Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1952-1961.DOI: 10.16258/j.cnki.1674-5906.2025.12.012
• Original article [Environmental Science] • Previous Articles Next Articles
WU Xiaoling1(
), DU Yanhong2, DOU Fei2, GAO Shuangquan2, WANG Xiangqin2,*(
)
Received:2025-08-21
Online:2025-12-18
Published:2025-12-10
吴小令1(
), 杜衍红2, 窦飞2, 高双全2, 王向琴2,*(
)
通讯作者:
*E-mail:xqwang@soil.gd.cn
作者简介:吴小令(1973年生),女,高级工程师,主要从事环境技术论证与咨询、生态环境信息化管理等研究。E-mail: 1003405501@qq.com
基金资助:CLC Number:
WU Xiaoling, DU Yanhong, DOU Fei, GAO Shuangquan, WANG Xiangqin. A Long-term Positioning Experiment of Heavy Metal-Contaminated Vegetable Fields Remediated by Biochar and Humus[J]. Ecology and Environmental Sciences, 2025, 34(12): 1952-1961.
吴小令, 杜衍红, 窦飞, 高双全, 王向琴. 生物炭和腐殖质治理重金属污染菜地的定位试验研究[J]. 生态环境学报, 2025, 34(12): 1952-1961.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.012
| 阶段 | 时间 | 种植模式 | 蔬菜类 | 处理 |
|---|---|---|---|---|
| 第一阶段 | 2015年11月-2016年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2016年2月- 2016年5月 | 头菜 | |||
| 第二阶段 | 2016年11月-2017年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2017年2月- 2017年5月 | 头菜 | |||
| 第三阶段 | 2017年11月- 2018年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2018年2月- 2018年5月 | 头菜 | |||
| 第四阶段 | 2018年11月-2019年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2019年2月- 2019年5月 | 头菜 |
Table 1 Experimental stage and the treatments
| 阶段 | 时间 | 种植模式 | 蔬菜类 | 处理 |
|---|---|---|---|---|
| 第一阶段 | 2015年11月-2016年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2016年2月- 2016年5月 | 头菜 | |||
| 第二阶段 | 2016年11月-2017年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2017年2月- 2017年5月 | 头菜 | |||
| 第三阶段 | 2017年11月- 2018年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2018年2月- 2018年5月 | 头菜 | |||
| 第四阶段 | 2018年11月-2019年2月 | 轮作 | 萝卜 | (1)对照;(2)生物炭;(3)木本泥炭 |
| 2019年2月- 2019年5月 | 头菜 |
| 试验阶段 | 指标 | 对照 | 生物炭 | 木本泥炭 |
|---|---|---|---|---|
| 碱解氮 | 214±23b | 299±17a | 302±17a | |
| 第一阶段 | 有效磷 | 131±8.2b | 156±4.8a | 144±6.7ab |
| 速效钾 | 123±34c | 189±24b | 225±24a | |
| 碱解氮 | 190±26b | 282±20a | 292±36a | |
| 第二阶段 | 有效磷 | 128±5.4b | 152±10b | 1434±2.4a |
| 速效钾 | 122±25c | 183±14b | 246±8.4a | |
| 碱解氮 | 206±21b | 272±12a | 283±21a | |
| 第三阶段 | 有效磷 | 128±3.3b | 153±9.4a | 147±11a |
| 速效钾 | 122±12c | 191±20b | 251±17a | |
| 碱解氮 | 206±7.2b | 281±11a | 261±16a | |
| 第四阶段 | 有效磷 | 134±5.9b | 157±8.3a | 143±4.3ab |
| 速效钾 | 127±13c | 190±19b | 261±25a |
Table 2 Variation of soil alkaline nitrogen, available phosphorus, and soluble potassium contents mg·kg?1
| 试验阶段 | 指标 | 对照 | 生物炭 | 木本泥炭 |
|---|---|---|---|---|
| 碱解氮 | 214±23b | 299±17a | 302±17a | |
| 第一阶段 | 有效磷 | 131±8.2b | 156±4.8a | 144±6.7ab |
| 速效钾 | 123±34c | 189±24b | 225±24a | |
| 碱解氮 | 190±26b | 282±20a | 292±36a | |
| 第二阶段 | 有效磷 | 128±5.4b | 152±10b | 1434±2.4a |
| 速效钾 | 122±25c | 183±14b | 246±8.4a | |
| 碱解氮 | 206±21b | 272±12a | 283±21a | |
| 第三阶段 | 有效磷 | 128±3.3b | 153±9.4a | 147±11a |
| 速效钾 | 122±12c | 191±20b | 251±17a | |
| 碱解氮 | 206±7.2b | 281±11a | 261±16a | |
| 第四阶段 | 有效磷 | 134±5.9b | 157±8.3a | 143±4.3ab |
| 速效钾 | 127±13c | 190±19b | 261±25a |
| 试验阶段 | 萝卜 | 头菜 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 对照 | 生物炭 | 木本泥炭 | 对照 | 生物炭 | 木本泥炭 | ||||||||
| 产量/(t∙hm−2) | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 增幅/% | ||||
| 第一阶段 | 27.39±1.3b | 31.55±0.38a | 15.2 | 30.54±2.0a | 11.5 | 20.54±2.16c | 23.21±2.28b | 13.0 | 24.12±1.30a | 17.5 | |||
| 第二阶段 | 30.69±1.7b | 38.37±3.1a | 25.0 | 37.79±3.02a | 23.1 | 29.51±0.81c | 35.31±3.24b | 19.7 | 52.74±3.10a | 27.9 | |||
| 第三阶段 | 29.3±1.0b | 39.29±2.2a | 34.1 | 40.23±0.60a | 37.3 | 31.55±2.22c | 38.01±2.72b | 20.5 | 39.44±1.86a | 25.0 | |||
| 第四阶段 | 30.26±2.1c | 38.15±1.38b | 26.1 | 42.48±0.61a | 40.4 | 27.56±2.58b | 39.29±4.92a | 42.6 | 42.99±4.32a | 56.0 | |||
Table 3 Production of radish and turnip
| 试验阶段 | 萝卜 | 头菜 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 对照 | 生物炭 | 木本泥炭 | 对照 | 生物炭 | 木本泥炭 | ||||||||
| 产量/(t∙hm−2) | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 产量/(t∙hm−2) | 增幅/% | 产量/(t∙hm−2) | 增幅/% | ||||
| 第一阶段 | 27.39±1.3b | 31.55±0.38a | 15.2 | 30.54±2.0a | 11.5 | 20.54±2.16c | 23.21±2.28b | 13.0 | 24.12±1.30a | 17.5 | |||
| 第二阶段 | 30.69±1.7b | 38.37±3.1a | 25.0 | 37.79±3.02a | 23.1 | 29.51±0.81c | 35.31±3.24b | 19.7 | 52.74±3.10a | 27.9 | |||
| 第三阶段 | 29.3±1.0b | 39.29±2.2a | 34.1 | 40.23±0.60a | 37.3 | 31.55±2.22c | 38.01±2.72b | 20.5 | 39.44±1.86a | 25.0 | |||
| 第四阶段 | 30.26±2.1c | 38.15±1.38b | 26.1 | 42.48±0.61a | 40.4 | 27.56±2.58b | 39.29±4.92a | 42.6 | 42.99±4.32a | 56.0 | |||
| 试验阶段 | 指标 | 萝卜 | 头菜 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 对照 | 生物炭 | 木本泥炭 | 对照 | 生物炭 | 木本泥炭 | |||||||||
| w/(mg·kg−1) | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | 降幅/% | |||||
| 第一阶段 | Cd | 0.089±0.01a | 0.066±0.01b | 25.8 | 0.063±0.00b | 29.2 | 0.116±0.02a | 0.098±0.01b | 15.52 | 0.083±0.01c | 28.5 | |||
| As | 0.359±0.04a | 0.282±0.03b | 21.5 | 0.227±0.26b | 36.8 | 0.496±0.05a | 0.410±0.05b | 17.34 | 0.425±0.06b | 14.3 | ||||
| Pb | 0.280±0.03a | 0.230±0.04b | 17.9 | 0.200±0.01c | 28.6 | 0.350±0.04a | 0.289±0.02b | 17.43 | 0.264±0.04b | 24.9 | ||||
| Vc | 26.6±2.20c | 30.4±4.51b | −14.3 | 33.5±3.72a | −25.9 | 75.0±11.7c | 81.2±12.2b | −8.27 | 84.6±13.5a | −12.8 | ||||
| 可溶性糖 | 2.02×103± 0.23×103c | 2.18×103± 0.31×103b | −7.92 | 2.27×103± 0.27×103a | −12.4 | 1.26×103± 0.17×103b | 1.36×103± 0.26×103a | −7.94 | 1.38×103± 0.22×103a | −9.92 | ||||
| 第二阶段 | Cd | 0.103±0.00a | 0.064±0.01b | 37.9 | 0.055±0.00b | 46.6 | 0.108±0.01a | 0.078±0.01b | 27.78 | 0.066±0.01b | 38.9 | |||
| As | 0.327±0.04a | 0.245±0.04b | 25.08 | 0.211±0.0.2b | 35.5 | 0.476±0.38a | 0.372±0.02b | 21.85 | 0.327±0.04c | 31.3 | ||||
| Pb | 0.190±0.03a | 0.123±0.02b | 35.3 | 0.117±0.01b | 38.4 | 0.330±0.03a | 0.210±0.02b | 36.36 | 0.180±0.01b | 45.5 | ||||
| Vc | 31.7±4.93b | 33.2±5.46a | −4.73 | 35.2±3.60a | −11.0 | 82.1±15.6b | 92.3±12.3a | −12.56 | 93.6±17.5a | −14.2 | ||||
| 可溶性糖 | 1.64×103± 0.32×103b | 1.73×103± 0.14×103a | −5.30 | 1.82×103± 0.30×103a | −10.9 | 1.25×103± 0.26×103b | 1.43×103± 0.31×103a | −14.40 | 1.38×103± 0.22×103a | −10.4 | ||||
| 第三阶段 | Cd | 0.096±0.02a | 0.053±0.12b | 44.8 | 0.045±0.00b | 53.1 | 0.113±0.01a | 0.063±0.01b | 44.25 | 0.052±0.01b | 53.9 | |||
| As | 0.306±0.01a | 0.206±0.00b | 32.9 | 0.186±0.02b | 39.22 | 0.312±0.03a | 0.214±0.03b | 31.41 | 0.234±0.02b | 25.0 | ||||
| Pb | 0.190±0.02a | 0.110±0.01b | 42.1 | 0.082±0.01b | 56.8 | 0.210±0.02a | 0.130±0.02b | 38.10 | 0.103±0.01b | 50.9 | ||||
| Vc | 33.7±0.11b | 36.9±2.33a | −9.50 | 37.2±5.42a | −10.4 | 81.4±21.3b | 94.0±12.3a | −16.05 | 96.0±18.3a | −18.5 | ||||
| 可溶性糖 | 1.58×103± 0.21×103b | 1.67×103± 0.31×103a | −5.70 | 1.62×103± 0.32×103b | −2.53 | 1.54×103± 0.27×103b | 1.76×103± 0.16×103a | −14.29 | 1.82×103± 0.26×103a | −18.2 | ||||
| 第四阶段 | Cd | 0.121±0.02a | 0.076±0.01b | 37.2 | 0.084±0.01b | 30.6 | 0.128±0.3a | 0.082±0.01b | 35.94 | 0.072±0.01b | 43.8 | |||
| As | 0.318±0.03a | 0.229±0.03b | 27.9 | 0.234±0.02b | 26.4 | 0.323±0.03a | 0.241±0.02b | 25.39 | 0.226±0.03b | 30.0 | ||||
| Pb | 0.197±0.02a | 0.131±0.01b | 33.5 | 0.148±0.02b | 24.8 | 0.270±0.03a | 0.180±0.01b | 33.33 | 0.150±0.03b | 44.4 | ||||
| Vc | 31.4±5.18a | 31.8±0.45a | −1.13 | 31.6±3.26a | −0.76 | 82.3±19.6b | 86.0±12.7b | −4.88 | 90.2±18.5a | −10.0 | ||||
| 可溶性糖 | 1.41×103± 0.23×103a | 1.46×103± 0.21×103a | −3.77 | 1.45×103± 0.22×103a | −3.49 | 1.34×103± 0.24×103b | 1.45×103± 0.16×103a | −8.21 | 1.39×103± 0.27×103b | −3.73 | ||||
Table 4 Average heavy metal and nutrient content in edible parts of radish and turnip
| 试验阶段 | 指标 | 萝卜 | 头菜 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 对照 | 生物炭 | 木本泥炭 | 对照 | 生物炭 | 木本泥炭 | |||||||||
| w/(mg·kg−1) | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | w/(mg·kg−1) | 降幅/% | w/(mg·kg−1) | 降幅/% | |||||
| 第一阶段 | Cd | 0.089±0.01a | 0.066±0.01b | 25.8 | 0.063±0.00b | 29.2 | 0.116±0.02a | 0.098±0.01b | 15.52 | 0.083±0.01c | 28.5 | |||
| As | 0.359±0.04a | 0.282±0.03b | 21.5 | 0.227±0.26b | 36.8 | 0.496±0.05a | 0.410±0.05b | 17.34 | 0.425±0.06b | 14.3 | ||||
| Pb | 0.280±0.03a | 0.230±0.04b | 17.9 | 0.200±0.01c | 28.6 | 0.350±0.04a | 0.289±0.02b | 17.43 | 0.264±0.04b | 24.9 | ||||
| Vc | 26.6±2.20c | 30.4±4.51b | −14.3 | 33.5±3.72a | −25.9 | 75.0±11.7c | 81.2±12.2b | −8.27 | 84.6±13.5a | −12.8 | ||||
| 可溶性糖 | 2.02×103± 0.23×103c | 2.18×103± 0.31×103b | −7.92 | 2.27×103± 0.27×103a | −12.4 | 1.26×103± 0.17×103b | 1.36×103± 0.26×103a | −7.94 | 1.38×103± 0.22×103a | −9.92 | ||||
| 第二阶段 | Cd | 0.103±0.00a | 0.064±0.01b | 37.9 | 0.055±0.00b | 46.6 | 0.108±0.01a | 0.078±0.01b | 27.78 | 0.066±0.01b | 38.9 | |||
| As | 0.327±0.04a | 0.245±0.04b | 25.08 | 0.211±0.0.2b | 35.5 | 0.476±0.38a | 0.372±0.02b | 21.85 | 0.327±0.04c | 31.3 | ||||
| Pb | 0.190±0.03a | 0.123±0.02b | 35.3 | 0.117±0.01b | 38.4 | 0.330±0.03a | 0.210±0.02b | 36.36 | 0.180±0.01b | 45.5 | ||||
| Vc | 31.7±4.93b | 33.2±5.46a | −4.73 | 35.2±3.60a | −11.0 | 82.1±15.6b | 92.3±12.3a | −12.56 | 93.6±17.5a | −14.2 | ||||
| 可溶性糖 | 1.64×103± 0.32×103b | 1.73×103± 0.14×103a | −5.30 | 1.82×103± 0.30×103a | −10.9 | 1.25×103± 0.26×103b | 1.43×103± 0.31×103a | −14.40 | 1.38×103± 0.22×103a | −10.4 | ||||
| 第三阶段 | Cd | 0.096±0.02a | 0.053±0.12b | 44.8 | 0.045±0.00b | 53.1 | 0.113±0.01a | 0.063±0.01b | 44.25 | 0.052±0.01b | 53.9 | |||
| As | 0.306±0.01a | 0.206±0.00b | 32.9 | 0.186±0.02b | 39.22 | 0.312±0.03a | 0.214±0.03b | 31.41 | 0.234±0.02b | 25.0 | ||||
| Pb | 0.190±0.02a | 0.110±0.01b | 42.1 | 0.082±0.01b | 56.8 | 0.210±0.02a | 0.130±0.02b | 38.10 | 0.103±0.01b | 50.9 | ||||
| Vc | 33.7±0.11b | 36.9±2.33a | −9.50 | 37.2±5.42a | −10.4 | 81.4±21.3b | 94.0±12.3a | −16.05 | 96.0±18.3a | −18.5 | ||||
| 可溶性糖 | 1.58×103± 0.21×103b | 1.67×103± 0.31×103a | −5.70 | 1.62×103± 0.32×103b | −2.53 | 1.54×103± 0.27×103b | 1.76×103± 0.16×103a | −14.29 | 1.82×103± 0.26×103a | −18.2 | ||||
| 第四阶段 | Cd | 0.121±0.02a | 0.076±0.01b | 37.2 | 0.084±0.01b | 30.6 | 0.128±0.3a | 0.082±0.01b | 35.94 | 0.072±0.01b | 43.8 | |||
| As | 0.318±0.03a | 0.229±0.03b | 27.9 | 0.234±0.02b | 26.4 | 0.323±0.03a | 0.241±0.02b | 25.39 | 0.226±0.03b | 30.0 | ||||
| Pb | 0.197±0.02a | 0.131±0.01b | 33.5 | 0.148±0.02b | 24.8 | 0.270±0.03a | 0.180±0.01b | 33.33 | 0.150±0.03b | 44.4 | ||||
| Vc | 31.4±5.18a | 31.8±0.45a | −1.13 | 31.6±3.26a | −0.76 | 82.3±19.6b | 86.0±12.7b | −4.88 | 90.2±18.5a | −10.0 | ||||
| 可溶性糖 | 1.41×103± 0.23×103a | 1.46×103± 0.21×103a | −3.77 | 1.45×103± 0.22×103a | −3.49 | 1.34×103± 0.24×103b | 1.45×103± 0.16×103a | −8.21 | 1.39×103± 0.27×103b | −3.73 | ||||
| 试验阶段 | 对照 | 生物炭 | 木本泥炭 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | |||
| 第一阶段 | 3195 | 1794 | 1401 | 0.78 | 3650 | 2244 | 1406 | 0.63 | 3644 | 2244 | 1399 | 0.62 | ||
| 第二阶段 | 4013 | 1794 | 2219 | 1.24 | 4912 | 2244 | 2668 | 1.19 | 5035 | 2244 | 2791 | 1.24 | ||
| 第三阶段 | 4056 | 1794 | 2262 | 1.26 | 5153 | 2244 | 2909 | 1.30 | 5311 | 2244 | 3067 | 1.37 | ||
| 第四阶段 | 3854 | 1794 | 2059 | 1.15 | 5162 | 2244 | 2918 | 1.30 | 5698 | 2244 | 3454 | 1.54 | ||
Table 5 Value, cost, income and production-investment ratio of each treatment
| 试验阶段 | 对照 | 生物炭 | 木本泥炭 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | 产值/ (yuan·hm-2) | 成本/ (yuan·hm-2) | 收益/ (yuan·hm-2) | 产投比 | |||
| 第一阶段 | 3195 | 1794 | 1401 | 0.78 | 3650 | 2244 | 1406 | 0.63 | 3644 | 2244 | 1399 | 0.62 | ||
| 第二阶段 | 4013 | 1794 | 2219 | 1.24 | 4912 | 2244 | 2668 | 1.19 | 5035 | 2244 | 2791 | 1.24 | ||
| 第三阶段 | 4056 | 1794 | 2262 | 1.26 | 5153 | 2244 | 2909 | 1.30 | 5311 | 2244 | 3067 | 1.37 | ||
| 第四阶段 | 3854 | 1794 | 2059 | 1.15 | 5162 | 2244 | 2918 | 1.30 | 5698 | 2244 | 3454 | 1.54 | ||
| [1] |
DAS S K, GHOSH G K, AVASTHE R, et al., 2021. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks[J]. Journal of Environmental Management, 278(Part 2): 111501.
DOI URL |
| [2] |
HOU J B, PUGAZHENDHI A, SINDHU R, et al., 2022. An assessment of biochar as a potential amendment to enhance plant nutrient uptake[J]. Environmental Research, 214(Part 2): 113909.
DOI URL |
| [3] |
KLOSS S, ZEHETNER F, DELLANTONIO A, et al., 2012. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties[J]. Journal of Environmental Quality, 41(4): 990-1000.
DOI PMID |
| [4] |
SAVARESE C, COZZOLINO V, VERRILLO M, et al., 2022. Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism[J]. Plant and Soil, 481: 285-314.
DOI |
| [5] |
SULIMAN W, HARSH J B, ABU-LAIL N I, et al., 2016. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass and Bioenergy, 84: 37-48.
DOI URL |
| [6] |
TANG J Y, ZHANG L H, ZHANG J C, et al., 2020. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost[J]. Science of the Total Environment, 701: 134751.
DOI URL |
| [7] |
VERLINDEN G, PYCKE B, MERTENS J, et al., 2009. Application of humic substances results in consistent increases in crop yield and nutrient uptake[J]. Journal of Plant Nutrition, 32: 1407-1426.
DOI URL |
| [8] |
YUAN H R, LU T, WANG Y Z, et al., 2016. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients[J]. Geoderma, 267: 17-23.
DOI URL |
| [9] |
陈世宝, 王萌, 李杉杉, 等, 2019. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 26(6): 35-41.
DOI |
|
CHEN S B, WANG M, LI S S, et al., 2019. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 26(6): 35-41.
DOI |
|
| [10] |
陈志良, 袁志辉, 黄玲, 等, 2016. 生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J]. 生态环境学报, 25(11): 1879-1884.
DOI |
| CHEN Z L, YUAN Z H, HUANG L, et al., 2016. Pyrolysis materials, characteristics of biochar and its application on remediation of heavy metal contaminated soil: A review[J]. Ecology and Environmental Sciences, 25(11): 1879-1884. | |
| [11] | 杜衍红, 蒋恩臣, 王明峰, 等, 2016. 炭-肥互作对芥菜产量和肥料利用率的影响[J]. 农业机械学报, 47(4): 59-64. |
| DU Y H, JIANG E C, WANG M F, et al., 2016. Effect of interaction of biochar and fertilizer on mustard yield and fertilizer utilization rate[J]. Transactions of the Chinese Society for Agricultural Machinery, 47(4): 59-64. | |
| [12] | 范洪黎, 王旭, 周卫, 2008. 添加有机酸对土壤镉形态转化及苋菜镉积累的影响[J]. 植物营养与肥料学报, 14(1): 132-138. |
| FAN H L, LU W H, ZHOU W, 2008. The impact of adding organic acids on cadmium speciation transformation in soil and cadmium accumulation in amaranth[J]. Journal of Plant Nutrition and Fertilizer, 14(1): 132-138. | |
| [13] | 何洁, 卢维宏, 张乃明, 2020. 腐植酸在重金属污染土壤修复中的应用研究进展[J]. 腐植酸 (2): 38-42, 55. |
| HE J, LU W H, ZHANG N M, et al., 2020. Advanced research on application of humic acid in heavy metal contaminated soil remediation[J]. Humic Acid (2): 38-42, 55. | |
| [14] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
| LU R K, 1999. Methods of soil agrochemical analysis[M]. Beijing: China Agricultural Science and Technology Press. | |
| [15] | 李春越, 党廷辉, 王万忠, 等, 2011. 腐殖酸对农田土壤磷素吸附行为的影响研究[J]. 水土保持学报, 25(3): 77-82. |
| LI C Y, DANG T H, WANG W Z, et al., 2011. Influence of humic acid on the adsorption behavior of phosphorus in agricultural soil[J]. Journal of Soil and Water Conservation, 25(3): 77-82. | |
| [16] | 李慧敏, 雷静, 王友东, 2017. 腐殖质在土壤重金属污染修复中的作用与展望[J]. 农业研究与应用 (5): 25-30. |
| LI H M, LEI J, WANG Y D, 2017. Roles and prospects of humus in remediation of heavy metal contaminated soil[J]. Agricultural Research and Appilcation (5): 25-30. | |
| [17] |
李江遐, 吴林春, 张军, 等, 2015. 生物炭修复土壤重金属污染的研究进展[J]. 生态环境学报, 24(12): 2075-2081.
DOI |
| LI J X, WU L C, ZHANG J, et al., 2015. Research progresses in remediation of heavy metal contaminated soils by biochar[J]. Ecology and Environmental Sciences, 24(12): 2075-2081. | |
| [18] | 马翔邦, 赵转军, 韩亮威, 等, 2023. 腐植酸作用下生物炭对Cd污染土壤的修复效果[J]. 农业环境科学学报, 42(1): 55-64. |
| MA X B, ZHAO Z J, HAN L W, et al., 2023. Remediation effects of biochar on cadmium-contaminated soils with humic acid[J]. Journal of Agro Environment Science, 42(1): 55-64. | |
| [19] |
马志伟, 张丛志, 赵占辉, 等, 2024. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 33(12): 1964-1977.
DOI |
| MA Z W, ZHANG C Z, ZHAO Z H, et al., 2024. Research progress on soil health cultivation based on woody peat[J]. Ecology and Environmental Sciences, 33(12): 1964-1977. | |
| [20] | 王丽, 蔡景行, 邵代兴, 等, 2023. 改性生物炭对重金属污染修复研究进展及其机制分析[J]. 中国土壤与肥料 (6): 232-238. |
| WANG L, CAI J X, SHAO D X, et al., 2023. Research progress and mechanism analysis of modified biochar for heavy metal pollution remediation[J]. Soil and Fertilizer Sciences in China (6): 232-238. | |
| [21] |
王向琴, 刘传平, 杜衍红, 等, 2018. 零价铁与腐殖质复合调理剂对稻田镉砷污染钝化的效果研究[J]. 生态环境学报, 27(12): 2329-2336.
DOI |
| WANG X Q, LIU C P, DU Y H, et al., 2018. Effects of stabilizing remediation of Cd and As in paddy rice by applying combined zero-valent iron and humus[J]. Ecology and Environmental Sciences, 27(12): 2329-2336. | |
| [22] | 徐建明, 何丽芝, 唐先进, 等, 2023. 中国重金属污染耕地土壤安全利用存在问题与建议[J]. 土壤学报, 60(5): 1289-1296. |
| XU J M, HE L Z, TANG X J, et al., 2023. Problems and suggestions on safe utilization of heavy metal(loid)-contaminated farmlands in China[J]. Acta Pedologica Sinica, 60(5): 1289-1296. | |
| [23] | 杨放, 李心清, 王兵, 等, 2012. 生物炭在农业增产和污染治理中的应用[J]. 地球与环境, 40(1): 100-107. |
| YANG F, LI X Q, WANG B, et al., 2012. The application of biochar to improving agricultural production and pollution abatement[J]. Earth and Environment, 40(1): 100-107. | |
| [24] | 姚冬梅, 付春香, 李萍, 2006. 泥炭对重金属离子的吸附性能[J]. 黑龙江科技学院学报, 16(1): 38-40. |
| YAO D M, FU C X, LI P, 2006. Specific properties of adsorption for heavy metal ions on peat[J]. Journal of Heilongjiang Institute of Science & Technology, 16(1): 38-40. | |
| [25] | 袁帅, 赵立欣, 孟海波, 等, 2016. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 22(5): 1402-1417. |
| YUAN S, ZHAO L X, MENG H B, et al., 2016. The main types of biochar and their properties and expectative researches[J]. Journal of Plant Nutrition and Fertilizer, 22(5): 1402-1417. | |
| [26] | 张丽, 李如霞, 何玉垒, 等, 2023. 生物炭与氮肥复施对镉污染水稻土修复效应及机制[J]. 环境科学, 44(8): 4479-4488. |
|
ZHANG L, LI R X, HE Y L, et al., 2023. Remediation effect and mechanism of biochar in combination with nitrogen fertilizer on cd-contaminated paddy soil[J]. Environmental Science, 44(8): 4479-4488.
DOI URL |
|
| [27] | 朱永官, 陈保冬, 林爱军, 等, 2005. 珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报, 25(12): 1575-1579. |
| ZHU Y G, CHEN B D, LIN A J, et al., 2005. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae, 25(12): 1575-1579. | |
| [28] | 生态环境部国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S]. |
| Ministry of Ecology and Environment, State Administration for Market Regulation. 2018. Soil environmental quality-risk control standard for soil contamination of agricultural land (trial): GB 15618—2018[S]. | |
| [29] | 中华人民共和国农业部, 2015. 水果及制品可溶性糖的测定3,5-二硝基水杨酸比色法: NY/T 2742—2015[S]. |
| Ministry of Agriculture of the People’s Republic of China. 2015. Determination of soluble sugars in fruits and their products-3,5-dinitrosalicylic acid colorimetric method: NY/T 2742—2015[S]. | |
| [30] | 中华人民共和国农业部,2007. 土壤pH的测定: NY/T 1377—2007[S]. |
| Ministry of Agriculture of the People’s Republic of China. 2007. Determination of soil pH, NY/T 1377—2007[S]. | |
| [31] | 中华人民共和国林业部,1999. 森林土壤阳离子交换量的测定: LY/T 1243—1999[S]. |
| Ministry of Forestry of the People’s Republic of China, 1999. Determination of cation exchange capacity in forest soils: LY/T 1243—1999[S]. | |
| [32] | 中华人民共和国国家卫生健康委员会, 国家市场监督管理局,, 2022. 食品安全国家标准食品中污染物限量: GB 2762—2022[S]. |
| National Health Commission of the People’s Republic of China, State Administration for Market Regulation, 2022. National food safety standard-maximum levels of contaminants in foods: GB 2762—2022[S]. |
| [1] | LIU Fengjuan, MA Chao, HUANG Linghan, CHEN Qi, LUO Xuqiang. Effects of Biochar Addition on the Phytoavailability of As and Sb in Tailings-contaminated Soil [J]. Ecology and Environmental Sciences, 2025, 34(8): 1273-1281. |
| [2] | HE Huan, ZHOU Dandan, MA Zhixuan, LI Fangfang, QIN Shanshan, DOU Sixian. Effect of Calcium Modification on the Binding of Biochar-derived Dissolved Organic Matter with Cd(II) [J]. Ecology and Environmental Sciences, 2025, 34(7): 1121-1132. |
| [3] | MENG Chang, HONG Mei, LI Fei. Collaborative Enhancement of Soil Heavy Metal Prediction Accuracy Using Hyperspectral Sensitive Band Selection and Machine Learning [J]. Ecology and Environmental Sciences, 2025, 34(6): 950-960. |
| [4] | LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719. |
| [5] | LIU Honglin, ZHAO Fangkai, YANG Lei, SHEN Linjun, YANG Kaifeng, LI Min, CHEN Liding. Study on Heavy Metal Pollution in Urban Park Soil and Influencing Factors: A Case Study of Ningbo City [J]. Ecology and Environmental Sciences, 2025, 34(5): 773-783. |
| [6] | CHEN Lin, LAN Guanyu, XU Yan, LI Xue, MAO Xuefei. Advances in Hydrogen-bonded Organic Framework Materials for Adsorption and Detection of Environmental Pollutants [J]. Ecology and Environmental Sciences, 2025, 34(3): 474-483. |
| [7] | WANG Yongmei, YUAN Yuzhen, WANG Zicheng, LI Zhifeng, GAO Shuangquan, LIU Chuanping, DU Yanhong. Long-term Effects of Biochar Coupled with Chemical Fertilizer Reduction on the Safe Production of Sweet Corn in Heavy Metal-Contaminated Soils [J]. Ecology and Environmental Sciences, 2025, 34(12): 1962-1973. |
| [8] | ZHAO Chengxiao, MA Jianghong, LIU Hongxia, HU Jingwen, PAN Zitong, WANG Jiaying, LI Jinye. Enhanced Nitrogen Removal of Constructed Wetlands by Biochar [J]. Ecology and Environmental Sciences, 2025, 34(12): 1985-1992. |
| [9] | JI Bo, CHENG Hongguang, HAN Shiming, XING Dan, WU Zhibing, ZHANG Jinlian, LIU Fang, ZHU Yi, DENG Lirong, ZHANG Xiaosong. Research Advances in the Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Phosphorus Supply [J]. Ecology and Environmental Sciences, 2025, 34(11): 1812-1826. |
| [10] | CHANG Chunying, WANG Gang, CAO Haoxuan, DENG Yirong, TAO Liang. Impact of Simulated Dry-wet Process on Nickel (Ni) and Lead (Pb) in Stabilization Remediated Soils [J]. Ecology and Environmental Sciences, 2025, 34(1): 118-125. |
| [11] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environmental Sciences, 2024, 33(9): 1451-1459. |
| [12] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environmental Sciences, 2024, 33(9): 1460-1470. |
| [13] | OUYANG Meifeng, YIN Yuying, ZHANG Jinchen, LIU Qinglin, XIE Yinan, FANG Ping. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Typical Water Areas of Dongting Lake [J]. Ecology and Environmental Sciences, 2024, 33(8): 1269-1278. |
| [14] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(8): 1279-1288. |
| [15] | CHEN Wenzhe, HUANG Qiuxiang, MENG Fande, GAO Jinyan, LI Min, ZHANG Enjun, YUAN Guodong. Impacts of Oxalic and Tartaric Acids on Arsenic Desorption from a Paddy Soil [J]. Ecology and Environmental Sciences, 2024, 33(8): 1298-1305. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn