Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (8): 1273-1281.DOI: 10.16258/j.cnki.1674-5906.2025.08.012
• Research Article [Environmental Science] • Previous Articles Next Articles
LIU Fengjuan1(), MA Chao2, HUANG Linghan3, CHEN Qi4, LUO Xuqiang1,*(
)
Received:
2024-11-11
Online:
2025-08-18
Published:
2025-08-01
柳凤娟1(), 马超2, 黄玲涵3, 陈琪4, 罗绪强1,*(
)
通讯作者:
*E-mail: 作者简介:
柳凤娟(1984年生),女,副教授,博士,主要从事重金属环境行为及污染防治方面的研究。E-mail:361257961@qq.com
基金资助:
CLC Number:
LIU Fengjuan, MA Chao, HUANG Linghan, CHEN Qi, LUO Xuqiang. Effects of Biochar Addition on the Phytoavailability of As and Sb in Tailings-contaminated Soil[J]. Ecology and Environmental Sciences, 2025, 34(8): 1273-1281.
柳凤娟, 马超, 黄玲涵, 陈琪, 罗绪强. 生物炭添加对尾砂污染土壤中As和Sb植物有效性的影响[J]. 生态环境学报, 2025, 34(8): 1273-1281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.08.012
处理 (BC用量) | 林下土质量/ g | 尾砂质量/ g | BC质量/ g | 其他 (所有处理均加) |
---|---|---|---|---|
BC0(0) | 2500 | 500 | 0 | 0.11 g K2HPO4, 2.14 g NaH2PO4, 0.6 g CO(NH2)2, 1 g C8H4K2O12Sb2 |
BC1.5(1.5%) | 2455 | 500 | 45 | |
BC3(3%) | 2410 | 500 | 90 | |
BC4.5(4.5%) | 2365 | 500 | 135 | |
BC6(6%) | 2320 | 500 | 180 | |
BC7.5(7.5%) | 2275 | 500 | 225 |
Table 1 Composition of soil in pot experiment
处理 (BC用量) | 林下土质量/ g | 尾砂质量/ g | BC质量/ g | 其他 (所有处理均加) |
---|---|---|---|---|
BC0(0) | 2500 | 500 | 0 | 0.11 g K2HPO4, 2.14 g NaH2PO4, 0.6 g CO(NH2)2, 1 g C8H4K2O12Sb2 |
BC1.5(1.5%) | 2455 | 500 | 45 | |
BC3(3%) | 2410 | 500 | 90 | |
BC4.5(4.5%) | 2365 | 500 | 135 | |
BC6(6%) | 2320 | 500 | 180 | |
BC7.5(7.5%) | 2275 | 500 | 225 |
评估指标 | pH | L0As | L0Sb | L0Fe | L0Mn | L1As | L1Sb | L1Fe | L1Mn | L3As | L3Sb | L3Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L0As | 0.903*** 0.000 | |||||||||||
L0Sb | 0.485* 0.041 | 0.517* 0.028 | ||||||||||
L0Fe | 0.815*** 0.000 | 0.815*** 0.000 | 0.465 0.052 | |||||||||
L0Mn | 0.591** 0.010 | 0.648** 0.004 | 0.274 0.270 | 0.794*** 0.000 | ||||||||
L1As | 0.806*** 0.000 | 0.801*** 0.000 | 0.305 0.219 | 0.520* 0.027 | 0.322 0.193 | |||||||
L1Sb | 0.457 0.056 | 0.488* 0.040 | 0.863*** 0.000 | 0.425 0.079 | 0.256 0.306 | 0.400 0.100 | ||||||
L1Fe | −0.913*** 0.000 | −0.768*** 0.000 | −0.384 0.116 | −0.643** 0.004 | −0.458 0.056 | −0.673** 0.002 | −0.277 0.265 | |||||
L1Mn | 0.107 0.674 | 0.321 0.194 | 0.029 0.908 | 0.017 0.945 | −0.050 0.843 | 0.454 0.058 | 0.241 0.335 | 0.147 0.562 | ||||
L3As | 0.873*** 0.000 | 0.903*** 0.000 | 0.644** 0.004 | 0.692*** 0.001 | 0.400 0.100 | 0.794*** 0.000 | 0.627** 0.005 | −0.717*** 0.001 | 0.402 0.098 | |||
L3Sb | −0.230 0.359 | −0.297 0.231 | 0.188 0.455 | −0.415 0.087 | −0.369 0.132 | −0.006 0.981 | 0.209 0.406 | 0.227 0.365 | 0.042 0.867 | -0.094 0.710 | ||
L3Fe | 0.879*** 0.000 | 0.916*** 0.000 | 0.649** 0.004 | 0.721*** 0.001 | 0.445 0.064 | 0.758*** 0.000 | 0.639** 0.004 | −0.726*** 0.001 | 0.355 0.148 | 0.990*** 0.000 | −0.112 0.657 | |
L3Mn | 0.812*** 0.000 | 0.909*** 0.000 | 0.549* 0.018 | 0.724*** 0.001 | 0.467 0.051 | 0.731*** 0.001 | 0.565* 0.015 | −0.619** 0.006 | 0.481* 0.043 | 0.944*** 0.000 | −0.260 0.297 | 0.948*** 0.000 |
Table 2 Correlation analysis of soil pH with metal (loid) speciation
评估指标 | pH | L0As | L0Sb | L0Fe | L0Mn | L1As | L1Sb | L1Fe | L1Mn | L3As | L3Sb | L3Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L0As | 0.903*** 0.000 | |||||||||||
L0Sb | 0.485* 0.041 | 0.517* 0.028 | ||||||||||
L0Fe | 0.815*** 0.000 | 0.815*** 0.000 | 0.465 0.052 | |||||||||
L0Mn | 0.591** 0.010 | 0.648** 0.004 | 0.274 0.270 | 0.794*** 0.000 | ||||||||
L1As | 0.806*** 0.000 | 0.801*** 0.000 | 0.305 0.219 | 0.520* 0.027 | 0.322 0.193 | |||||||
L1Sb | 0.457 0.056 | 0.488* 0.040 | 0.863*** 0.000 | 0.425 0.079 | 0.256 0.306 | 0.400 0.100 | ||||||
L1Fe | −0.913*** 0.000 | −0.768*** 0.000 | −0.384 0.116 | −0.643** 0.004 | −0.458 0.056 | −0.673** 0.002 | −0.277 0.265 | |||||
L1Mn | 0.107 0.674 | 0.321 0.194 | 0.029 0.908 | 0.017 0.945 | −0.050 0.843 | 0.454 0.058 | 0.241 0.335 | 0.147 0.562 | ||||
L3As | 0.873*** 0.000 | 0.903*** 0.000 | 0.644** 0.004 | 0.692*** 0.001 | 0.400 0.100 | 0.794*** 0.000 | 0.627** 0.005 | −0.717*** 0.001 | 0.402 0.098 | |||
L3Sb | −0.230 0.359 | −0.297 0.231 | 0.188 0.455 | −0.415 0.087 | −0.369 0.132 | −0.006 0.981 | 0.209 0.406 | 0.227 0.365 | 0.042 0.867 | -0.094 0.710 | ||
L3Fe | 0.879*** 0.000 | 0.916*** 0.000 | 0.649** 0.004 | 0.721*** 0.001 | 0.445 0.064 | 0.758*** 0.000 | 0.639** 0.004 | −0.726*** 0.001 | 0.355 0.148 | 0.990*** 0.000 | −0.112 0.657 | |
L3Mn | 0.812*** 0.000 | 0.909*** 0.000 | 0.549* 0.018 | 0.724*** 0.001 | 0.467 0.051 | 0.731*** 0.001 | 0.565* 0.015 | −0.619** 0.006 | 0.481* 0.043 | 0.944*** 0.000 | −0.260 0.297 | 0.948*** 0.000 |
[1] |
AHMAD M, LEE S S, LIM J E, et al., 2014. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions[J]. Chemosphere, 95: 433-441.
DOI PMID |
[2] | AHMAD M, OK Y S, KIM B Y, et al., 2016a. Impact of soybean stover-and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management, 166: 131-139. |
[3] | AHMAD M, OK Y S, RAJAPAKSHA A U, et al., 2016b. Lead and copper immobilization in a shooting range soil using soybean stover-and pine needle-derived biochars: Chemical, microbial and spectroscopic assessments[J]. Journal of Hazardous Materials, 301: 179-186. |
[4] | ARABI Z, RINKLEBE J, EL-NAGGAR A, et al., 2021. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis[J]. Environmental Pollution, 286: 117199. |
[5] | BEESLEY L, MARMIROLI M, PAGANO L, et al., 2013. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicumL.)[J]. Science of the Total Environment, 454-455: 598-603. |
[6] | BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al., 2014. Remediation of heavy metal (loid) s contaminated soils-To mobilize or to immobilize?[J]. Journal of Hazardous Materials, 266: 141-166. |
[7] | CAO J M, LIU Y Q, LIU Y Q, et al., 2025. Predicting the efficiency of arsenic immobilization in soils by biochar using machine learning[J]. Journal of Environmental Sciences, 147: 259-267. |
[8] |
CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al., 2016. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 144: 374-381.
DOI PMID |
[9] | GREGORY S J, ANDERSON C W N, ARBESTAIN M C, et al., 2014. Response of plant and soil microbes to biochar amendment of an arsenic-contaminated soil[J]. Agriculture, Ecosystems & Environment, 191: 133-141. |
[10] | GU J H, YAO J, JORDAN G, et al., 2020. Arundo donax L. stem-derived biochar increases As and Sb toxicities from nonferrous metal mine tailings[J]. Environmental Science and Pollution Research, 27(3): 2433-2443. |
[11] |
HARTLEY W, DICKINSON N M, RIBY P, et al., 2009. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus[J]. Environmental Pollution, 157(10): 2654-2662.
DOI PMID |
[12] | HOSSAIN M Z, BAHAR M M, SARKAR B, et al., 2020. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2: 379-420. |
[13] | JIAO Y H, WANG T N, HE M C, et al., 2022. Simultaneous stabilization of Sb and as co-contaminated soil by FeMg modified biochar[J]. Science of The Total Environment, 830: 154831. |
[14] |
JOHNSON C A, MOENCH H, WERSIN P, et al., 2005. Solubility of antimony and other elements in samples taken from shooting ranges[J]. Journal of Environmental Quality, 34(1): 248-254.
PMID |
[15] |
LEI M, WAN X M, HUANG Z C, et al., 2012. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata[J]. Environmental Pollution, 161: 1-7.
DOI PMID |
[16] |
LI G, SUN G X G, WILLIAMS P N, et al., 2011. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International, 37(7): 1219-1225.
DOI PMID |
[17] | LOMAGLIO T, HATTAB-HAMBLI N, BRET A, et al., 2017. Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol[J]. Journal of Geochemical Exploration, 182(Part B): 138-148. |
[18] | MEHARG A A, MACNAIR M R, 1992. Suppression of the high affinity phosphate uptake system: A mechanism of arsenate tolerance in Holcus lanatus L.[J]. Journal of Experimental Botany, 43(4): 519-524. |
[19] | NIAZI N K, MURTAZA B, BIBI I, et al., 2016. Chapter 7-Removal and recovery of metals by biosorbents and biochars derived from biowastes[C]// Environmental Materials and Waste. San Diego: Academic Press: 149-177. |
[20] | PALANSOORIYA K N, SHAHEEN S M, CHEN S S, et al., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 134: 105046. |
[21] | PIGNA M, COZZOLINO V, VIOLANTE A, et al., 2009. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations[J]. Water, Air, and Soil Pollution, 197: 371-380. |
[22] | QIU J, DE SOUZA M F, WANG X L, et al., 2024. Influence of biochar addition and plant management (cutting and time) on ryegrass growth and migration of As and Pb during phytostabilization[J]. Science of the Total Environment, 913: 169771. |
[23] | RAVENSCROFT P, MCARTHUR J M, HOQUE B A, 2001. Geochemical and palaeohydrological controls on pollution of groundwater by arsenic[C]// CHAPPELL W R, ABERNATHY C O, CALDERON R. Arsenic Exposure and Health Effects. IV. Oxford: Elsevier Science Ltd.: 53-77. |
[24] | RIZWAN M S, IMTIAZ M, HUANG G, et al., 2016. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar[J]. Environmental Science and Pollution Research, 23(15): 15532-15543. |
[25] | SAFEER R, LIU G, YOUSAF B, et al., 2024. Insights into the biogeochemical transformation, environmental impacts and biochar- based soil decontamination of antimony[J]. Environmental Research, 251(Part 2): 118645. |
[26] |
STRAWN D G, 2018. Review of interactions between phosphorus and arsenic in soils from four case studies[J]. Geochemical Transactions, 19(1): 10.
DOI PMID |
[27] | SUN Y C, WANG TT, BAI L, et al., 2022. Application of biochar-based materials for remediation of arsenic contaminated soil and water: Preparation, modification, and mechanisms[J]. Journal of Environmental Chemical Engineering, 10(5): 108292. |
[28] | VIDYA C S N, SHETTY R, VACULÍKOVÁM, et al., 2022. Antimony toxicity in soils and plants, and mechanisms of its alleviation[J]. Environmental and Experimental Botany, 202: 104996. |
[29] |
WANG L, JI B, HU Y H, et al., 2017. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 184: 594-600.
DOI PMID |
[30] |
WANG Z D, TANG W Y, DING X D, et al., 2025. Different extractable pools of Cd and Pb in agricultural soil under amendments: Water-soluble concentration sensitively indicates metal availability[J]. Journal of Environmental Sciences, 150: 297-308.
DOI PMID |
[31] | WU C, SHI L Z, XUE S G, et al., 2019. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils[J]. Science of the Total Environment, 647: 1158-1168. |
[32] | ZHANG W, CHO Y, VITHANAGE M, et al., 2022. Arsenic removal from water and soils using pristine and modified biochars[J]. Biochar, 4(1): 55. |
[33] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 39-97. |
BAO S D, 2000. Soil and agricultural chemical analysis[M]. 3rd Edition. Beijing: China Agriculture Press: 39-97. | |
[34] | 国家标准化管理委员会, 1989. 水质锰的测定高碘酸钾分光光度法: GB/T 11906—1989[S]. 北京: 中国标准出版社: 1-4. |
National Standardization Administration, 1989. Water quality-- Determination of manganese--Potassium periodate spectrophotometric method: GB/T 11906—1989[S]. Beijing: Standards Press of China: 1-4. | |
[35] | 国家标准化管理委员会, 2010. 硅酸盐岩石化学分析方法第1部分: 吸附水量测定: GB/T 14506.1—2010[S]. 北京: 中国标准出版社: 1-8. |
National Standardization Administration, 2010. Methods for chemical analysis of silicate rocks—Part1: Determination of hygroscopic water content: GB/T 14506.1—2010[S]. Beijing: Standards Press of China: 1-8. | |
[36] | 国家标准化管理委员会, 2010. 土壤和沉积物13个微量元素形态顺序提取程序: GB/T 25282—2010[S]. 北京: 中国标准出版社: 1-12. |
National Standardization Administration, 2010. Soil and sediment— Sequential extraction procedure of speciation of 13 trace elements: GB/T 25282—2010[S]. Beijing: Standards Press of China: 1-12. | |
[37] | 国家标准化管理委员会, 2013. 碳酸锂、单水氢氧化锂、氯化锂化学分析方法第7部分: 铁量的测定邻二氮杂菲分光光度法: GB/T 11064.7—2013[S]. 北京: 中国标准出版社:1-8. |
National Standardization Administration, 2013. Methods for chemical analysis of lithium carbonate,lithium hydroxide monohydrate and lithium chloride. Part 7: Determination of iron content. 1,10-Phenanthroline spectrophotometric method: GB/T 11064.7—2013[S]. Beijing: Standards Press of China: 1-8. | |
[38] | 侯新村, 范希峰, 武菊英, 等, 2012. 草本能源植物修复重金属污染土壤的潜力[J]. 中国草地学报, 34(1): 59-64, 76. |
HOU X C, FAN X F, WU J Y, et al., 2012. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metal[J]. Chinese Journal of Grassland, 34(1): 59-64, 76. | |
[39] | 李鸿博, 钟怡, 张昊楠, 等, 2020. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 36(13): 173-185. |
LI H B, ZHONG Y, ZHANG H N, et al., 2020. Mechanism for the application of biochar in remediation of heavy metal contaminatedfarmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(13): 173-185. | |
[40] |
罗洋, 刘方, 任军, 等, 2020. 改良剂对电解锰渣上4种能源草种子萌发及幼苗生长的影响[J]. 草业学报, 29(11): 118-128.
DOI |
LUO Y, LIU F, REN J, et al., 2020. Effects of rooting media amendments on seed germination and seedling growth of four bioenergy grass species grown onelectrolytic manganese residue[J]. Acta Prataculturae Sinica, 29(11): 118-128. | |
[41] | 马志林, 冯长松, 2016. 能源草发展的比较优势和战略潜力研究[J]. 中国水土保持 (4): 22-25, 43. |
MA Z L, FENG C S, 2016. Comparative advantage and strategic potential of energygrass development[J]. Soil and Water Conservation in China (4): 22-25, 43. | |
[42] | 张欢, 花莉, 罗婷, 2019. 锑胁迫下生物炭对番茄锑积累及生化特性的影响[J]. 生态学杂志, 38(4): 983-994. |
ZHANG H, HUA L, LUO T, 2019. Effects of biochar on Sb accumulation and biochemical characteristics of Lycopersicum esculentum in Sb-contaminated soil[J]. Chinese Journal of Ecology, 38(4): 983-994. | |
[43] | 中国国家林业局, 1999. 森林土壤有机质的测定及碳氮比的计算: LY/T 1237—1999[S]. 北京: 中国林业出版社: 1-4. |
State Forestry Administration of the People’s Republic of China, 1999. Determination of organic matter in forest soil and calculation carbon-nitrogen ratio: LY/T 1237—1999[S]. Beijing: China Forestry Publishing House: 1-4. |
[1] | HE Huan, ZHOU Dandan, MA Zhixuan, LI Fangfang, QIN Shanshan, DOU Sixian. Effect of Calcium Modification on the Binding of Biochar-derived Dissolved Organic Matter with Cd(II) [J]. Ecology and Environmental Sciences, 2025, 34(7): 1121-1132. |
[2] | LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719. |
[3] | HUANG Deng-lingyao, TANG Bingran, MA Yuanyuan, HE Qiang, LI Hong. The Effect of As on the Transformation of Nitrogen in Paddy Soil: A Case Study Towards Purple Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 784-795. |
[4] | CUI Xuedan, DUAN Guilan, WANG Xiangqin, LI Zhifeng, DOU Fei, DU Yanhong, YUAN Yuzhen, LIU Chuanping, LI Fangbai. Evaluation of the Effects and Soil Health Impacts of Iron-Modified Woody Peat in the Remediation of Moderately Cadmium and Arsenic Contaminated Paddy Fields Based on Multi-Site Long-Term Positioning Experiments [J]. Ecology and Environmental Sciences, 2025, 34(4): 608-620. |
[5] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(8): 1279-1288. |
[6] | CHEN Wenzhe, HUANG Qiuxiang, MENG Fande, GAO Jinyan, LI Min, ZHANG Enjun, YUAN Guodong. Impacts of Oxalic and Tartaric Acids on Arsenic Desorption from a Paddy Soil [J]. Ecology and Environmental Sciences, 2024, 33(8): 1298-1305. |
[7] | DU Zhongyu, XING Wenli, DANG Ning, ZHAO Weibin, TAN Xumai, XIAO Jiang, GAI Xu, CHEN Guangcai. Niche and Interspecific Association Characteristics of Dominant Plants in Antimony Mining Damaged Ecological Site in Xihe, Gansu [J]. Ecology and Environmental Sciences, 2024, 33(7): 1036-1047. |
[8] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environmental Sciences, 2024, 33(4): 617-625. |
[9] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environmental Sciences, 2024, 33(3): 439-449. |
[10] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environmental Sciences, 2024, 33(2): 261-271. |
[11] | LAN Jun, CHEN Guanhong, ZHANG Juntao, HEMMAT-JOU Mohammad Hossein, SHU Xiaohua, FANG Liping, LI Fangbai. Microbial Mechanism of Electron Shuttle-mediated Antimony Reduction and Mineralization by Soil Microorganism [J]. Ecology and Environmental Sciences, 2024, 33(2): 272-281. |
[12] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(2): 282-290. |
[13] | LI Pujun, TANG Li, ZHAO Bo, DI Dongliu, CHEN Yan, XIAO Jiang, CHEN Guangcai. The Amelioration of Biochar Soil Amendment on Antimony Mining Soil and Growth of Betula luminifera [J]. Ecology and Environmental Sciences, 2024, 33(12): 1953-1963. |
[14] | YAN Siyao, YANG Guang, BAI Yan, GAO Yifan, LIANG Luyu, GONG Feng, HUANG Guoyong, PAN Dandan, LI Xiaomin. Effect of Rice on Arsenic Transformation in Paddy Soil under Flooded Conditions [J]. Ecology and Environmental Sciences, 2024, 33(11): 1756-1767. |
[15] | LI Wenzhang, HU Yaru, LI Fayun, WANG Wei, ZHANG Jining, GUO Qin. Preparation of Iron Modified Biochar-attapulgite Carrier Immobilized Bacterial Agent and Its Remediation for Soil Contaminated by Chlorobenzene [J]. Ecology and Environmental Sciences, 2024, 33(11): 1782-1791. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn