Ecology and Environment ›› 2023, Vol. 32 ›› Issue (10): 1854-1860.DOI: 10.16258/j.cnki.1674-5906.2023.10.014
• Research Articles • Previous Articles Next Articles
Received:
2023-08-23
Online:
2023-10-18
Published:
2024-01-16
作者简介:
陈桂红(1972年生),女,高级工程师,硕士,研究方向为土壤重金属污染治理。E-mail: 495656353@qq.com
CLC Number:
CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar[J]. Ecology and Environment, 2023, 32(10): 1854-1860.
陈桂红. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 2023, 32(10): 1854-1860.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.10.014
pH | 电导率/ (mS∙m−1) | 有机质/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 有效态磷/ (mg∙kg−1) | 铵态氮/ (mg∙kg−1) |
---|---|---|---|---|---|
6.05 | 35.3 | 19.2 | 3.45 | 0.320 | 18.7 |
Table 1 Basic physical and chemical properties of soils
pH | 电导率/ (mS∙m−1) | 有机质/ (g∙kg−1) | 阳离子交换量/ (cmol∙kg−1) | 有效态磷/ (mg∙kg−1) | 铵态氮/ (mg∙kg−1) |
---|---|---|---|---|---|
6.05 | 35.3 | 19.2 | 3.45 | 0.320 | 18.7 |
步骤 | 形态 | 具体操作 |
---|---|---|
I | 可交换态 (EX) | 取风干后1.00 g土壤样品加入到50 mL离心管中, 加入8 mL 1 mol∙L−1醋酸钠 (pH=8.2), 室温下持续振荡反应1 h, 离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL容量瓶定容 |
II | 碳酸盐结合态 (CB) | 经上步处理后的残余物在室温下用8 mL 1mol∙L−1乙酸钠提取, 提取前用醋酸把pH调至5.0, 振荡8 h (200 r∙min−1), 离心10 min (4000 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
III | 铁锰氧化物结合态 (OX) | 在经上步处理后的残余物中加入20 mL 0.04 mol∙L−1盐酸羟胺的25% (V/V) 的醋酸溶液提取, 温度为 (96±3) ℃, 时间为4 h, 离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
IV | 有机物结合态 (OM) | 向上步处理的残余物中, 加入3 mL 0.02 mol∙L−1硝酸(HNO3)和5 mL 30% (V/V) 过氧化氢(H2O2), 然后用硝酸(HNO3)调节pH至2, 将混合物加热至 (85±2) ℃, 保温2 h, 并在加热中间振荡几次。再加入5 mL过氧化氢(H2O2), 调pH至2, 再将混合物加热至 (85±2) ℃, 保温3 h, 并间断振荡。冷却后, 加入5 mL 3.2 mol∙L−1醋酸铵, 用20% (V/V) 硝酸溶液稀释到20 mL, 振荡30 min。离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
V | 残渣态 (RS) | 对上步骤处理后的残余物, 利用硝酸-氢氟酸-高氯酸消解法消解分析。用10%的硝酸将离心管中的残余物洗到坩埚中, 加热消煮, 直至溶液剩余3 mL左右, 依次加入HNO3 15 mL、HF 10 mL、HClO4 5 mL, 并轻轻摇动, 继续加热蒸至白烟冒尽, 最终使土壤样品变成白色或淡黄色的胶块状 (若消解不完全则, 加入5 mL HF继续消解至完全)。用0.5%的稀硝酸冲洗坩埚内壁, 温热溶解, 冷却后转移定容 |
Table 2 Continuous extraction steps of Cd forms in soil
步骤 | 形态 | 具体操作 |
---|---|---|
I | 可交换态 (EX) | 取风干后1.00 g土壤样品加入到50 mL离心管中, 加入8 mL 1 mol∙L−1醋酸钠 (pH=8.2), 室温下持续振荡反应1 h, 离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL容量瓶定容 |
II | 碳酸盐结合态 (CB) | 经上步处理后的残余物在室温下用8 mL 1mol∙L−1乙酸钠提取, 提取前用醋酸把pH调至5.0, 振荡8 h (200 r∙min−1), 离心10 min (4000 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
III | 铁锰氧化物结合态 (OX) | 在经上步处理后的残余物中加入20 mL 0.04 mol∙L−1盐酸羟胺的25% (V/V) 的醋酸溶液提取, 温度为 (96±3) ℃, 时间为4 h, 离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
IV | 有机物结合态 (OM) | 向上步处理的残余物中, 加入3 mL 0.02 mol∙L−1硝酸(HNO3)和5 mL 30% (V/V) 过氧化氢(H2O2), 然后用硝酸(HNO3)调节pH至2, 将混合物加热至 (85±2) ℃, 保温2 h, 并在加热中间振荡几次。再加入5 mL过氧化氢(H2O2), 调pH至2, 再将混合物加热至 (85±2) ℃, 保温3 h, 并间断振荡。冷却后, 加入5 mL 3.2 mol∙L−1醋酸铵, 用20% (V/V) 硝酸溶液稀释到20 mL, 振荡30 min。离心4 min (2700 r∙min−1), 移出上清液, 将移出的溶液过滤, 用50 mL的容量瓶定容 |
V | 残渣态 (RS) | 对上步骤处理后的残余物, 利用硝酸-氢氟酸-高氯酸消解法消解分析。用10%的硝酸将离心管中的残余物洗到坩埚中, 加热消煮, 直至溶液剩余3 mL左右, 依次加入HNO3 15 mL、HF 10 mL、HClO4 5 mL, 并轻轻摇动, 继续加热蒸至白烟冒尽, 最终使土壤样品变成白色或淡黄色的胶块状 (若消解不完全则, 加入5 mL HF继续消解至完全)。用0.5%的稀硝酸冲洗坩埚内壁, 温热溶解, 冷却后转移定容 |
Parameter | BC | S-BC | Si-BC |
---|---|---|---|
C/% | 77.1 | 33.0 | 28.8 |
H/% | 2.95 | 1.76 | 1.50 |
O/% | 12.8 | 34.8 | 16.3 |
S/% | 0.097 | 1.61 | 0.110 |
H/C | 0.459 | 0.642 | 0.625 |
O/C | 0.124 | 0.790 | 0.425 |
As/(m2∙g−1) | 12.3 | 46.0 | 59.3 |
Vm/(cm3∙g−1) | 2.82 | 10.6 | 13.6 |
Vt/(cm3∙g−1) | 0.030 | 0.026 | 0.057 |
D/nm | 9.86 | 2.32 | 3.82 |
Table 3 Element ratio, specific surface area and pore properties of BC, S-BC and Si-BC
Parameter | BC | S-BC | Si-BC |
---|---|---|---|
C/% | 77.1 | 33.0 | 28.8 |
H/% | 2.95 | 1.76 | 1.50 |
O/% | 12.8 | 34.8 | 16.3 |
S/% | 0.097 | 1.61 | 0.110 |
H/C | 0.459 | 0.642 | 0.625 |
O/C | 0.124 | 0.790 | 0.425 |
As/(m2∙g−1) | 12.3 | 46.0 | 59.3 |
Vm/(cm3∙g−1) | 2.82 | 10.6 | 13.6 |
Vt/(cm3∙g−1) | 0.030 | 0.026 | 0.057 |
D/nm | 9.86 | 2.32 | 3.82 |
[1] |
CAI T, LIU X L, ZHANG J C, et al., 2021. Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for cadmium removal[J]. Journal of Cleaner Production, 281: 125390.
DOI URL |
[2] |
EL-NAGGAR A, CHANG S X, CAI Y J, et al., 2021. Mechanistic insights into the (im) mobilization of arsenic, cadmium, lead, and zincin a multi-contaminated soil treated with different biochars[J]. Environment International, 156: 106638.
DOI URL |
[3] | ERDEM H, KINAY A, TUTUS Y, et al., 2017. Can biochar reduce cadmium uptake of tobacco?[J]. Fresenius Environmental Bulletin, 26(12): 7393-7399. |
[4] |
GAO R L, HU H Q, FU Q L, et al., 2020. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry[J]. Science of The Total Environment, 730: 139119.
DOI URL |
[5] |
HERATH I, ZHAO F J, BUNDSCHUH J, et al., 2020. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites[J]. Journal of Hazardous Materials, 398: 123096.
DOI URL |
[6] |
LIANG Y, CAO X D, ZHAO L, et al., 2014. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater[J]. Environmental Science and Pollution Research, 21(6): 4665-4674.
DOI URL |
[7] |
LU K P, YANG X, GIELEN G, et al., 2016. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 186: 285-292.
DOI URL |
[8] |
LU Y C, CHENG J Q, WANG J I, et al., 2022. Efficient remediation of cadmium contamination in soil by functionalized biochar: Recent advances, challenges, and future prospects[J]. Processes, 10(8): 1627.
DOI URL |
[9] |
MORADI N, KARIMI A, 2021. Effect of modified corn residue biochar on chemical fractions and bioavailability of cadmium in contaminated soil[J]. Chemistry and Ecology, 37(3): 1-17.
DOI URL |
[10] |
RANDOLPH P, BANSODE R R, HASSAN O A, et al., 2017. Effect of biochars produced from solid organic municipal waste on soil quality parameters[J]. Journal of Environmental Management, 192: 271-280.
DOI PMID |
[11] |
REHMAN M Z U, RIZWAN M, ALI S, et al., 2018. Cadmium (Cd) concentration in wheat (Triticum aestivum) grown in Cd-spiked soil varies with the doses and biochar feedstock[J]. Arabian Journal of Geosciences, 11(21): 1-10.
DOI URL |
[12] |
SEHAR A, AZIZ R, RAFIQ M T, et al., 2018. Synthesis of biochar from sugarcane filter-cake and its impacts on physiological performance of lettuce (Lettuce sativa) grown on cadmium contaminated soil[J]. Arabian Journal of Geosciences, 11(20): 1-8.
DOI URL |
[13] | SOHI S P, KRULL E, LOPEZ-CAPEL E, et al., 2010. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 105: 47-82. |
[14] |
TAO L, HUANG M X, LI H, et al., 2022. Cadmium and arsenic interactions under different molar ratios during coadsorption processes by excluding pH interference[J]. Chemosphere, 291(Part 2): 132839.
DOI URL |
[15] |
TESSIER A, CAMPBELL P G C, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851.
DOI URL |
[16] | UCHIMIYA M, 2014. Influence of pH, ionic strength, and multidentate ligand on the interaction of Cd(II) with biochars ACS Sustain[J]. ACS Sustainable Chemistry & Engineering, 2(8): 2019-2027. |
[17] |
WANG J B, YUAN R, ZHANG Y H, et al., 2022. Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling[J]. Science of The Total Environment, 836: 155547.
DOI URL |
[18] |
ZAHEDIFAR M, 2020. Effect of biochar on cadmium fractions in some polluted saline and sodic soils[J]. Environmental Management, 66(6): 1133-1141.
DOI PMID |
[19] | ZHANG K, CHEN Y, FANG Z Q, 2023. Highly efficient removal of cadmium by sulfur-modified biochar: Process and mechanism[J]. Water, Air, & Soil Pollution, 234(1): 1-11. |
[20] |
ZHANG X W, YAN Y, WADOOD S A, et al., 2020. Source apportionment of cadmium pollution in agricultural soil based on cadmium isotope ratio analysis[J]. Applied Geochemistry, 123: 104776.
DOI URL |
[21] | 吕鹏, 李莲芳, 黄晓雅, 2023. 改性生物炭修复砷镉复合污染土壤研究进展[J]. 环境科学, 44(7): 4077-4090. |
LÜ P, LI L F, HUANG X Y, 2023. Modified biochar for remediation of soil contaminated with arsenic and cadmium: A review[J]. Environmental Science, 44(7): 4077-4090. | |
[22] | 任超, 任彧仲, 王浩, 等, 2022. 镉胁迫下不同小麦品种对镉的积累特性[J]. 环境科学, 43(3): 1606-1619. |
REN C, REN Y Z, WANG H, et al., 2022. Cadmium accumulation characteristics of different heat varieties under cadmium stress[J]. Environmental Science, 43(3): 1606-1619. | |
[23] | 苏子贤, 刘赛红, 管玉峰, 等, 2023. 镉砷在针铁矿界面共吸附的相互作用机制[J]. 环境科学, 44(7): 3970-3977. |
SU Z X, LIU S H, GUAN Y F, et al., 2023. Cadmium and arsenic interactions during co-adsorbed onto goethite[J]. Environmental Science, 44(7): 3970-3977. |
[1] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[2] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[3] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[4] | SHANG GUAN Yuxian, YIN Hongliang, XU Yi, ZHONG Hongmei, HE Mingjiang, QIN Yusheng, GUO Song, YU Hua. Effects of Different Passivators on Cadmium Absorption in Rice and Wheat Grains [J]. Ecology and Environment, 2022, 31(2): 370-379. |
[5] | JIANG Jing, RUAN Chengjie, CHEN Xiaoyu, WU Yi, WANG Yongchuang. Research Progress on Simulated Aging of Microplastics and Its Effects on Pollutant Adsorption [J]. Ecology and Environment, 2022, 31(11): 2263-2274. |
[6] | RU Shuhua, ZHAO Ouya, HOU Limin, XIAO Guangmin, WANG Ce, SUN Shiyou, ZHANG Guoyin, WANG Ling, LIU Lei. Effects of Eight Kinds of Passivators on Properties and Cadmium Availability in Different Cadmium-contaminated Soil [J]. Ecology and Environment, 2021, 30(10): 2085-2092. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn