39(10): 2380-2386. |
FENG G Y, LUO Y, HE Q P, et al., 2020. Adsorption of phosphate from water by La-modified sheep manure biochar[J]. Journal of Agro-Environment Science, 39(10): 2380-2386. | |
[43] | 何雨, 罗云霞, 樊仙, 等, 2023. 淹水条件下羊粪炭对重金属复合污染土壤中Pb Zn有效性影响[J]. 广东农业科学, 1-11 [2024-01-04] http://kns.cnki.net/kcms/detail/44.1267.s.20230922.1028.004.html. |
HE Y, LUO Y X, FAN X, et al., 2023. Effect of biochar application under flooded conditions on the availability of Pb and Zn in heavy metal contaminated soil[J]. Guangdong Agricultural Sciences, 1-11 [2024-01-04] http://kns.cnki.net/kcms/detail/44.1267.s.20230922.1028.004.html. | |
[44] | 胡锦刚, 肖春桥, 邓祥意, 等, 2022. 稀土矿山氨氮废水生物脱氮方法研究进展[J]. 武汉工程大学学报, 44(1): 1-8. |
HU J G, XIAO C Q, DENG X Y, et al., 2022. Research progress in biological denitrification methods of ammonia nitrogen wastewater from rare earth mines[J]. Journal of Wuhan Institute of Technology, 44(1): 1-8. | |
[45] | 黄俊亮, 刘成, 邱超, 等, 2021. 离子交换生物脱氮组合工艺去除饮用水中硝酸盐[J]. 环境工程学报, 15(6): 1894-1904. |
HUANG J L, LIU C, QIU C, et al., 2021. Removal of nitrate from drinking water by combined process of ion exchangeand biological denitrification[J]. Chinese Journal of Environmental Engineering, 15(6): 1894-1904. | |
[46] | 黄雯, 张雪萍, 张建强, 等, 2022. 磁改性羊粪衍生ZVI-生物炭的制备及其活化过一硫酸盐降解AO7特性研究[J]. 环境科学学报, 42(7): 196-208. |
HUANG W, ZHANG X P, ZHANG J Q, et al., 2022. Preparation of ZVI-biochar derived from magnetically modified sheep manure and its activation of peroxymonosulfate to degrade AO7[J]. Acta Scientiae Circumstantiae, 42(7): 196-208. | |
[47] | 李娜, 黎佳茜, 李国文, 等, 2018. 中国典型湖泊富营养化现状与区域性差异分析[J]. 水生生物学报, 42(4): 854-864. |
LI N, LI J X, LI G W, et al., 2018. The eutrophication its regional heterogeneity in typical lakes of China[J]. Acta Hydrobiologica Sinica, 42(4): 854-864. | |
[48] | 李书田, 刘荣乐, 陕红, 2009. 我国主要畜禽粪便养分含量及变化分析[J]. 农业环境科学学报, 28(1): 179-184. |
LI S T, LIU R L, SHAN H, 2009. Nutrient contents in main animal manures in China[J]. Journal of Agro-environment Science, 28(1): 179-184. | |
[49] | 梁嘉琪, 吕媛, 陆茵, 等, 2020. 铁磁性氧化镁生物炭对玉米加工废水中氮磷的回收效果[J]. 环境工程, 38(9): 89-94. |
LIANG J Q, LÜ Y, LU Y, et al., 2020. Recovery of ammonium and phosphate from corn processing wastewater using magnetic MgO-biochar[J]. Environmental Engineering, 38(9): 89-94. | |
[50] | 马路路, 许利滢, 张泽新, 等, 2023. 废弃香蕉皮粉末对六价铬的吸附特性与机理研究[J]. 生态与农村环境学报, 1-17 [2024-01-04]. https://doi.org/10.19741/j.issn.1673-4831.2023.0816. |
MA L L, XU L Y, ZHANG Z X, et al., 2023. Study on adsorption characteristics and mechanism of Cr(VI) by waste banana peel powder[J]. Journalof Ecology and Rural Environment, 1-17 [2024-01-04]. https://doi.org/10.19741/j.issn.1673-4831.2023.0816. | |
[51] | 秦帆, 王玥, 黄亚楠, 等, 2018. 改性秸秆生物质炭吸附去除水中氨氮的研究[J]. 森林工程, 34(3): 19-25, 31. |
QIN F, WANG Y, HUANG Y N, et al., 2018. Study on adsorption removal of ammonia nitrogen in water by modified straw biochar[J]. Forest Engineering, 34(3): 19-25, 31. | |
[52] |
唐鑫磊, 邢涛, 夏金雨, 等, 2023. 镁改性生物炭吸附水和畜禽养殖废水中氮磷的研究[J]. 工业水处理, 43(9): 144-152.
DOI |
TANG X L, XING T, XIA J Y, et al., 2023. Adsorption of nitrogen and phosphorus in water and livestock and poultry wastewater by magnesium-modified biochar[J]. Industrial Water Treatment, 43(9): 144-152.
DOI |
|
[53] | 汪淑廉, 王永昌, 张宇, 等, 2022. 改性花生壳生物炭对磷酸盐的吸附特性[J]. 环境科学与技术, 45(S1): 21-26. |
WANG S L, WANG Y C, ZHANG Y, et al., 2022. Adsorption properties of phosphorus by modified peanut shell biochar[J]. Environmental Science & Technology, 45(S1): 21-26.
DOI URL |
|
[54] | 王硕, 汪雅茹, 尹通, 等, 2023. 改性生物炭对水体中氮和磷共去除: 改性方法和吸附机制[J]. 化学试剂, 45(7): 119-127 WANG S, WANG Y R, YIN T, et al. |
2023. Co-removal of nitrogen and phosphate from water by modified biochar: modification methods and adsorption mechanisms[J]. Chemical Reagents, 45(7): 119-127. | |
[55] | 王怡, 陈琳风, 王文怀, 等, 2019. 改性石榴皮生物炭对水中低浓度硝氮的吸附性能研究[J]. 西安建筑科技大学学报(自然科学版), 51(6): 899-904. |
WANG Y, CHEN L F, WANG W H, et al., 2019. Adsorption behavior of low concentration nitrate nitrogen from water by modified biochars from pomegranate peel[J]. Journal of Xi’an University of Architecture & Technology, 51(6): 899-904. | |
[56] | 吴奇, 谭美涛, 迟道才, 2022. 生物炭吸附富营养化水体氮、磷的研究进展[J]. 沈阳农业大学学报, 53(5): 620-629. |
WU Q, TAN M T, CHI D C, 2022. Research progress of biochar on adsorption of nitrogen and phosphorus in eutrophic water[J]. Journal of Shenyang Agricultural University, 53(5): 620-629. | |
[57] | 向江涛, 黄应平, 凌海波, 等, 2019. 羊粪生物炭对水体氨氮吸附特性研究[J]. 环境科学与技术, 42(7): 147-153. |
XIANG J T, HUANG Y P, LING H B, et al., 2019. Adsorption characteristics of ammonia nitrogen from water in sheep manure biochar[J]. Environmental Science & Technology, 42(7): 147-153.
DOI URL |
|
[58] | 谢淘, 2015. 生物炭的特性分析及其在黄水资源化中的应用[D]. 北京: 清华大学. |
XIE T, 2015. Characterization of biochar and its application in yellow water treatment[D]. Beijing: Tsinghua University. | |
[59] | 张超, 翟付杰, 单保庆, 2023. Ca改性生物炭对土壤磷赋存形态影响及稳定化机制[J]. 环境科学, 1-17 [2024-01-04] https://doi.org/10.13227/j.hjkx.202211160. |
ZHANG C, ZHAI F J, SHAN B Q, 2023. Effect of Ca Modified Biochar on the Chemical Speciation of Soil[J]. Environmental Science, 1-17. [2024-01-04] https://doi.org/10.13227/j.hjkx.202211160. | |
[60] | 张璐, 贾丽, 陆文龙, 等, 2015. 不同碳化温度下玉米秸秆生物炭的结构性质及其对氮磷的吸附特性[J]. 吉林大学学报 (理学版), 53(4): 802-808. |
ZHANG L, JIA L, LU W L, et al., 2015. Structural properties of corn straw biochar and characteristics of its adsorption for nitrogen and phosphate at different carbonization temperature[J]. Journal of Jilin University (Science Edition), 53(4): 802-808. | |
[61] |
张太平, 肖嘉慧, 胡凤洁, 2021. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 30(5): 1084-1093.
DOI |
ZHANG T P, XIAO J H, HU F J, 2021. Research progress in the removal of contaminants from water by immobilized microorganisms combined with biochar[J]. Ecology and Environment, 30(5): 1084-1093. | |
[62] | 张文, 吕欣田, 韩睿, 等, 2018. 2种改性生物炭对水体硝态氮的吸附特性[J]. 生态与农村环境学报, 34(3): 253-259. |
ZHANG W, LÜ X T, HAN R, et al., 2018. Effects of two kinds of modified biochar adsorbing nitrate-n in Water[J]. Journal of Ecology and Rural Environment, 34(3): 253-259. |
[1] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[2] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[3] | SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas [J]. Ecology and Environment, 2023, 32(11): 1942-1951. |
[4] | ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts [J]. Ecology and Environment, 2023, 32(11): 2019-2029. |
[5] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
[6] | LIU Xilin, ZHUO Ruina. Influential Factors and Their Critical Thresholds of Initial Runoff Production Time on the Benggang Colluvial Slopes [J]. Ecology and Environment, 2023, 32(1): 36-46. |
[7] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[8] | YOU Hongjian, ZHANG Wenwen, LAN Zhengfang, MA Lan, ZHANG Baodi, MU Xiaokun, LI Wenhui, CAO Yune. Effects of Earthworm in-situ Composting and Biochar on Cucumber Root-knot Nematodes and Rhizosphere Microorganisms [J]. Ecology and Environment, 2023, 32(1): 99-109. |
[9] | ZHANG Lin, ZHOU Piao, QI Shi, ZHANG Dai, WU Bingchen, CUI Ranran. Difference Influence of Spatial Structure of Platycladus orientalis Plantations on Diversity of Understory Herbaceous and Its Correlation Degree [J]. Ecology and Environment, 2022, 31(9): 1794-1801. |
[10] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[11] | TAO Ling, HUANG Lei, ZHOU Yilei, LI Zhongxing, REN Jun. Influences of Biochar Prepared by Co-pyrolysis with Sludge and Attapulgite on Bioavailability and Environmental Risk of Heavy Metals in Mining Soil [J]. Ecology and Environment, 2022, 31(8): 1637-1646. |
[12] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[13] | QIAN Lianwen, YU Tiantian, LIANG Xujun, WANG Yixiang, CHEN Yongshan. Stability of Biochar after Application for 5 Years in the Amendment of Acidified Tea Garden Soil [J]. Ecology and Environment, 2022, 31(7): 1442-1447. |
[14] | ZHANG Huiqi, LI Zizhong, QI Yan. Effects of Corn Straw-based Biochar Amount on Pores and Water Holding Capacity of Sandy Soil [J]. Ecology and Environment, 2022, 31(6): 1272-1277. |
[15] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn