Ecology and Environment ›› 2025, Vol. 34 ›› Issue (1): 118-125.DOI: 10.16258/j.cnki.1674-5906.2025.01.013
• Research Article [Environmental Science] • Previous Articles Next Articles
CHANG Chunying1(), WANG Gang1,2,3, CAO Haoxuan1,2, DENG Yirong1, TAO Liang2,*(
)
Received:
2024-09-21
Online:
2025-01-18
Published:
2025-01-21
Contact:
TAO Liang
常春英1(), 王刚1,2,3, 曹浩轩1,2, 邓一荣1, 陶亮2,*(
)
通讯作者:
陶亮
作者简介:
常春英(1983年生),女,正高级工程师,博士,主要从事土壤重金属污染与控制相关研究。E-mail: xiaochong1219@163.com
基金资助:
CLC Number:
CHANG Chunying, WANG Gang, CAO Haoxuan, DENG Yirong, TAO Liang. Impact of Simulated Dry-wet Process on Nickel (Ni) and Lead (Pb) in Stabilization Remediated Soils[J]. Ecology and Environment, 2025, 34(1): 118-125.
常春英, 王刚, 曹浩轩, 邓一荣, 陶亮. 模拟干湿过程对稳定化修复土壤中重金属Ni和Pb的影响[J]. 生态环境学报, 2025, 34(1): 118-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.01.013
指标 | 特征参数 | |
---|---|---|
土壤理化性质 | pH | 6.20 |
Eh/mV | 47.1 | |
阳离子交换量(CEC)/(cmol∙kg−1) | 6.13 | |
游离态氧化铁(Fed)质量分数/(g∙kg−1) | 21.7 | |
无定形态氧化铁(Feox)质量分数/ (g∙kg−1) | 12.9 | |
晶体态氧化铁(Fep)质量分数/(g∙kg−1) | 8.79 | |
有机质质量分数/(g∙kg−1) | 14.5 | |
重金属质量分数/ (mg∙kg−1) | Ni | 93.5 |
Pb | 66.0 | |
初始浸出质量浓度/ (μg∙L−1) | Ni | 0.0600 |
Pb | 未检出 |
Table 1 Characteristics of the remediated soil
指标 | 特征参数 | |
---|---|---|
土壤理化性质 | pH | 6.20 |
Eh/mV | 47.1 | |
阳离子交换量(CEC)/(cmol∙kg−1) | 6.13 | |
游离态氧化铁(Fed)质量分数/(g∙kg−1) | 21.7 | |
无定形态氧化铁(Feox)质量分数/ (g∙kg−1) | 12.9 | |
晶体态氧化铁(Fep)质量分数/(g∙kg−1) | 8.79 | |
有机质质量分数/(g∙kg−1) | 14.5 | |
重金属质量分数/ (mg∙kg−1) | Ni | 93.5 |
Pb | 66.0 | |
初始浸出质量浓度/ (μg∙L−1) | Ni | 0.0600 |
Pb | 未检出 |
[1] | ALLOWAY B J, 2013. Bioavailability of elements in soil[M]. London: Springer Science+Business Media Dordrecht:351-373. |
[2] |
CHEN Q Y, TYRER M, HILLS C D, et al., 2009. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review[J]. Waste Management, 29(1):390-403.
DOI PMID |
[3] | DENEF K, SIX J, BOSSUYT H, et al., 2001. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology and Biochemistry, 33(12):1599-1611. |
[4] | FROHNE T, RINKLEBE J, DIAZ-BINE R A, et al., 2011. Controlled variation of redox conditions in a floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony[J]. Geoderma, 160(3):414-424. |
[5] | HOSSAM F H, AMER A R, ABDEL W H, et al., 2008. Investigation of permeability and leaching of hot mix asphalt concrete containing oil-contaminated soil[J]. Construction and Building Materials, 6(22):1239-1246. |
[6] | JANGA J K, REDDY K R, RAVITEJA K V N S, 2023. Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review[J]. Chemosphere, 345:140476. |
[7] | LI H K, XU D M, WAND J X, et al., 2023. The occurrence of “yellowing” phenomenon and its main driving factors after the remediation of chromium (Cr)-contaminated soils: A literature review[J]. Journal of Hazardous Materials, 457:131698. |
[8] | LI Z, WU L H, ZHANG H, et al., 2015. Effects of soil drying and wetting-drying cycles on the availability of heavy metals and their relationship to dissolved organic matter[J]. Journal of Soil and Sediments, 15(7):1510-1519. |
[9] |
LYU H H, ZHAO H, TANG J C, et al., 2018. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J]. Chemosphere, 194:360-369.
DOI PMID |
[10] | MANCEAU A, CHARLET L, BOISSET M C, et al., 1992. Sorption and speciation of heavy metals on hydrous Fe and Mn oxides. From microscopic to macroscopic[J]. Applied Clay Science, 7(1-3):201-223. |
[11] |
MCGOWEN S L, BASTA N T, BROWN G O, 2001. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality, 30(2):493-500.
DOI PMID |
[12] | PANG X H, CHEN C, SUN J, et al., 2023. Effects of complex pollution by microplastics and heavy metals on soil physicochemical properties and microbial communities under alternate wetting and drying conditions[J]. Journal of Hazardous Materials, 458:131989. |
[13] | US EPA, 2013. Regional Screening Levels (RSL) for chemical contaminants at superfund sites[R]. Washington DC: Office of Land and Emergency (Region 9). |
[14] | WANG R H, ZHU X F, QIAN W, et al., 2017. Pectin adsorption on amorphous Fe/Al hydroxides and its effect on surface charge properties and Cu (II) adsorption[J]. Journal of Soils and Sediments, 17(10):2481-2489. |
[15] | WILSON M J, HE Z L, YANG X E, 2004. The red soils of China[M]. New York: Springer Science+Business Media:35-62. |
[16] |
YAN M Q, MA J, ZHANG C Y, et al., 2017. Optical property of dissolved organic matters (DOMs) and its link to the presence of metal ions in surface freshwaters in China[J]. Chemosphere, 188:502-509.
DOI PMID |
[17] | ZHANG Z, SONG Z W, JIA H B, et al., 2023. Remediation of chromium(VI) in contaminated soil by schwertmannite: Leachability, long-term stability, and stabilization mechanism[J]. Journal of Environmental Chemical Engineering, 11(2):109435. |
[18] | ZHENG S A, ZHENG X Q, CHEN C, 2013. Transformation of metal speciation in purple soil as affected by waterlogging[J]. International Journal of Environmental Science and Technology, 10(2):351-358. |
[19] | 曹浩轩, 2021. 固化/稳定化修复后土壤重金属稳定性及其迁移转化研究[D]. 北京: 中国农业大学:22-31. |
CAO H X, 2023. Study on the stability and transformation of soil heavy metals after solidification/stabilization remediation[D]. Beijing: China Agricultural University:22-31. | |
[20] | 常春英, 曹浩轩, 陶亮, 等, 2022. 淹水和干湿交替对修复后土壤铬的稳定性影响研究[J]. 环境科学研究, 35(5):1150-1158. |
CHANG C Y, CAO H X, TAO L, et al., 2022. Effects of flooding and dry-wet alternation on the stability of chromium (Cr) in soil after solidification/stabilization remediation[J]. Research of Environmental Sciences, 35(5):1150-1158. | |
[21] | 陈承峰, 2019. 河道底泥复合重金属污染固化稳定化修复技术研究[D]. 广州: 广州大学:82-89. |
CHEN C X, 2019. Study on solidification and stabilization technology of composite heavy metal contamination in river sediment[D]. Guangzhou: Guang Zhou University:82-89. | |
[22] | 邓林, 李柱, 吴龙华, 等, 2014. 水分及干燥过程对土壤重金属有效性的影响[J]. 土壤, 46(6):1045-1051. |
DENG L, LI Z, WU L H, et al., 2014. Influence of moisture and drying precess on soil heavy metal availability[J]. Soils, 46(6):1045-1051. | |
[23] | 谷庆宝, 马福俊, 张倩, 等, 2017. 污染场地固化/稳定化修复的评价方法与标准[J]. 环境科学研究, 30(5):755-764. |
GU Q B, MA F J, ZHANG Q, et al., 2017. Remediation of contaminates sites by solidification/stabilization: testing and performance criteria[J]. Research of Environmental Sciences, 30(5):755-764. | |
[24] | 胡清, 罗培, 冯明玉, 等, 2022. 固化/稳定化修复后场地土壤中铬的环境行为与归趋[J]. 环境工程学报, 16(7):2122-2134. |
HU Q, LUO P, FEGN M Y, et al., 2022. Environmental behavior and fate of chromium in the soils of solidification/stabilization post-remediation sites[J]. Chinese Journal of Environmental Engineering, 16(7):2122-2134. | |
[25] | 刘瑞平, 邹权, 宋志晓, 等, 2024. 中国污染场地修复后期管理研究[J]. 环境科学与管理, 49(3):5-9. |
LIU R P, ZOU Q, SONG X Z, et al., 2024. Research on post remediation management of contaminated sites in China[J]. Environmental Science and Management, 49(3):5-9. | |
[26] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Soil agricultural chemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press. | |
[27] | 马妍, 董彬彬, 柳晓娟, 等, 2018. 美国制度控制在污染地块风险管控中的应用及对中国的启示[J]. 环境污染与防治, 40(1):100-103. |
MA Y, DONG B B, LIU X J, et al., 2018. Applications of institutional for risk management of contaminated sites in America and implications for China[J]. Environmental Pollution & Control, 40(1):100-103. | |
[28] | 毛凌晨, 叶华, 2018. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 31(10):1669-1676. |
MAO L C, YE H, 2018. Influence of redox potential on heavy metal behavior in soils: A review[J]. Research of Environmental Sciences, 31(10):1669-1676. | |
[29] | 彭港, 吕贻锦, 丁泽聪, 等, 2021. 干湿交替对土壤DOM特性及重金属释放的影响[J]. 环境工程学报, 15(8):2689-2700. |
PENG G, LÜ Y J, DING Z C, et al., 2021. Effects of dry-wet cycles on the properties of soil DOM and the release of heavy metals[J]. Chinese Journal of Environmental Engineering, 15(8):2689-2700. | |
[30] | 史开宇, 王兴润, 范琴, 等, 2020. 不同还原药剂修复Cr(Ⅵ) 污染土壤的稳定性评估[J]. 环境工程学报, 14(2):473-479. |
SHI K Y, WANG X R, FAN Q, et al., 2020. Stability evaluation of Cr(Ⅵ)-contaminated soils restoration eith different reducing agents[J]. Chinese Journal of Environmental Engineering, 14(2):473-479. | |
[31] | 闫淑兰, 赵秀红, 罗启仕, 2020. 基于文献计量的重金属固化稳定化修复技术发展动态研究[J]. 农业环境科学学报, 39(2):229-238. |
YAN S L, ZHAO X H, LUO Q S, 2020. Bibliometrics-based development trends of solidification/stabilization technology for the remediation of sites contaminated by heavy metals[J]. Journal of Agro-Environment Science, 39(2):229-238. | |
[32] | 于靖靖, 梁田, 罗会龙, 等, 2022. 近10年来我国污染场地再利用的案例分析与环境管理意义[J]. 环境科学研究, 35(5):1110-1119. |
YU J J, LIANG T, LUO H L, et al., 2022. Case analysis and environmental management significance of contaminated site reuse in China from 2011 to 2021[J]. Research of Environmental Sciences, 35(5):1110-1119. | |
[33] | 张素, 熊东红, 校亮, 等, 2017. 干湿交替对土壤性质影响的研究[J]. 土壤通报, 48(3):762-768. |
ZHANG S, XIONG D H, XIAO L, et al., 2017. Influence of dry-wet cycling on soil properties[J]. Chinese Journal of Soil Science, 48(3):762-768. | |
[34] | 张雪芹, 2017. 干湿循环作用下碱渣固化重金属污染土的稳定性研究[D]. 合肥: 合肥工业大学:33-42. |
ZHANG X Q, 2017. Research on stability of soda residue solidified/ stabilized heavy metal contaminated soils under wetting-drying cycles[D]. Hefei: Hefei University of Technology:33-42. | |
[35] | 赵万通, 王雨枫, 刘哲, 等, 2025. 污染水稻土淹水-落干过程土壤铁形态转化及元素生物有效性的原位监测[J]. 土壤学报, 62(1):141-152. |
ZHAO W T, WANG Y F, LIU Z, et al., 2025. Soil iron speciation transformation and In-Situ monitoring of element bioavailability during the flooding-drainage in polluted paddy soils[J]. Acta Pedologica Sinica, 62(1):141-152. | |
[36] | 郑顺安, 郑向群, 张铁亮, 等, 2011. 水分条件对紫色土中铅形态转化的影响[J]. 环境化学, 30(12):2080-2085. |
ZHENG S A, ZHENG X Q, ZHANG T L, et al., 2011. Effect of moisture regime on the fractionation of lead in purple soil[J]. Environmental Chemistry, 30(12):2080-2085. | |
[37] | 中华人民共和国国家环境保护总局,2007. 固体废物浸出毒性浸出方法硫酸硝酸法: HJ/T 299—2007[S]. 北京: 中国环境科学出版社: 1-5. |
State Environmental Protection Administration of the People’s Republic of China,2007. Solid waste-extraction procedure for leaching toxicity-sulphuric acid & nitric acid method: HJ/T 299—2007[S]. Beijing: Beijing: China Environmental Science Press: 1-5. | |
[38] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会,2010. 土壤和沉积物13个微量元素形态顺序提取程序: GB/T 25282—2010[S]. 北京:中国标准出版社: 1-5. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Naitonal Standardization Administration of the People’s Republic of China,2010. Soil and sediment sequential extraction procedure of speciation of 13 trace elements: GB/T 25282—2010[S]. Beijing: Standards Press of China: 1-5. | |
[39] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会,2017. 地下水质量标准: GB/T 14848—2017[S]. 北京:中国标准出版社: 2-5. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’ s Republic of China, Naitonal Standardization Administration of the People’s Republic of China,2017. Standard for groundwater quality: GB/T 14848―2017[S]. Beijing: Standards Press of China: 2-5. | |
[40] | 中华人民共和国环境保护部,2015. 固体废物金属元素的测定电感耦合等离子体质谱法: HJ 766—2015[S]. 北京: 中国环境科学出版社: 1-11. |
Ministry of Environmental Protection of the People’s Republic of China,2015. Solid waste-determination of metals-Inductively coupled plasma mass spectrometry (ICP-MS): HJ 766―2015[S]. Beijing: China Environmental Science Press: 1-11. | |
[41] | 中华人民共和国环境保护部,2016. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社: 1-10. |
Ministry of Environmental Protection of the People’s Republic of China,2016. Soil and sediment-determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803―2016[S]. Beijing: China Environmental Science Press: 1-10. | |
[42] | 中华人民共和国生态环境部,国家市场监督管理总局, 2018. 土壤环境质量建设用地土壤污染风险管控标准 (试行): GB 36600—2018[S]. 北京: 中国标准出版社: 3-6. |
Ministry of Ecology and Environment of the People’s Republic of China, State Administration for Market Regulation of the People’s Republic of China,2018. Soil environmental quality Risk control standard for soil contamination of development land: GB 36600―2018[S]. Beijing: Standards Press of China: 3-6 | |
[43] | 中华人民共和国生态环境部,2018. 污染地块风险管控与土壤修复效果评估技术导则 (试行): HJ 25.5—2018[S]. 北京: 中国环境科学出版社: 8-10. |
Ministry of Ecology and Environment of the People’s Republic of China,2018. Technical guideline for verification of risk control and soil remediation of contaminated site: HJ 25.5―2018[S]. Beijing: China Environmental Science Press: 8-10. | |
[44] | 中华人民共和国生态环境部,2019. 污染地块地下水修复和风险管控技术导则: HJ 25.6—2019[S]. 北京: 中国环境科学出版社: 6-18. |
Ministry of Ecology and Environment of the People’s Republic of China,2019. Technical guideline for groundwater remediation and risk control of contaminated sites: HJ 25.6—2019[S]. Beijing: China Environmental Science Press: 6-18. | |
[45] | 钟重, 张弛, 冯一舰, 等, 2021. 中国污染土壤再利用的环境管理思路探讨[J]. 环境污染与防治, 43(1):115-120. |
ZHONG Z, ZHANG C, FENG Y J, et al., 2021. Thoughts on the environmental management of contaminated soil reuse in China[J]. Environmental Pollution & Control, 43(1):115-120. | |
[46] |
周宏光, 甘艳平, 伍德权, 等, 2023. 淹水-落干条件下FeMnMg-LDH对污染底泥中砷迁移转化的调控研究[J]. 生态环境学报, 32(7):1249-1262.
DOI |
ZHOU H G, GAN Y P, WU D Q, et al., 2023. Regulation of Arsenic Transport and Transformation in Contaminated Sediment by FeMnMg-LDH under Flooding-drying Conditions[J]. Ecology and Environmental Sciences, 32(7):1249-1262. |
[1] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environment, 2024, 33(9): 1451-1459. |
[2] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environment, 2024, 33(9): 1460-1470. |
[3] | FAN Beibie, DING Shuai, ZHANG Tiantian, ZHANG Shuai, WEI Lulu, CHEN Qing. Simulation Study on Phosphorus Loss Risk with Periodic Flooding-Drying and Straw Incorporation in a Dolomite-Amended Brown Soil [J]. Ecology and Environment, 2024, 33(8): 1203-1213. |
[4] | OUYANG Meifeng, YIN Yuying, ZHANG Jinchen, LIU Qinglin, XIE Yinan, FANG Ping. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Typical Water Areas of Dongting Lake [J]. Ecology and Environment, 2024, 33(8): 1269-1278. |
[5] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environment, 2024, 33(5): 791-801. |
[6] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[7] | JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas [J]. Ecology and Environment, 2024, 33(2): 291-300. |
[8] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environment, 2024, 33(11): 1768-1781. |
[9] | YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings [J]. Ecology and Environment, 2024, 33(1): 156-166. |
[10] | WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China [J]. Ecology and Environment, 2023, 32(8): 1365-1375. |
[11] | LIU Bingyu, WANG Yipei, YAO Zuofang, YANG Gairen, XU Xiaonan, DENG Yusong, HUANG Yuhan. Risk Assessment and Safe Consumption Analysis of Heavy Metals under Different Planting Patterns of Biogas Slurry [J]. Ecology and Environment, 2023, 32(8): 1507-1515. |
[12] | ZHOU Hongguang, GAN Yanping, WU Dequan, YANG Yanmei, ZHANG Yang, WANG Luyao. Regulation of Arsenic Transport and Transformation in Contaminated Sediment by FeMnMg-LDH under Flooding-drying Conditions [J]. Ecology and Environment, 2023, 32(7): 1249-1262. |
[13] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[14] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[15] | XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals [J]. Ecology and Environment, 2023, 32(1): 175-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn