Ecology and Environment ›› 2024, Vol. 33 ›› Issue (3): 439-449.DOI: 10.16258/j.cnki.1674-5906.2024.03.012
• Research Article [Environmental Sciences] • Previous Articles Next Articles
XIAO Jiang(), LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai*(
)
Received:
2023-12-17
Online:
2024-03-18
Published:
2024-05-08
Contact:
CHEN Guangcai
通讯作者:
陈光才
作者简介:
肖江(1987年生),男,副研究员,博士,主要从事土壤改良材料的研发,重金属污染土壤修复。E-mail: jiangxiao0915@caf.ac.cn
基金资助:
CLC Number:
XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System[J]. Ecology and Environment, 2024, 33(3): 439-449.
肖江, 李晓刚, 赵博, 陈岩, 陈光才. 微纳富磷生物炭对土壤-苏柳系统中Cu和Pb稳定性的影响[J]. 生态环境学报, 2024, 33(3): 439-449.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.03.012
样品 | BC | MBC |
---|---|---|
比表面积/(m2∙g−1) | 52.78 | 313.09 |
微孔比表面积/(m2∙g−1) | 24.32 | 193.89 |
内部比表面积/(m2∙g−1) | 28.46 | 119.2 |
平均粒径/nm | 8.22 | 6.46 |
孔体积/(cm3∙g−1) | 0.0975 | 0.4538 |
pH | 9.51 | 7.98 |
w(N)/% | 3.42 | 3.46 |
w(C)/% | 39.49 | 39.11 |
w(H)/% | 1.45 | 1.79 |
w(S)/% | 0.07 | - |
w(Ca)/% | 19.65 | 20.37 |
w(O)/% | 24.26 | 24 |
w(P)/% | 10.36 | 10.66 |
Table 1 The basic properties and the main elements of the BC and MBC
样品 | BC | MBC |
---|---|---|
比表面积/(m2∙g−1) | 52.78 | 313.09 |
微孔比表面积/(m2∙g−1) | 24.32 | 193.89 |
内部比表面积/(m2∙g−1) | 28.46 | 119.2 |
平均粒径/nm | 8.22 | 6.46 |
孔体积/(cm3∙g−1) | 0.0975 | 0.4538 |
pH | 9.51 | 7.98 |
w(N)/% | 3.42 | 3.46 |
w(C)/% | 39.49 | 39.11 |
w(H)/% | 1.45 | 1.79 |
w(S)/% | 0.07 | - |
w(Ca)/% | 19.65 | 20.37 |
w(O)/% | 24.26 | 24 |
w(P)/% | 10.36 | 10.66 |
[1] |
ABDIN Y, USMAN A, OK Y. S, et al., 2020. Competitive sorption and availability of coexisting heavy metals in mining contaminated soil: Contrasting effects of mesquite and fishbone biochars[J]. Environmental Research, 181: 108846.
DOI URL |
[2] |
ANTONIADIS V, LEVIZOU E, SHAHEEN S M, et al., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation: A review[J]. Earth-Science Reviews, 171: 621-645.
DOI URL |
[3] |
AZEEM M, SHAHEEN S M, ALI A, et al., 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant-and bone-derived biochars: A review[J]. Journal of Hazardous Materials, 427: 128131.
DOI URL |
[4] |
CAO Y N, ZHANG Y, MA C X, et al., 2018. Growth, physiological responses, and copper accumulation in seven willow species exposed to Cu—a hydroponic experiment[J]. Environmental Science and Pollution Research, 25: 19875-19886.
DOI |
[5] |
FERNANDO M S, DE SILVA R M, DE SILVA K N, 2015. Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions[J]. Applied Surface Science, 351: 95-103.
DOI URL |
[6] |
GUL S, WHALEN J K, THOMAS B W, et al., 2015. Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions[J]. Agriculture, Ecosystems and Environment, 206: 46-59.
DOI URL |
[7] |
GREGORY S J, ANDERSON C W N, ARBESTAIN M C, et al., 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil[J]. Agriculture, Ecosystems and Environment, 191: 133-141.
DOI URL |
[8] |
JUNG K W, LEE S Y, CHOI J W, et al., 2019. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper (II) from aqueous media[J]. Chemical Engineering Journal, 369: 529-541.
DOI URL |
[9] |
KOUSALYA G N, GANDHI M R, SUNDARAM C S, et al., 2010. Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removal of Fe(III)[J]. Carbohydrate Polymers, 82(3): 594-599.
DOI URL |
[10] |
LACALLE R G, BERNAL M P, ÁLVAREZ-ROBLES M J, et al., 2023. Phytostabilization of soils contaminated with As, Cd, Cu, Pb and Zn: Physicochemical, toxicological and biological evaluations[J]. Soil and Environmental Health, 1(2): 100014.
DOI URL |
[11] |
LEBRUN M, MIARD F, NANDILLON R, et al., 2018. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana)[J]. Chemosphere, 194: 316-326.
DOI URL |
[12] |
LEBRUN M, MIARD F, NANDILLON R, et al., 2019. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth[J]. Chemosphere, 222: 810-822.
DOI URL |
[13] | LEBRUN M, MACRI C, MIARD F, et al., 2017. Effect of biochar amendments on As and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix[J]. Journal of Geochemical Exploration, 182(Part B): 149-156. |
[14] |
LEBRUN M., MIARD F., NANDILLON R., et al., 2018. Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis[J]. Journal of Soils and Sediments, 18: 2188-2202.
DOI URL |
[15] |
LI X G, CAO Y N, XIAO J, et al., 2022. Bamboo biochar greater enhanced Cd/Zn accumulation in Salix psammophila under non-flooded soil compared with flooded[J]. Biochar, 4(1): 1-17.
DOI |
[16] |
LI X G, XIAO J, SALAM M M A, et al., 2021. Impacts of bamboo biochar on the phytoremediation potential of Salix psammophila grown in multi-metals contaminated soil[J]. International Journal of Phytoremediation, 23(4): 387-399.
DOI URL |
[17] |
MEI H Y, HUANG W F, WANG Y, et al., 2022. One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth[J]. Science of The Total Environment, 840: 156163.
DOI URL |
[18] |
PARK J H, YUN J J, KANG S W, et al., 2021. Removal of potentially toxic metal by biochar derived from rendered solid residue with high content of protein and bone tissue[J]. Ecotoxicology and Environmental Safety, 208: 111690.
DOI URL |
[19] |
PETERSON S C, JACKSON M A, KIM S, et al., 2012. Increasing biochar surface area: Optimization of ball milling parameters[J]. Powder Technology, 228: 115-120.
DOI URL |
[20] |
PICCIRILLO C, MOREIRA I S, NOVAIS R M, et al., 2017. Biphasic apatite-carbon materials derived from pyrolyzed fish bones for effective adsorption of persistent pollutants and heavy metals[J]. Journal of Environmental Chemical Engineering, 5(5): 4884-4894.
DOI URL |
[21] |
RAMEZANZADEH H, REYHANITABAR A, OUSTAN S, et al., 2021. Enhanced sorption of cadmium by using biochar nanoparticles from ball milling in a sandy soil[J]. Eurasian Soil Science, 54(2): 201-211.
DOI |
[22] |
RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1(1) 57-61.
PMID |
[23] |
RODRIGUEZ-FRANCO C, PAGE-DUMROESE D S, 2021. Woody biochar potential for abandoned mine land restoration in the U.S.: A review[J]. Biochar, 3(1): 7-22.
DOI |
[24] |
TŐZSÉR D, HARANGI S, BARANYAI E, et al., 2018. Phytoextraction with Salix viminalis in a moderately to strongly contaminated area[J]. Environmental Science and Pollution Research, 25(4): 3275-3290.
DOI URL |
[25] |
VAMVUKA D, DERMITZAKIS S, PENTARI D, et al., 2018. Valorization of meat and bone meal through pyrolysis for soil amendment or lead adsorption from wastewaters[J]. Food Bioprod Process, 109: 148-157.
DOI URL |
[26] |
WANG Y Y, LIU Y X, LU H H, et al., 2018. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions[J]. Journal of Solid State Chemistry, 261: 53-61.
DOI URL |
[27] |
WANG R Y, SHAFI M, MA J W, et al., 2018. Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants[J]. Environmental Science and Pollution Research, 25(28): 28695-28704.
DOI |
[28] |
XIAO J, HU R, CHEN G C, 2020. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II)[J]. Journal of Hazardous Materials, 387: 121980.
DOI URL |
[29] |
XIAO J, LI X G, CAO Y N, et al., 2023. Does micro/nano biochar always good to phytoremediation? A case study from multiple metals contaminated acidic soil using Salix jiangsuensis ‘172’. Carbon Research, 2(1): 21.
DOI |
[30] |
XIAO X, CHEN B L, CHEN Z M, et al., 2018. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environmental Science and Technology, 52(9): 5027-5047.
DOI PMID |
[31] |
ZHANG H, SHAO J, ZHANG S H, et al., 2020. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As(V) in paddy soil[J]. Journal of Hazardous Materials, 390: 121349.
DOI URL |
[32] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[33] |
ZHU Y N, JIANG Y H, ZHU Z Q, et al., 2018. Preparation of a porous hydroxyapatite-carbon composite with the bio-template of sugarcane top stems and its use for the Pb (II) removal[J]. Journal of Cleaner Production, 187: 650-661.
DOI URL |
[34] |
陈桂红, 2023. 硫和硅掺杂生物炭对镉污染土壤的修复研究[J]. 生态环境学报, 32(10): 1854-1860.
DOI |
CHEN G H, 2023. Remediation of cadmium contaminated soil by sulfur/silicon doped biochar[J]. Ecology and Environmental Sciences, 32(10): 1854-1860. | |
[35] | 高瑞丽, 唐茂, 付庆灵, 等, 2017. 生物炭、蒙脱石及其混合添加对复合污染土壤中重金属形态的影响[J]. 环境科学, 38(1): 361-367. |
GAO R L, TANG M, FU Q L, et al., 2017. Fractions transformation of heavy metals in compound contaminated soil treated with biochar, montmorillonite and mixed addition[J]. Environmental Science, 38(1): 361-367. | |
[36] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
Ministry of Environmental Protection, Ministry of Land and Resources, 2014. Bulletin of national soil pollution survey[J]. China Environmental Protection Industry (5): 10-11. | |
[37] | 黄连喜, 魏岚, 刘晓文, 等, 2020. 生物炭对土壤-植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报, 39(10): 2205-2216. |
HUANG L X, WEI L, LIU X W, et al., 2020. Effects of biochar on the migration and accumulation of lead and cadmium in soil-plant systems[J]. Journal of Agro-Environment Science, 39(10): 2205-2216. | |
[38] |
李江遐, 吴林春, 张军, 等, 2015. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 24(12): 2075-2081.
DOI |
LI J X, WU L C, ZHANG J, et al., 2015. Research progresses in remediation of heavy metal contaminated soils by biochar[J]. Ecology and Environment Sciences, 24(12): 2075-2081. | |
[39] | 李琪瑞, 许晨阳, 耿增超, 等, 2020. 纳米生物炭的制备方法比较及其特性研究[J]. 中国环境科学, 40(7): 3124-3134. |
LI Q R, XU C Y, GENG Z C, et al., 2020. Preparation methods and properties of nanobio-chars[J]. China Environmental Science, 40(7): 3124-3134. | |
[40] | 骆永明, 滕应. 2018. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 33(2): 145-152. |
LUO Y M, TENG Y, 2018. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 33(2): 145-152. | |
[41] | 国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准:GB 15618— 2018[S]. |
Ministry of Ecology and Environment of China, and State Administration for Market Regulation of China, 2018. Soil environmental quality risk control standard for soil contamination of agricultural land:GB 15618— 2018[S]. | |
[42] | 商侃侃, 张国威, 蒋云, 2019. 54种木本植物对土壤Cu、Pb、Zn的提取能力[J]. 生态学杂志, 38(12):3723-3730. |
SHANG K K, ZHANG G W, JIANG Y, 2019. The phytoextraction ability of 54 woody species on Cu, Pb, Zn in soil[J]. Chinese Journal of Ecology, 38(12): 3723-3730. | |
[43] | 王友保, 2018. 土土壤污染生态修复实验技术[M]. 北京: 科学出版社. |
WANG Y B, 2018. Experimental technology for ecological remediation of soil pollution[M]. Beijing: Science Press. | |
[44] | 肖鹏飞, 吴德东, 2021. 全球植物修复研究文献计量分析[J]. 生态学报, 41(21): 8685-8695. |
XIAO P F, WU D D, 2021. Econometric analysis of global phytoremediation literature[J]. Acta Ecologica Sinica, 41(21): 8685-8695. | |
[45] | 许燕萍, 谢祖彬, 朱建国, 等, 2013. 制炭温度对玉米和小麦生物质炭理化性质的影响[J]. 土壤, 45(1): 73-78. |
XU Y P, XIE Z B, ZHU J G, et al., 2013. Effects of pyrolysis temperature on physical and chemical properties of corn biochar and wheat biochar[J]. Soils, 45(1): 73-78. | |
[46] | 杨艳征, 张银鸽, 李畅, 等, 2022. 微碱性土壤施用烟杆生物炭与磷酸盐可降低小麦籽粒镉积累[J]. 环境科学, 43(12): 5769-5777. |
YANG Y Z, ZHANG Y G, LI C, et al., 2022. Tobacco stem biochar and phosphate application decrease wheat grain cadmium accumulation in alkalescent soils[J]. Environmental Science, 43(12): 5769-5777.
DOI URL |
|
[47] |
赵维彬, 唐丽, 王松, 等, 2023. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 32(4): 678-686.
DOI |
ZHAO W B, TANG L, WANG S, et al., 2023. Improvement effect of two biochars on coastal saline-alkaline soil[J]. Ecology and Environmental Sciences, 32(4): 678-686. |
[1] | YAN Xingrui, GONG Ping, WANG Xiaoping, SHANG Lihai, LI Yinong, MAO Feijian, NIU Xuerui, ZHANG Bo. Organochlorine Pollutants in Soils and Grasses in the Three-River Headwater Region: Distributions, Sources, and Ecological Risks [J]. Ecology and Environment, 2024, 33(3): 428-438. |
[2] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environment, 2024, 33(3): 460-468. |
[3] | GU Jiawei, GUO Caixia, ZHU Huanan, TAN Yukun, CHEN Hongyue. Landscape Pattern Evolution and Driving Forces Analysis of the Fengxi Provincial Nature Reserve in Guangdong Province [J]. Ecology and Environment, 2024, 33(2): 222-230. |
[4] | JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas [J]. Ecology and Environment, 2024, 33(2): 291-300. |
[5] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environment, 2024, 33(2): 282-290. |
[6] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[7] | LIN Jianhui, LI Pingping, LIU Min, DENG Xi, KANG Zixin, YANG Tao, ZHAN Shuyue, ZENG Yingxu. Biotoxicity of Different Biofilm-coated Microplastics in Gills of Clam Meretrix lyrata [J]. Ecology and Environment, 2024, 33(1): 111-118. |
[8] | YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings [J]. Ecology and Environment, 2024, 33(1): 156-166. |
[9] | WANG Zhenjun, WANG Shaojun, XIAO Bo, XIE Lingling, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, YANG Shengqiu, LAN Mengjie. Response of Soil Organic Carbon Accumulation and Allocation Dynamics to Ant Nesting Activities in Xishuangbanna Tropical Forests [J]. Ecology and Environment, 2024, 33(1): 35-44. |
[10] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environment, 2023, 32(8): 1507-1515. |
[11] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[12] | WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China [J]. Ecology and Environment, 2023, 32(8): 1365-1375. |
[13] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[14] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[15] | XIAO Bo, WANG Shaojun, XIE Lingling, WANG Zhengjun, GUO Zhipeng, ZHANG Kunfeng, ZHANG Lulu, FAN Yuxiang, GUO Xiaofei, LUO Shuang, XIA Jiahui, LI Rui, LAN Mengjie, YANG Shengqiu. Effect of Ant Nesting Activity on Soil Nitrogen Component Allocation in the Xishuangbanna Tropical Forests [J]. Ecology and Environment, 2023, 32(6): 1026-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn