Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (7): 1121-1132.DOI: 10.16258/j.cnki.1674-5906.2025.07.012
• Research Article [Environmental Science] • Previous Articles Next Articles
HE Huan1,2(), ZHOU Dandan1,2,*(
), MA Zhixuan1,2, LI Fangfang1,2, QIN Shanshan1,2, DOU Sixian1,2
Received:
2025-01-08
Online:
2025-07-18
Published:
2025-07-11
贺环1,2(), 周丹丹1,2,*(
), 马芷萱1,2, 李芳芳1,2, 秦珊珊1,2, 豆思娴1,2
通讯作者:
*E-mail: 作者简介:
贺环(1994年生),女,硕士研究生,主要研究方向为生物炭环境效应及污染物环境行为研究。E-mail: 1639477032@qq.com
基金资助:
CLC Number:
HE Huan, ZHOU Dandan, MA Zhixuan, LI Fangfang, QIN Shanshan, DOU Sixian. Effect of Calcium Modification on the Binding of Biochar-derived Dissolved Organic Matter with Cd(II)[J]. Ecology and Environmental Sciences, 2025, 34(7): 1121-1132.
贺环, 周丹丹, 马芷萱, 李芳芳, 秦珊珊, 豆思娴. 钙改性对生物炭中溶解性有机质与Cd(Ⅱ)结合的影响[J]. 生态环境学报, 2025, 34(7): 1121-1132.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.07.012
生物炭 | 基本理化性质 | 元素组成/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 灰分质量分数/% | 比表面积/(m2·g−1) | 孔体积/(cm3·g−1) | C | H | O | N | H/C | O/C | (O+N)/C | ||
CaBC | 6.80 | 21.07 | 4.36 | 0.012 | 53.08B | 4.28A | 19.95A | 1.37B | 0.97A | 0.28A | 0.30A | |
BC | 7.55 | 21.02 | 3.08 | 0.010 | 57.84A | 4.23A | 16.67B | 1.71A | 0.88B | 0.22B | 0.24B |
Table 1 Basic physicochemical properties and elemental composition of biochar
生物炭 | 基本理化性质 | 元素组成/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 灰分质量分数/% | 比表面积/(m2·g−1) | 孔体积/(cm3·g−1) | C | H | O | N | H/C | O/C | (O+N)/C | ||
CaBC | 6.80 | 21.07 | 4.36 | 0.012 | 53.08B | 4.28A | 19.95A | 1.37B | 0.97A | 0.28A | 0.30A | |
BC | 7.55 | 21.02 | 3.08 | 0.010 | 57.84A | 4.23A | 16.67B | 1.71A | 0.88B | 0.22B | 0.24B |
生物炭 | 准一级动力学 ln(Qe −Qt)=lnQe−K1t | 准二级动力学 t/Qt=1/K2 ×Qe2+t/Qe | Elovich Qt=a+blnt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g−1) | K1/(mg·g−1·h−1) | r2 | Qe/(mg·g−1) | K2/(mg·g−1·h−1) | r2 | a/(mg·g−1) | b/(mg·g−1·h−1) | r2 | |||
CaBC | 10.54 | 0.88 | 0.791 | 11.04 | 0.13 | 0.957 | 6.86 | 1.13 | 0.981 | ||
BC | 3.78 | 0.61 | 0.735 | 4.34 | 0.15 | 0.892 | 1.84 | 0.69 | 0.999 |
Table 2 Parameters of BDOM release kinetics model
生物炭 | 准一级动力学 ln(Qe −Qt)=lnQe−K1t | 准二级动力学 t/Qt=1/K2 ×Qe2+t/Qe | Elovich Qt=a+blnt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g−1) | K1/(mg·g−1·h−1) | r2 | Qe/(mg·g−1) | K2/(mg·g−1·h−1) | r2 | a/(mg·g−1) | b/(mg·g−1·h−1) | r2 | |||
CaBC | 10.54 | 0.88 | 0.791 | 11.04 | 0.13 | 0.957 | 6.86 | 1.13 | 0.981 | ||
BC | 3.78 | 0.61 | 0.735 | 4.34 | 0.15 | 0.892 | 1.84 | 0.69 | 0.999 |
生物炭 | 时间 | pH值 | 离子态钙质量浓度/ (mg·L−1) | 络合态钙质量浓度/ (mg·L−1) |
---|---|---|---|---|
CaBC | 1 | 6.00 | 160.90 | 175.79 |
127 | 7.59 | 61.54 | 15.73 | |
BC | 1 | 6.73 | 6.27 | 2.13 |
127 | 8.15 | 3.80 | 2.67 |
Table 3 BDOM pH value, ionic calcium and complex calcium concentration
生物炭 | 时间 | pH值 | 离子态钙质量浓度/ (mg·L−1) | 络合态钙质量浓度/ (mg·L−1) |
---|---|---|---|---|
CaBC | 1 | 6.00 | 160.90 | 175.79 |
127 | 7.59 | 61.54 | 15.73 | |
BC | 1 | 6.73 | 6.27 | 2.13 |
127 | 8.15 | 3.80 | 2.67 |
生物炭 | t/h | BDOM荧光组分 | lgK | f/% | r2 |
---|---|---|---|---|---|
CaBC | 1 | C1 | 4.67 | 43.07 | 0.903 |
C2 | 4.43 | 7.45 | 0.962 | ||
C3 | 4.38 | 13.99 | 0.900 | ||
127 | C1 | 5.04 | 30.19 | 0.831 | |
C2 | 4.45 | 2.93 | 0.886 | ||
C3 | 4.63 | 5.82 | 0.816 | ||
BC | 1 | C1 | 4.27 | 53.21 | 0.993 |
C2 | 4.42 | 7.58 | 0.976 | ||
C3 | 4.45 | 35.52 | 0.970 | ||
127 | C1 | 4.63 | 23.46 | 0.968 | |
C2 | No | No | No | ||
C3 | 4.62 | 5.95 | 0.974 |
Table 4 BDOM and Cd(Ⅱ) complexation modified model parameters
生物炭 | t/h | BDOM荧光组分 | lgK | f/% | r2 |
---|---|---|---|---|---|
CaBC | 1 | C1 | 4.67 | 43.07 | 0.903 |
C2 | 4.43 | 7.45 | 0.962 | ||
C3 | 4.38 | 13.99 | 0.900 | ||
127 | C1 | 5.04 | 30.19 | 0.831 | |
C2 | 4.45 | 2.93 | 0.886 | ||
C3 | 4.63 | 5.82 | 0.816 | ||
BC | 1 | C1 | 4.27 | 53.21 | 0.993 |
C2 | 4.42 | 7.58 | 0.976 | ||
C3 | 4.45 | 35.52 | 0.970 | ||
127 | C1 | 4.63 | 23.46 | 0.968 | |
C2 | No | No | No | ||
C3 | 4.62 | 5.95 | 0.974 |
[1] |
ALBRECHT R, LE PETIT J, TERROM G, et al., 2011. Comparison between UV spectroscopy and nirs to assess humification process during sewage sludge and green wastes co-composting[J]. Bioresource Technology, 102(6): 4495-4500.
DOI PMID |
[2] | BAI H C, JIANG Z M, HE M J, et al., 2018. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study[J]. Journal of Environmental Sciences, 70: 154-165. |
[3] | BIAN R J, JOSEPH S, SHI W, et al., 2019. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature[J]. Science of The Total Environment, 662: 571-580. |
[4] | BRO R, 1997. PARAFAC. Tutorial and applications[J]. Chemometrics and Intelligent Laboratory Systems, 38(2): 149-171. |
[5] | CHEN K, YANG Y M, ZHAO H, et al., 2023. Study on the cadmium and copper binding characteristics of dissolved organic matter released from human-feces-biochar (HFDOM) using parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy (2D-COS)[J]. Environmental Science and Pollution Research, 30: 46900-46912. |
[6] | CUI M, XU D Y, LIU X B, et al., 2024. Influence of spectral and molecular composition of dissolved organic matter on labile Cd mobility in riparian soils in the Three Gorges Reservoir, China[J]. Science of The Total Environment, 955: 176736. |
[7] |
ELBISHLAWI H, JAFFE P R, 2015. Characterization of dissolved organic matter from a restored urban marsh and its role in the mobilization of trace metals[J]. Chemosphere, 127: 144-151.
DOI PMID |
[8] | FENG D D, SUN H L, MA Y, et al., 2020. Catalytic mechanism of K and Ca on the volatile-biochar interaction for rapid pyrolysis of biomass: Experimental and simulation studies[J]. Energy & Fuels, 34: 9741-9753. |
[9] | GAO Z Y, SHAN D X, HE J H, et al., 2023. Effects and mechanism on cadmium adsorption removal by CaCl2-modified biochar from selenium-rich straw[J]. Bioresource Technology, 370: 128563. |
[10] | GUI X Y, LIU C, LI F Y, et al., 2020. Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar[J]. Ecotoxicology and Environmental Safety, 197: 110597. |
[11] | GUO X J, PENG Y Y, LI N X, et al., 2022. Effect of biochar-derived DOM on the interaction between Cu(II) and biochar prepared at different pyrolysis temperatures[J]. Journal of Hazardous Materials, 421: 126739. |
[12] | HAMEED R, LI G L, SON Y H, et al., 2023. Structural characteristics of dissolved black carbon and its interactions with organic and inorganic contaminants: A critical review[J]. Science of The Total Environment, 872: 162210. |
[13] | HE C J, HE X W, LI J J, et al., 2021. The spectral characteristics of biochar-derived dissolved organic matter at different pyrolysis temperatures[J]. Journal of Environmental Chemical Engineering, 9(5): 106075. |
[14] | HE C J, HE X W, YUAN R, et al., 2022. Binding characteristics of Pb and Zn to low-temperature feces-based biochar-derived DOM revealed by EEM-PARAFAC combined with general and moving-window two-dimensional correlation analyses[J]. Environmental Science and Pollution Research, 30: 27525-27538. |
[15] |
HE W, HUR J, 2015. Conservative behavior of fluorescence EEM-PARAFAC components in resin fractionation processes and its applicability for characterizing dissolved organic matter[J]. Water Research, 83: 217-226.
DOI PMID |
[16] | HUANG M, LI Z W, CHEN M, et al., 2020. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors[J]. Science of The Total Environment, 739: 140378. |
[17] | HUANG M, LI Z W, LUO N L, et al., 2019. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals[J]. Science of The Total Environment, 646: 220-228. |
[18] | HUANG M, LIAO Z, LI Z W, et al., 2022. Effects of pyrolysis temperature on proton and cadmium binding properties onto biochar-derived dissolved organic matter: Roles of fluorophore and chromophore[J]. Chemosphere, 299: 134313. |
[19] | JI Y N, ZHENG N, AN Q R, et al., 2024. Enhanced immobilization of cadmium and lead in contaminated soil using calcium alginate-modified HAP biochar: Improvements in soil health and microbial diversity[J]. Environmental Pollution, 357: 124445. |
[20] | JIANG S J, DAI G L, RASHID M S, et al., 2024. Effects of BC on metal uptake by crops (availability) and the vertical migration behavior in soil: A 3-year field experiments of crop rotation[J]. Chemosphere, 350: 141075. |
[21] | JIN C S, LI Z W, HURSTHOUSE A S, et al., 2023. Manganese oxides mediated dissolve organic matter compositional changes in lake sediment and cadmium binding characteristics[J]. Ecotoxicology and Environmental Safety, 256: 114916. |
[22] | LENG E W, WANG Y, GONG X, et al., 2017. Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis[J]. Proceedings of the Combustion Institute, 36(2): 2263-2270. |
[23] | LI D Q, LI C, FAN M J, et al., 2023a. Investigation of property of biochar in staged pyrolysis of cellulose[J]. Journal of Analytical and Applied Pyrolysis, 172: 105999. |
[24] | LI D M, WANG Z Y, YANG Y X, et al., 2023b. Characterization of copper binding to different molecular weight fractions of dissolved organic matter in surface water[J]. Journal of Environmental Management, 341: 118067. |
[25] |
LI G, KHAN S, IBRAHIM M, et al., 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 348: 100-108.
DOI PMID |
[26] |
LI H B, DONG X L, DA SILVA E B, et al., 2017. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 178: 466-478.
DOI PMID |
[27] | LI L P, LIU Y H, REN D, et al., 2022. Characteristics and chlorine reactivity of biochar-derived dissolved organic matter: Effects of feedstock type and pyrolysis temperature[J]. Water Research, 211: 118044. |
[28] | LIANG T, ZHOU G P, CHANG D N, et al., 2024. The dissolved organic matter from the co-decomposition of Chinese milk vetch and rice straw induces the strengthening of Cd remediation by Fe-modified biochar[J]. Biochar, 6: 27. |
[29] | LIU C H, CHU W Y, LI H, et al., 2019. Quantification and characterization of dissolved organic carbon from biochars[J]. Geoderma, 335: 161-169. |
[30] | LIU J B, YANG W T, ZHOU H, et al., 2024a. Exploring the mechanisms of organic fertilizers on Cd bioavailability in rice fields: Environmental behavior and effect factors[J]. Ecotoxicology and Environmental Safety, 285: 117094. |
[31] | LIU X R, WEI L H, JIANG J Y, et al., 2024b. New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar[J]. Environmental Science and Pollution Research, 31: 18527-18539. |
[32] | LIU Y C, GAO Z L, JI X G, et al., 2023. Efficient Adsorption of tebuconazole in aqueous solution by calcium modified water hyacinth-based biochar: Adsorption kinetics, mechanism, and feasibility[J]. Molecules, 28(8): 3478. |
[33] | MURPHY K R, BUTLER K D, SPENCER R G M, et al., 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison[J]. Environmental Science & Technology, 44(24): 9405-9412. |
[34] | NAN H Y, YIN J X, YANG F, et al., 2021. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration[J]. Environmental Pollution, 287: 117566. |
[35] | NODA I, 2012. Close-up view on the inner workings of two-dimensional correlation spectroscopy[J]. Vibrational Spectroscopy, 60: 146-153. |
[36] | OU Q, XU Y H, HE Q, et al., 2021. Deposition behavior of dissolved black carbon on representative surfaces: Role of molecular conformation[J]. Journal of Environmental Chemical Engineering, 9(5): 105921. |
[37] | REN N N, TANG Y Y, LI M, 2018. Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar[J]. Process Safety and Environmental Protection, 115: 70-78. |
[38] | STEDMON C A, BRO R, 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography: Methods, 6(11): 572-579. |
[39] | SUN D Z, LI F Y, JIN J W, et al., 2022. Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of The Total Environment, 829: 154599. |
[40] | WANG C C, ZHANG Q C, YAN C A, et al., 2023a. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis[J]. Science of The Total Environment, 882: 163361. |
[41] | WANG J B, KANG Y X, DUAN H T, et al., 2022. Remediation of Cd2+ in aqueous systems by alkali-modified (Ca) biochar and quantitative analysis of its mechanism[J]. Arabian Journal of Chemistry, 15: 103750. |
[42] | WANG S Y, WANG Y J, WANG X Y, et al., 2024. Study on adsorption of Cd in solution and soil by modified biochar-calcium alginate hydrogel[J]. Gels, 10(6): 388. |
[43] | WANG X S, YU G, LIN H, et al., 2020. Advances in bioremediation of cadmium-contaminated soils[J]. IOP Conference Series: Earth and Environmental Science, 508: 012006. |
[44] | WANG Y F, LI J E, XU L, et al., 2023b. The effect and spectral response mechanism of dissolved organic matter (DOM) in Pb(II) adsorption onto biochar[J]. Journal of Environmental Chemical Engineering, 11(5): 111115. |
[45] |
WU J, ZHANG H, SHAO L M, et al., 2012. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate[J]. Environmental Pollution, 162: 63-71.
DOI PMID |
[46] | WU W Z, YAN B B, ZHONG L, et al., 2021. Combustion ash addition promotes the production of K-enriched biochar and K release characteristics[J]. Journal of Cleaner Production, 311: 127557. |
[47] |
XIAO R, WANG J J, GASTON L A, et al., 2018. Biochar produced from mineral salt-impregnated chicken manure: Fertility properties and potential for carbon sequestration[J]. Waste Management, 78: 802-810.
DOI PMID |
[48] | XIAO Y, WIESNER M R, 2013. Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm[J]. Environmental Science & Technology, 47(5): 2246-2253. |
[49] | XIU L Q, GU W Q, SUN Y Y, et al., 2023. The fate and supply capacity of potassium in biochar used in agriculture[J]. Science of The Total Environment, 902: 165969. |
[50] |
XU Y G, QI F J, YAN Y B, et al., 2023. The interaction of different chlorine-based additives with swine manure during pyrolysis: Effects on biochar properties and heavy metal volatilization[J]. Waste Management, 169: 52-61.
DOI PMID |
[51] | YU S H, ZHANG H Y, NI J Z, et al., 2023. Spectral characteristics coupled with self-organizing maps analysis on different molecular size-fractionated water-soluble organic carbon from biochar[J]. Science of The Total Environment, 857(Part 2): 159424. |
[52] | ZEPP R G, SHELDON W M, MORAN M A, 2004. Dissolved organic fluorophores in southeastern US coastal waters: Correction method for eliminating Rayleigh and Raman scattering peaks in excitation-emission matrices[J]. Marine Chemistry, 89(1-4): 15-36. |
[53] | ZHANG H Y, QIAN W, WU L, et al., 2022b. Spectral characteristics of dissolved organic carbon (DOC) derived from biomass pyrolysis: Biochar-derived DOC versus smoke-derived DOC, and their differences from natural DOC[J]. Chemosphere, 302: 134869. |
[54] | ZHANG X Q, LI Y, YE J, et al., 2022a. The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands[J]. Environmental Pollution, 299: 118834. |
[55] | ZHANG X Y, SU C, LIU X Y, et al., 2020. Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions[J]. Journal of Cleaner Production, 275: 123787. |
[56] | ZHAO C, WANG C C, LI J Q, et al., 2017. Interactions between copper(II) and DOM in the urban stormwater runoff: Modeling and characterizations[J]. Environmental Technology, 39(1): 120-129. |
[57] | ZHOU L, ZHOU L, WU H B, et al., 2024. Effects of applying biochar on soil cadmium immobilisation and cadmium pollution control in lettuce (Lactuca sativa L.)[J]. Agriculture, 14(7): 1068. |
[58] | ZHU Y, YI B J, HU H Y, et al., 2020. The relationship of structure and organic matter adsorption characteristics by magnetic cattle manure biochar prepared at different pyrolysis temperatures[J]. Journal of Environmental Chemical Engineering, 8(5): 104112. |
[59] | 范行程, 葛俊杰, 谢越, 等, 2024. 蘑菇渣和稻秸堆肥中DOM与Cu2+的络合机制[J]. 生态与农村环境学报, 40(2): 285-292. |
FAN X C, GE J J, XIE Y, et al., 2024. The binding properties of Cu(II) onto dissolved organic matter from mushroom residue and rice straw compost[J]. Journal of Ecology and Rural Environment, 40(2): 285-292. | |
[60] |
刘玉灿, 高中鲁, 徐心怡, 等, 2024. 钙改性水葫芦基生物炭吸附水中敌草隆的效能与机理[J]. 化工进展, 43(8): 4630-4641.
DOI |
LIU Y C, GAO Z L, XU X Y, et al., 2024. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar[J]. Chemical Industry and Engineering Progress, 43(8): 4630-4641.
DOI |
|
[61] | 袁冬海, 崔骏, 洪志强, 等, 2016. 白洋淀沉水植物腐解溶解性有机物与重金属的相互作用[J]. 环境工程学报, 10(5): 2184-2192. |
YUAN D H, CUI J, HONG Z Q, et al., 2016. Interaction between dissolved organic matter released by macrophyte decomposition and heavy metal in Lake Baiyangdian[J]. Chinese Journal of Environmental Engineering, 10(5): 2184-2192. | |
[62] | 张威宇, 李伟峻, 刘玉玲, 等, 2024. 人工湿地中沉积物溶解性有机质与Cd结合机制——以株洲市某人工湿地为例[J]. 农业环境科学学报, 43(6): 1377-1388. |
ZHANG W Y, LI W J, LIU Y L, et al., 2024. Mechanism of binding between dissolved organic matter and cadmium in constructed wetland sediments: Taking a constructed wetland in Zhuzhou City as an example[J]. Journal of Agro-Environment Science, 43(6): 1377-1388. | |
[63] | 赵雄威, 吴东明, 李勤奋, 等, 2022. 基于紫外-可见光光谱法研究长期不同施肥对砖红壤溶解性有机质化学性质的影响[J]. 光谱学与光谱分析, 42(10): 3210-3216. |
ZHAO X W, WU D M, LI Q F, et al., 2022. Response of dissolved organie matter chemical properties to long term different fertilization in latosol: Insight from ultraviolet-visible spectroscopy[J]. Spectroscopy and Spectral Analysis, 42(10): 3210-3216. |
[1] | LI Xue, WANG Zhen, MAO Xuefei. Effects of Polyethylene and Polypropylene Microplastics on the Growth and Antioxidant Mechanisms of Rice Seedlings under Cadmium Stress [J]. Ecology and Environmental Sciences, 2025, 34(7): 1053-1063. |
[2] | CUI Xuedan, DUAN Guilan, WANG Xiangqin, LI Zhifeng, DOU Fei, DU Yanhong, YUAN Yuzhen, LIU Chuanping, LI Fangbai. Evaluation of the Effects and Soil Health Impacts of Iron-Modified Woody Peat in the Remediation of Moderately Cadmium and Arsenic Contaminated Paddy Fields Based on Multi-Site Long-Term Positioning Experiments [J]. Ecology and Environmental Sciences, 2025, 34(4): 608-620. |
[3] | WU Xinyou, TU Chen, LIU Guoming, YANG Shuai, WANG Yi, WANG Xuyang, LUO Runlai, LI Zhongyuan, LUO Yongming. Structural, Physicochemical and Cadmium Adsorption Properties of Millimeter-Scale Magnetic Composite Clay-Based Remediation Materials [J]. Ecology and Environmental Sciences, 2025, 34(4): 621-630. |
[4] | NING Jing, WANG Chun, LU Guanling, WEI Lu. Exposure of Zebrafish to Cadmium and Melatonin Induces Changes in Gut Organization, Oxidative Damage, and Microbial Diversity [J]. Ecology and Environmental Sciences, 2025, 34(1): 77-88. |
[5] | CAO Zhenyu, TU Chen, LIU Ying, HAN Junchao, XING Qianwen, LUO Yongming. Preliminary Study on the Biosorption of Cadmium by Magnetospirillum gryphiswaldense MSR-1 [J]. Ecology and Environmental Sciences, 2025, 34(1): 99-107. |
[6] | LI Yucai, YANG Lei, LIANG Xian, MENG Hongyan, LIU Huanhuan, SHI Hui, REN Yongxiang. Transcriptomics Analysis Reveals the Impact of Humic Acid on the Toxicity of Nano-Cr2O3 to Chlorella sp. [J]. Ecology and Environmental Sciences, 2024, 33(8): 1289-1297. |
[7] | XIE Jie, CHEN Yuanhua, XU Changxu, YANG Tao, LI Jianguo, DONG Aiqin. Effects of Long-term Returning of Astragalus sinicus L. on Content and Forms of DOM and Cd in Paddy Soil [J]. Ecology and Environmental Sciences, 2024, 33(7): 1096-1106. |
[8] | LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant [J]. Ecology and Environmental Sciences, 2024, 33(5): 781-790. |
[9] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environmental Sciences, 2024, 33(4): 617-625. |
[10] | ZHANG Tengyun, WANG Jing, GAO Jianlei, GE Wenjing, WANG Zongyao, HAN Long. Study on Cadmium Transfer and Transformation in Winter Wheat at Different Growth Stages in Alkaline Field Soil [J]. Ecology and Environmental Sciences, 2024, 33(3): 450-459. |
[11] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environmental Sciences, 2024, 33(3): 460-468. |
[12] | GUAN Guoqing, HUANG Zilin, JIANG Longfei, LUO Chunling. Influence of Sedum plumbizincicola on the Reduction of Organic Contaminants and Microorganisms in Soil Contaminated with Heavy Metals and Polycyclic Aromatic Hydrocarbons [J]. Ecology and Environmental Sciences, 2024, 33(12): 1931-1943. |
[13] | JI Shengying, LI Jie, LI Xin, TAO Yu, CHEN Juan, WANG Xiaoyu. Research on the Interaction of Environmental Factors and Genotypes on Cadmium Accumulation in Cucurbit Vegetables and the Soil Safe Threshold [J]. Ecology and Environmental Sciences, 2024, 33(12): 1944-1952. |
[14] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environmental Sciences, 2023, 32(8): 1516-1524. |
[15] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environmental Sciences, 2023, 32(7): 1293-1300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn