Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1962-1973.DOI: 10.16258/j.cnki.1674-5906.2025.12.013
• Original article [Environmental Science] • Previous Articles Next Articles
WANG Yongmei1(
), YUAN Yuzhen1, WANG Zicheng1,2, LI Zhifeng1, GAO Shuangquan1, LIU Chuanping1, DU Yanhong1,*(
)
Received:2025-10-18
Online:2025-12-18
Published:2025-12-10
王永梅1(
), 袁雨珍1, 王梓成1,2, 李志丰1, 高双全1, 刘传平1, 杜衍红1,*(
)
通讯作者:
*E-mail:yhdu@soil.gd.cn
作者简介:王永梅(1982年生),女,中级工程师,硕士,研究方向为土地利用规划与耕地质量分类、土壤改良培肥。E-mail: 68641669@qq.com
基金资助:CLC Number:
WANG Yongmei, YUAN Yuzhen, WANG Zicheng, LI Zhifeng, GAO Shuangquan, LIU Chuanping, DU Yanhong. Long-term Effects of Biochar Coupled with Chemical Fertilizer Reduction on the Safe Production of Sweet Corn in Heavy Metal-Contaminated Soils[J]. Ecology and Environmental Sciences, 2025, 34(12): 1962-1973.
王永梅, 袁雨珍, 王梓成, 李志丰, 高双全, 刘传平, 杜衍红. 生物炭协同化肥减量对重金属污染土壤甜玉米安全生产的长期效应[J]. 生态环境学报, 2025, 34(12): 1962-1973.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.013
| pH | w(Cd)/(mg·kg−1) | w(As)/(mg·kg−1) | w(Pb)/(mg·kg−1) | w(Cr)/(mg·kg−1) | w(Hg)/(mg·kg−1) | w(OM)/(g·kg−1) | CEC/(cmol·kg−1) |
|---|---|---|---|---|---|---|---|
| 4.25 | 0.425 | 35.6 | 85.7 | 63.6 | 0.538 | 12.35 | 8.32 |
Table 1 Basic physicochemical properties and pollution status of the experimental site
| pH | w(Cd)/(mg·kg−1) | w(As)/(mg·kg−1) | w(Pb)/(mg·kg−1) | w(Cr)/(mg·kg−1) | w(Hg)/(mg·kg−1) | w(OM)/(g·kg−1) | CEC/(cmol·kg−1) |
|---|---|---|---|---|---|---|---|
| 4.25 | 0.425 | 35.6 | 85.7 | 63.6 | 0.538 | 12.35 | 8.32 |
| 处理名称 | 编号 | 施炭量/ (kg·hm−2) | 施尿素量/ (kg·hm−2) | 氮肥递减率/ % |
|---|---|---|---|---|
| 常规施肥 | CK | 0 | 600 | 0 |
| 生物炭+常规施肥 | CF0 | 15000 | 600 | 0 |
| 生物炭+80%常规施肥 | CF1 | 15000 | 480 | 20 |
| 生物炭+60%常规施肥 | CF2 | 15000 | 360 | 40 |
Table 2 Experimental design
| 处理名称 | 编号 | 施炭量/ (kg·hm−2) | 施尿素量/ (kg·hm−2) | 氮肥递减率/ % |
|---|---|---|---|---|
| 常规施肥 | CK | 0 | 600 | 0 |
| 生物炭+常规施肥 | CF0 | 15000 | 600 | 0 |
| 生物炭+80%常规施肥 | CF1 | 15000 | 480 | 20 |
| 生物炭+60%常规施肥 | CF2 | 15000 | 360 | 40 |
| 种植周期 | 养分指标 | w(CK)/(mg·kg−1) | w(CF0)/(mg·kg−1) | 增加率/% | w(CF1)/(mg·kg−1) | 增加率/% | w(CF2)/(mg·kg−1) | 增加率/% |
|---|---|---|---|---|---|---|---|---|
| 第一季 | 可溶性糖 | 1.32×105±0.42×104 | 1.49×105±0.38×104 | 12.95 | 1.52×105±0.56×104 | 15.08 | 1.51×105±0.44×104 | 13.71 |
| Vc | 53.6±1.5 | 63.2±1.9 | 17.91 | 63.8±3.3 | 19.03 | 61.3±2.2 | 14.37 | |
| 第二季 | 可溶性糖 | 1.43×105±0.52×104 | 1.60×105±0.56×104 | 11.67 | 1.61×105±0.61×104 | 12.72 | 1.59×105±0.56×104 | 10.90 |
| Vc | 51.1±1.2 | 58.5±2.5 | 14.48 | 59.2±3.0 | 15.85 | 57.6±3.9 | 12.72 | |
| 第三季 | 可溶性糖 | 1.24×105±0.56×104 | 1.34×105±0.51×104 | 8.57 | 1.36×105±0.55×104 | 10.02 | 1.35×105±0.40×104 | 8.89 |
| Vc | 48.6±1.7 | 53.8±2.6 | 10.70 | 53.7±2.4 | 10.49 | 53.6±3.4 | 10.29 | |
| 第四季 | 可溶性糖 | 1.16×105±0.49×104 | 1.24×105±0.32×104 | 6.88 | 1.26×105±0.37×104 | 8.18 | 1.24×105±0.59×104 | 6.97 |
| Vc | 47.5±1.1 | 51.2±2.4 | 7.79 | 51.5±1.8 | 8.42 | 51.3±4.1 | 8.00 |
Table 3 Nutrient change in sweet corn grains
| 种植周期 | 养分指标 | w(CK)/(mg·kg−1) | w(CF0)/(mg·kg−1) | 增加率/% | w(CF1)/(mg·kg−1) | 增加率/% | w(CF2)/(mg·kg−1) | 增加率/% |
|---|---|---|---|---|---|---|---|---|
| 第一季 | 可溶性糖 | 1.32×105±0.42×104 | 1.49×105±0.38×104 | 12.95 | 1.52×105±0.56×104 | 15.08 | 1.51×105±0.44×104 | 13.71 |
| Vc | 53.6±1.5 | 63.2±1.9 | 17.91 | 63.8±3.3 | 19.03 | 61.3±2.2 | 14.37 | |
| 第二季 | 可溶性糖 | 1.43×105±0.52×104 | 1.60×105±0.56×104 | 11.67 | 1.61×105±0.61×104 | 12.72 | 1.59×105±0.56×104 | 10.90 |
| Vc | 51.1±1.2 | 58.5±2.5 | 14.48 | 59.2±3.0 | 15.85 | 57.6±3.9 | 12.72 | |
| 第三季 | 可溶性糖 | 1.24×105±0.56×104 | 1.34×105±0.51×104 | 8.57 | 1.36×105±0.55×104 | 10.02 | 1.35×105±0.40×104 | 8.89 |
| Vc | 48.6±1.7 | 53.8±2.6 | 10.70 | 53.7±2.4 | 10.49 | 53.6±3.4 | 10.29 | |
| 第四季 | 可溶性糖 | 1.16×105±0.49×104 | 1.24×105±0.32×104 | 6.88 | 1.26×105±0.37×104 | 8.18 | 1.24×105±0.59×104 | 6.97 |
| Vc | 47.5±1.1 | 51.2±2.4 | 7.79 | 51.5±1.8 | 8.42 | 51.3±4.1 | 8.00 |
Figure 5 Correlations analysis between soil physicochemical factors and contents of Cd, As, Pb as well as nutrient indicators in maize grains and linear regression analysis of pH with heavy metal translocation factors from roots to grains
| 处理 | 重金属阻控效率/% | 产量增幅/% | 投入产出比 | 综合得分 | 适用农田类型 |
|---|---|---|---|---|---|
| CF0 | 32.5 | 11.5 | 1꞉4.21 | 16.5 | 轻微重金属污染且肥力偏低农田,主要用于土壤培肥,促进长效增产 |
| CF1 | 52.0 | 8.2 | 1꞉4.09 | 23.3 | 中轻度重金属污染农田(w(Cd)≤0.4 mg·kg−1、w(Pd)≤80 mg·kg−1),兼顾安全生产与产量收益 |
| CF2 | 62.6 | 3 | 1꞉3.83 | 26.0 | 重度重金属污染农田(w(Cd)>0.4 mg·kg−1、w(Pd)>80 mg·kg−1),优先保障农产品重金属不超标 |
| CK | 0 | 0 | 1꞉13.61 | 0.02 | 无重金属污染或污染极轻农田 |
Table 4 Comprehensive evaluation of “heavy metal immobilization efficiency-yield increase rate” under different treatments
| 处理 | 重金属阻控效率/% | 产量增幅/% | 投入产出比 | 综合得分 | 适用农田类型 |
|---|---|---|---|---|---|
| CF0 | 32.5 | 11.5 | 1꞉4.21 | 16.5 | 轻微重金属污染且肥力偏低农田,主要用于土壤培肥,促进长效增产 |
| CF1 | 52.0 | 8.2 | 1꞉4.09 | 23.3 | 中轻度重金属污染农田(w(Cd)≤0.4 mg·kg−1、w(Pd)≤80 mg·kg−1),兼顾安全生产与产量收益 |
| CF2 | 62.6 | 3 | 1꞉3.83 | 26.0 | 重度重金属污染农田(w(Cd)>0.4 mg·kg−1、w(Pd)>80 mg·kg−1),优先保障农产品重金属不超标 |
| CK | 0 | 0 | 1꞉13.61 | 0.02 | 无重金属污染或污染极轻农田 |
| 不同 处理 | 单季生物炭成本/ (104yuan∙hm−2) | 单季化肥 成本/ (104yuan∙hm−2) | 产量增收/(万元·hm-2) | 单季品 质溢价/ (104yuan∙hm−2) | 总增收(产量增收+溢价增收)/(104yuan∙hm−2) | 总成本/ (104yuan∙hm−2) | 总收益/ (104yuan∙hm−2) | 投入 产出比 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 第一季 | 第二季 | 第三季 | 第四季 | 第一季 | 第二季 | 第三季 | 第四季 | ||||||||
| CK | 0.00 | 0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 17.10 | 1:13.6 | |
| CF0 | 5.25 | 0.31 | 0.46 | 0.43 | 0.53 | 0.52 | 1.59 | 2.05 | 2.02 | 2.12 | 2.11 | 6.49 | 27.33 | 1:4.21 | |
| CF1 | 5.25 | 0.28 | 0.38 | 0.28 | 0.37 | 0.37 | 1.54 | 1.92 | 1.82 | 1.91 | 1.91 | 6.38 | 26.06 | 1:4.09 | |
| CF2 | 5.25 | 0.25 | 0.10 | 0.09 | 0.11 | 0.20 | 1.47 | 1.57 | 1.56 | 1.58 | 1.67 | 6.26 | 23.96 | 1:3.83 | |
Table 5 Economic analysis of the long-term soil remediation mode with biochar synergized with chemical fertilizer reduction
| 不同 处理 | 单季生物炭成本/ (104yuan∙hm−2) | 单季化肥 成本/ (104yuan∙hm−2) | 产量增收/(万元·hm-2) | 单季品 质溢价/ (104yuan∙hm−2) | 总增收(产量增收+溢价增收)/(104yuan∙hm−2) | 总成本/ (104yuan∙hm−2) | 总收益/ (104yuan∙hm−2) | 投入 产出比 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 第一季 | 第二季 | 第三季 | 第四季 | 第一季 | 第二季 | 第三季 | 第四季 | ||||||||
| CK | 0.00 | 0.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 17.10 | 1:13.6 | |
| CF0 | 5.25 | 0.31 | 0.46 | 0.43 | 0.53 | 0.52 | 1.59 | 2.05 | 2.02 | 2.12 | 2.11 | 6.49 | 27.33 | 1:4.21 | |
| CF1 | 5.25 | 0.28 | 0.38 | 0.28 | 0.37 | 0.37 | 1.54 | 1.92 | 1.82 | 1.91 | 1.91 | 6.38 | 26.06 | 1:4.09 | |
| CF2 | 5.25 | 0.25 | 0.10 | 0.09 | 0.11 | 0.20 | 1.47 | 1.57 | 1.56 | 1.58 | 1.67 | 6.26 | 23.96 | 1:3.83 | |
| [1] |
BOLAN N S, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 266: 141-166.
DOI URL |
| [2] | CHEN Y, WANG H, ZHANG J, et al., 2022. Biochar combined with nitrogen fertilizer reduction enhances rice yield and nitrogen use efficiency in a double-rice cropping system[J]. Field Crops Research, 284: 108345. |
| [3] |
HAIDER F U, AIN N U, KHAN I, et al., 2024. Co-application of biochar and plant growth regulators improves maize growth and decreases Cd accumulation in cadmium-contaminated soil[J]. Journal of Cleaner Production, 440: 140515.
DOI URL |
| [4] | JU X T, KOU C L, CHRISTIE P, et al., 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(9): 3041-3046. |
| [5] |
LEHMANN J, 2007. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 5(7): 381-387.
DOI URL |
| [6] | LIU X, LI J, LI X, et al., 2019. Combined application of biochar and reduced chemical fertilizer improves soil fertility and grain yield of wheat: A two-year field study[J]. Journal of Soils and Sediments, 19(12): 4144-4154. |
| [7] | LUO J, SOLAIMAN Z M, LEHMANN J, et al., 2011. A review of biochar properties and their roles in crop growth and soil quality[J]. Critical Reviews in Plant Sciences, 30(1): 43-59. |
| [8] | PARK J H, CHOPPALA G K, BOLAN N S, et al., 2011. Biochar application to acidic soils: A review of current status and future prospects[J]. Journal of Environmental Management, 92(5): 1243-1251. |
| [9] | SPOKAS K A, 2010. Review of the stability of biochar in soils: Predictions from leaching and oxidation experiments, and changes in biochar structure and composition[J]. Biochar, 2(1): 25-46. |
| [10] | UCHIMIYA M, AHMAD M, LIM J E, et al., 2010. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemical Engineering Journal, 159(1-2): 226-234. |
| [11] | WANG H, ZHANG J, LIU Y, et al., 2022. Biochar combined with reduced nitrogen fertilizer application affects rice yield and nitrogen use efficiency in a double-rice cropping system[J]. Field Crops Research, 284: 108345. |
| [12] | ZHANG X, BIAN R, PAN G, et al., 2015. Aging of biochar in soils: A review[J]. Environmental Science & Technology, 49(15): 8807-8820. |
| [13] |
ZHAO F J, MA Y B, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759.
DOI URL |
| [14] |
ZHAO X L, LI J, ZHOU X, et al., 2021. Long-term biochar application reduces cadmium accumulation in rice grains in a contaminated paddy soil[J]. Chemosphere, 279: 130512.
DOI URL |
| [15] | 李敏, 张乃明, 陈建军, 等, 2020. 生物炭对镉污染土壤的修复效应及机制[J]. 农业环境科学学报, 39(5): 913-922. |
| LI M, ZHANG N M, CHEN J J, et al., 2020. The remediation effect and mechanism of biochar on cadmium-contaminated soil[J]. Journal of Agro-Environment Science, 39(5): 913-922. | |
| [16] | 李梦然, 许学慧, 赵萌莉, 2021. 不同形态氮肥对苗期玉米镉富集的影响[J]. 中国土壤与肥料 (4): 289-294. |
| LI M R, XU X H, ZHAO M L, 2021. Effects of different forms of nitrogenous fertilizer on cadmium accumulation in seedling stage of maize (Zea mays L.)[J]. Soil and Fertilizer Sciences in China (4): 289-294. | |
| [17] | 李志贤, 向言词, 李会东, 等, 2014. 施氮水平对玉米吸收和富集重金属Cd、Pb的影响[J]. 水土保持学报, 28(6): 143-147. |
| LI Z X, XIANG Y C, LI H D, et al., 2014. Effects of Nitrogen Application Levels on Cd, Pb Uptake and Accumulation by Maize[J]. Journal of Soil and Water Conservation, 28(6): 143-147. | |
| [18] | 孙建好, 周健民, 王火焰, 等, 2018. 氮肥类型对土壤pH和小麦生长的影响[J]. 土壤学报, 55(2): 443-452. |
| SUN J H, ZHOU J M, WANG H Y, et al., 2018. The impact of nitrogen fertilizer types on soil pH and wheat growth[J]. ACTA Pedologica Sinica, 55(2): 443-452. | |
| [19] | 王艳, 李廷轩, 张锡洲, 等, 2017. 镉胁迫对玉米根系形态及养分吸收的影响[J]. 应用生态学报, 28(8): 2617-2624. |
| WANG Y, LI T X, ZHANG X Z, et al., 2017. The impact of cadmium stress on maize root morphology and nutrient absorption[J]. Chinese Journal of Applied Ecology, 28(8): 2617-2624. | |
| [20] | 赵秀兰, 秦欢, 周鑫, 等, 2022. 氮肥对生物炭修复镉污染土壤的影响[J]. 农业环境科学学报, 41(3): 473-481. |
| ZHAO X L, QIN H, ZHOU X, et al., 2022. The impact of nitrogen fertilizer on cadmium-contaminated soil remediation using biochar[J]. Journal of Agro-Environment Science, 41(3): 473-481. | |
| [21] | 中华人民共和国生态环境部国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018[S]. |
| Ministry of Ecology and Environment of the People’s Republic of China and State Administration for Market Regulation, 2018, Soil environmental quality risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. | |
| [22] | 中华人民共和国农业部, 2015. 水果及制品可溶性糖的测定3,5-二硝基水杨酸比色法, NY/T 2742—2015[S]. |
| Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2015. Determination of soluble sugar in fruits and derived products3, 5-dinitrosalieylie acid colorimetry, NY/T 2742—2015[S]. | |
| [23] | 中华人民共和国农业部, 2022. 生物炭, NY/T 4159—2022[S]. |
| Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2022. Biochar, NY/T 4159—2022[S]. | |
| [24] | 中华人民共和国国家卫生健康委员会国家市场监督管理总局, 2022. 食品安全国家标准食品中污染物限量: GB 2762—2022[S]. |
| National Health Commission of the People’s Republic of China and State Administration for Market Regulation, 2022. National Food Safety Standard - Limits of Contaminants in Foods, GB 2762—2022[S]. |
| [1] | LIU Fengjuan, MA Chao, HUANG Linghan, CHEN Qi, LUO Xuqiang. Effects of Biochar Addition on the Phytoavailability of As and Sb in Tailings-contaminated Soil [J]. Ecology and Environmental Sciences, 2025, 34(8): 1273-1281. |
| [2] | FENG Shanshan, TAO Liang, LIANG Junfen. Spatiotemporal Evolution and Driving Mechanisms of County-Level Agricultural Industry Agglomeration under High-Quality Development: A Case Study of Vegetable Production in Guangdong Province [J]. Ecology and Environmental Sciences, 2025, 34(8): 1293-1304. |
| [3] | LIN Wei, ZHOU Jinxing, HE Rongxiao, CHEN Zongzhu, CHEN Yiqing, WANG Yunlei, ZHONG Yunfang, LEI Jinrui. Temporal-Spatial Evolution of Ecosystem Service Value in the “Three-Space” System and Its Driving Factors in Northern Hainan [J]. Ecology and Environmental Sciences, 2025, 34(8): 1317-1328. |
| [4] | HE Huan, ZHOU Dandan, MA Zhixuan, LI Fangfang, QIN Shanshan, DOU Sixian. Effect of Calcium Modification on the Binding of Biochar-derived Dissolved Organic Matter with Cd(II) [J]. Ecology and Environmental Sciences, 2025, 34(7): 1121-1132. |
| [5] | MENG Chang, HONG Mei, LI Fei. Collaborative Enhancement of Soil Heavy Metal Prediction Accuracy Using Hyperspectral Sensitive Band Selection and Machine Learning [J]. Ecology and Environmental Sciences, 2025, 34(6): 950-960. |
| [6] | LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719. |
| [7] | LIU Honglin, ZHAO Fangkai, YANG Lei, SHEN Linjun, YANG Kaifeng, LI Min, CHEN Liding. Study on Heavy Metal Pollution in Urban Park Soil and Influencing Factors: A Case Study of Ningbo City [J]. Ecology and Environmental Sciences, 2025, 34(5): 773-783. |
| [8] | CHEN Jieru, YE Changsheng, WEI Wei, CAI Xin, WANG Lili. Analysis of “Production-Living-Ecological Space” Coupling Coordination and Influencing Factors in County Areas of Poyang Lake City Cluster [J]. Ecology and Environmental Sciences, 2025, 34(5): 807-818. |
| [9] | CHEN Lin, LAN Guanyu, XU Yan, LI Xue, MAO Xuefei. Advances in Hydrogen-bonded Organic Framework Materials for Adsorption and Detection of Environmental Pollutants [J]. Ecology and Environmental Sciences, 2025, 34(3): 474-483. |
| [10] | WU Xiaoling, DU Yanhong, DOU Fei, GAO Shuangquan, WANG Xiangqin. A Long-term Positioning Experiment of Heavy Metal-Contaminated Vegetable Fields Remediated by Biochar and Humus [J]. Ecology and Environmental Sciences, 2025, 34(12): 1952-1961. |
| [11] | ZHAO Chengxiao, MA Jianghong, LIU Hongxia, HU Jingwen, PAN Zitong, WANG Jiaying, LI Jinye. Enhanced Nitrogen Removal of Constructed Wetlands by Biochar [J]. Ecology and Environmental Sciences, 2025, 34(12): 1985-1992. |
| [12] | JI Bo, CHENG Hongguang, HAN Shiming, XING Dan, WU Zhibing, ZHANG Jinlian, LIU Fang, ZHU Yi, DENG Lirong, ZHANG Xiaosong. Research Advances in the Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Phosphorus Supply [J]. Ecology and Environmental Sciences, 2025, 34(11): 1812-1826. |
| [13] | WANG Anhou, XIE Zhiyi, CHEN Duohong, WANG Bojin, HUANG Ying, LU Ying, WANG Yu, YANG Xingjian, LI Yongtao. Characterizing Agricultural Non-point Source Pollution in Representative Small Watershed of Guangzhou under Rainfall Conditions [J]. Ecology and Environmental Sciences, 2025, 34(10): 1633-1643. |
| [14] | CHANG Chunying, WANG Gang, CAO Haoxuan, DENG Yirong, TAO Liang. Impact of Simulated Dry-wet Process on Nickel (Ni) and Lead (Pb) in Stabilization Remediated Soils [J]. Ecology and Environmental Sciences, 2025, 34(1): 118-125. |
| [15] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environmental Sciences, 2024, 33(9): 1451-1459. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn