Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (12): 1985-1992.DOI: 10.16258/j.cnki.1674-5906.2025.12.015
• Review • Previous Articles
ZHAO Chengxiao1(
), MA Jianghong2, LIU Hongxia1, HU Jingwen3, PAN Zitong1, WANG Jiaying1, LI Jinye1,*(
)
Received:2025-04-30
Online:2025-12-18
Published:2025-12-10
赵程潇1(
), 马江鸿2, 刘虹霞1, 胡静雯3, 潘姿彤1, 王嘉莹1, 李金页1,*(
)
通讯作者:
*E-mail:lijinye@cjlu.edu.cn
作者简介:赵程潇(2001年生),男,硕士研究生,研究方向为水处理。E-mail: p24060857022@cjlu.edu.cn
基金资助:CLC Number:
ZHAO Chengxiao, MA Jianghong, LIU Hongxia, HU Jingwen, PAN Zitong, WANG Jiaying, LI Jinye. Enhanced Nitrogen Removal of Constructed Wetlands by Biochar[J]. Ecology and Environmental Sciences, 2025, 34(12): 1985-1992.
赵程潇, 马江鸿, 刘虹霞, 胡静雯, 潘姿彤, 王嘉莹, 李金页. 生物炭对人工湿地的强化脱氮作用[J]. 生态环境学报, 2025, 34(12): 1985-1992.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.12.015
| 湿地 类型 | 生物炭 原料 | 热解温度/ ℃ | 湿地 植物 | 污水 类型 | 未添加生物炭脱氮效率 /% | 添加生物炭脱氮效率 (最高值)/% | 参考 文献 |
|---|---|---|---|---|---|---|---|
| 水平潜流 | - | - | 菖蒲 | 生活污水 | NO3−-N,84.66;NH4+-N,45.04;TN,43.40 | NO3−-N,91.48;NH4+-N,67.52;TN,65.61 | 陈鑫童等, |
| 潜流 | 椰壳;坚果壳 | - | 黄芪 | 农村生活污水 | - | 椰壳:NH4+-N,95.44; 坚果壳:NH4+-N,92.73 | Xing et al., |
| 垂直潜流 | 稻壳 | 550 | 旱莲草 | 农村生活污水 | - | NO3−-N,74 | Panghal et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,99.31;TN,75.02 | NH4+-N,99.36;TN,87.29 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NH4+-N,95.33;NO3−-N,84.04;TN,88.01 | NH4+-N,94.26;NO3−-N,92.72;TN,93.26 | Li et al., |
| 垂直水平潜流 | 竹子;木材 | - | 芦苇 | 城市污水 | - | NH4+-N,99;TN,96 | Saeed et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,39.97;TN,39.23 | NH4+-N,50.05;TN,49.90 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NO3−-N,36.16;TN,57.90 | NO3−-N,81.16;TN,85.62 | Li et al., |
| 垂直潜流 | 玉米秸秆;木头 | 600 | - | 厌氧消化后的沼液 | TN,22;NH4+-N,62 | TN,47;NH4+-N,83 | Kizito et al., |
| 水平潜流 | 橡木 | 600 | 美人蕉 | 模拟生活污水 | TN,40.10;NH4+-N,50.01;NO3−-N,82.80 | TN,58.27;NH4+-N,58.30;NO3−-N,92.08 | Gupta et al., |
| 水平潜流 | 木炭 | - | 宽叶香蒲 | 城市污水 | TN,9.5;NO3−-N,12.7 | TN,20.0;NO3−-N,24.6 | Kasak et al., |
| 垂直流 | 木屑;生物污泥 | 850 | 芦苇 | 三级澄清阶段出水 | NH4+-N,45 | NH4+-N,65; | Ayadi et al., |
| 潜流 | 芦竹 | 500 | 菖蒲 | 模拟废水 | TN,70.92;NH4+-N,34.76 | TN,80.21;NH4+-N,57.96 | 邓朝仁等, |
| 潮汐流 | 玉米;鸡粪 | 500 | 灯心草 | 生活污水 | TN,84.9;NH4+-N,42.4 | TN,90.3;NH4+-N,60.3 | 陈旭等, |
| 垂直流 | 玉米 | 450 | 黄菖蒲 | 城市尾水(污水处理厂出水) | - | NH4+-N,90 | Wang et al., |
| 水平潜流 | 芦竹 | 800 | 风车草 | 模拟废水 | TN,24. 93;NO3−-N,18.39 | TN,41.24;NO3−-N,49.54 | Gao et al., |
| 潜流 | 竹子 | 500 | 风车草 | 模拟废水 | TN,87.9;NH4+-N,94.2 | TN,94.9;NH4+-N,99.4 | Liang et al., |
| 垂直流 | 竹子 | 700 | 黄菖蒲 | 模拟二级出水 | TN,37.9;NH4+-N,39; NO3−-N,51.8 | TN,90.2;NH4+-N,81;NO3−-N,90.5 | Ajibade et al., |
| - | 板栗壳 | 400 | 芦苇 | 生活污水 | TN,74.0 | TN,77.4 | Guo et al., |
| 垂直流 | 香蒲 | 500 | - | 城市污水 | TN,39.31;NO3−-N,49.77 | TN,53.27;NO3−-N,59.48 | Guo et al., |
| 潜流 | 树枝 | 550 | 千屈菜 | 模拟农村生活污水 | NH4+-N,35.4;TN,35.2 | NH4+-N,62.5;TN,59.2 | Ji et al., |
| 垂直流 | - | - | 芦苇 | 模拟废水 | TN,39.50;NH4+-N,61.81;NO3−-N,30.60 | TN,82.14;NH4+-N,95.49;NO3−-N,83.24 | Zhong et al., |
| 垂直流 | 污泥;香蒲 | 600 | 宽叶香蒲 | 模拟废水 | TN,66.65;NH4+-N,92.32;NO3−-N,61.47 | TN,90.94;NH4+-N,99.59;NO3−-N,99.50 | Zheng et al., |
Table 1 Researches on nitrogen removal efficiency of biochar-enhanced constructed wetlands
| 湿地 类型 | 生物炭 原料 | 热解温度/ ℃ | 湿地 植物 | 污水 类型 | 未添加生物炭脱氮效率 /% | 添加生物炭脱氮效率 (最高值)/% | 参考 文献 |
|---|---|---|---|---|---|---|---|
| 水平潜流 | - | - | 菖蒲 | 生活污水 | NO3−-N,84.66;NH4+-N,45.04;TN,43.40 | NO3−-N,91.48;NH4+-N,67.52;TN,65.61 | 陈鑫童等, |
| 潜流 | 椰壳;坚果壳 | - | 黄芪 | 农村生活污水 | - | 椰壳:NH4+-N,95.44; 坚果壳:NH4+-N,92.73 | Xing et al., |
| 垂直潜流 | 稻壳 | 550 | 旱莲草 | 农村生活污水 | - | NO3−-N,74 | Panghal et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,99.31;TN,75.02 | NH4+-N,99.36;TN,87.29 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NH4+-N,95.33;NO3−-N,84.04;TN,88.01 | NH4+-N,94.26;NO3−-N,92.72;TN,93.26 | Li et al., |
| 垂直水平潜流 | 竹子;木材 | - | 芦苇 | 城市污水 | - | NH4+-N,99;TN,96 | Saeed et al., |
| 潜流 | 竹子 | 500 | 水芹 | 模拟废水 | NH4+-N,39.97;TN,39.23 | NH4+-N,50.05;TN,49.90 | Zhou et al., |
| 表面流 | 芦竹 | 300 | 水芹 | 模拟废水 | NO3−-N,36.16;TN,57.90 | NO3−-N,81.16;TN,85.62 | Li et al., |
| 垂直潜流 | 玉米秸秆;木头 | 600 | - | 厌氧消化后的沼液 | TN,22;NH4+-N,62 | TN,47;NH4+-N,83 | Kizito et al., |
| 水平潜流 | 橡木 | 600 | 美人蕉 | 模拟生活污水 | TN,40.10;NH4+-N,50.01;NO3−-N,82.80 | TN,58.27;NH4+-N,58.30;NO3−-N,92.08 | Gupta et al., |
| 水平潜流 | 木炭 | - | 宽叶香蒲 | 城市污水 | TN,9.5;NO3−-N,12.7 | TN,20.0;NO3−-N,24.6 | Kasak et al., |
| 垂直流 | 木屑;生物污泥 | 850 | 芦苇 | 三级澄清阶段出水 | NH4+-N,45 | NH4+-N,65; | Ayadi et al., |
| 潜流 | 芦竹 | 500 | 菖蒲 | 模拟废水 | TN,70.92;NH4+-N,34.76 | TN,80.21;NH4+-N,57.96 | 邓朝仁等, |
| 潮汐流 | 玉米;鸡粪 | 500 | 灯心草 | 生活污水 | TN,84.9;NH4+-N,42.4 | TN,90.3;NH4+-N,60.3 | 陈旭等, |
| 垂直流 | 玉米 | 450 | 黄菖蒲 | 城市尾水(污水处理厂出水) | - | NH4+-N,90 | Wang et al., |
| 水平潜流 | 芦竹 | 800 | 风车草 | 模拟废水 | TN,24. 93;NO3−-N,18.39 | TN,41.24;NO3−-N,49.54 | Gao et al., |
| 潜流 | 竹子 | 500 | 风车草 | 模拟废水 | TN,87.9;NH4+-N,94.2 | TN,94.9;NH4+-N,99.4 | Liang et al., |
| 垂直流 | 竹子 | 700 | 黄菖蒲 | 模拟二级出水 | TN,37.9;NH4+-N,39; NO3−-N,51.8 | TN,90.2;NH4+-N,81;NO3−-N,90.5 | Ajibade et al., |
| - | 板栗壳 | 400 | 芦苇 | 生活污水 | TN,74.0 | TN,77.4 | Guo et al., |
| 垂直流 | 香蒲 | 500 | - | 城市污水 | TN,39.31;NO3−-N,49.77 | TN,53.27;NO3−-N,59.48 | Guo et al., |
| 潜流 | 树枝 | 550 | 千屈菜 | 模拟农村生活污水 | NH4+-N,35.4;TN,35.2 | NH4+-N,62.5;TN,59.2 | Ji et al., |
| 垂直流 | - | - | 芦苇 | 模拟废水 | TN,39.50;NH4+-N,61.81;NO3−-N,30.60 | TN,82.14;NH4+-N,95.49;NO3−-N,83.24 | Zhong et al., |
| 垂直流 | 污泥;香蒲 | 600 | 宽叶香蒲 | 模拟废水 | TN,66.65;NH4+-N,92.32;NO3−-N,61.47 | TN,90.94;NH4+-N,99.59;NO3−-N,99.50 | Zheng et al., |
| 原料 | 热解温度/℃ | C质量分数/% | H质量分数/% | N质量分数/% | S质量分数/% | O质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 玉米 | 450 | 77.30 | 2.35 | 0.87 | 0.02 | 11.26 | Wang et al., |
| 竹子 | 500 | 68 | - | - | - | - | Zhou et al., |
| 毛竹 | 500 | 87.19 | 0.40 | 1.47 | 0.54 | 10.4 | 邓朝仁等, |
| 芦竹 | 300 | 57.78 | 3.83 | 1.31 | 0.52 | - | Li et al., |
| 400 | 58.13 | 2.68 | 1.28 | 0.45 | - | ||
| 500 | 60.36 | 2.20 | 1.26 | 0.44 | - | ||
| 600 | 63.18 | 1.80 | 1.13 | 0.35 | - | ||
| 玉米 | 500 | 90.2 | 1.7 | 0.6 | 0.4 | 7.9 | 陈旭等, |
| 鸡粪 | 500 | 65.3 | 3.2 | 5.9 | 4.7 | 16.2 | |
| 玉米 | 600 | 63 | 3.4 | 6.1 | 4.4 | 17.6 | Kizito et al., |
| 木头 | 600 | 90 | 1.5 | 0.5 | 0.3 | 8.3 | |
| 橡木 | 600 | 90 | - | - | - | 8 | Gupta et al., |
Table 2 Composition of biochar in constructed wetland
| 原料 | 热解温度/℃ | C质量分数/% | H质量分数/% | N质量分数/% | S质量分数/% | O质量分数/% | 参考文献 |
|---|---|---|---|---|---|---|---|
| 玉米 | 450 | 77.30 | 2.35 | 0.87 | 0.02 | 11.26 | Wang et al., |
| 竹子 | 500 | 68 | - | - | - | - | Zhou et al., |
| 毛竹 | 500 | 87.19 | 0.40 | 1.47 | 0.54 | 10.4 | 邓朝仁等, |
| 芦竹 | 300 | 57.78 | 3.83 | 1.31 | 0.52 | - | Li et al., |
| 400 | 58.13 | 2.68 | 1.28 | 0.45 | - | ||
| 500 | 60.36 | 2.20 | 1.26 | 0.44 | - | ||
| 600 | 63.18 | 1.80 | 1.13 | 0.35 | - | ||
| 玉米 | 500 | 90.2 | 1.7 | 0.6 | 0.4 | 7.9 | 陈旭等, |
| 鸡粪 | 500 | 65.3 | 3.2 | 5.9 | 4.7 | 16.2 | |
| 玉米 | 600 | 63 | 3.4 | 6.1 | 4.4 | 17.6 | Kizito et al., |
| 木头 | 600 | 90 | 1.5 | 0.5 | 0.3 | 8.3 | |
| 橡木 | 600 | 90 | - | - | - | 8 | Gupta et al., |
| 原料 | 热解温度/ ℃ | 比表面积/ (m2·g−1) | 平均孔径/ nm | pH | 参考文献 |
|---|---|---|---|---|---|
| 木屑,生物污泥 | 850 | 389 | - | 7.1 | Ayadi et al., |
| 玉米 | 450 | 305.53 | 1.28 | - | Wang et al., |
| 竹子 | 500 | 340 | - | - | Zhou et al., |
| 毛竹 | 500 | 345.92 | 1.95 | - | 邓朝仁等, |
| 菖蒲 | 300 | 10.65 | - | 6.93 | Li et al., |
| 400 | 15.82 | - | 7.34 | ||
| 500 | 71.49 | - | 7.85 | ||
| 600 | 281.15 | - | 8.85 | ||
| 玉米 | 500 | 176.6 | 5.2 | 9.7 | 陈旭等, |
| 鸡粪 | 500 | 87.5 | 6.4 | 8.8 | |
| 玉米 | 600 | 123 | 6.2 | 8.9 | Kizito et al., |
| 木头 | 600 | 147 | 5.3 | 9.8 | |
| 玉米 | 450 | 232.72 | 1.286 | - | Wang et al., |
| 树枝 | 550 | 32.09 | - | - | Ji et al., |
| 玉米 | 600 | 9.53 | 15.35 | - | Liao et al., |
| 污泥 | 600 | 13.13 | 18.71 | 7.9 | Zheng et al., |
| 香蒲 | 6.14 | - | 8.9 | ||
| 竹子 | 700 | 228.26 | - | 9.5 | Ajibade et al., |
Table 3 The physiochemical properties of biochar in constructed wetlands
| 原料 | 热解温度/ ℃ | 比表面积/ (m2·g−1) | 平均孔径/ nm | pH | 参考文献 |
|---|---|---|---|---|---|
| 木屑,生物污泥 | 850 | 389 | - | 7.1 | Ayadi et al., |
| 玉米 | 450 | 305.53 | 1.28 | - | Wang et al., |
| 竹子 | 500 | 340 | - | - | Zhou et al., |
| 毛竹 | 500 | 345.92 | 1.95 | - | 邓朝仁等, |
| 菖蒲 | 300 | 10.65 | - | 6.93 | Li et al., |
| 400 | 15.82 | - | 7.34 | ||
| 500 | 71.49 | - | 7.85 | ||
| 600 | 281.15 | - | 8.85 | ||
| 玉米 | 500 | 176.6 | 5.2 | 9.7 | 陈旭等, |
| 鸡粪 | 500 | 87.5 | 6.4 | 8.8 | |
| 玉米 | 600 | 123 | 6.2 | 8.9 | Kizito et al., |
| 木头 | 600 | 147 | 5.3 | 9.8 | |
| 玉米 | 450 | 232.72 | 1.286 | - | Wang et al., |
| 树枝 | 550 | 32.09 | - | - | Ji et al., |
| 玉米 | 600 | 9.53 | 15.35 | - | Liao et al., |
| 污泥 | 600 | 13.13 | 18.71 | 7.9 | Zheng et al., |
| 香蒲 | 6.14 | - | 8.9 | ||
| 竹子 | 700 | 228.26 | - | 9.5 | Ajibade et al., |
| [1] |
AJIBADE F O, WANG H C, GUADIE A, et al., 2021. Total nitrogen removal in biochar amended non-aerated vertical flow constructed wetlands for secondary wastewater effluent with low C/N ratio: Microbial community structure and dissolved organic carbon release conditions[J]. Bioresource Technology, 322: 124430.
DOI URL |
| [2] |
AYADI M, PASSASEO D, BONACCORSO G, et al., 2024. Biochar from co-pyrolysis of biological sludge and sawdust in comparison with the conventional filling media of vertical-flow constructed wetlands for the treatment of domestic-textile wastewater[J]. Water Science and Technology, 89(5): 1252-1263.
DOI PMID |
| [3] |
CAI Y F, ZHU M M, MENG X Y, et al., 2022. The role of biochar on alleviating ammonia toxicity in anaerobic digestion of nitrogen-rich wastes: A review[J]. Bioresource Technology, 351: 126924.
DOI URL |
| [4] |
GAO Y, ZHANG W, GAO B, et al., 2018. Highly efficient removal of nitrogen and phosphorus in an electrolysis-integrated horizontal subsurface-flow constructed wetland amended with biochar[J]. Water Research, 139: 301-310.
DOI PMID |
| [5] |
GARCIA-AVILA F, 2020. Treatment of municipal wastewater by vertical subsurface flow constructed wetland: Data collection on removal efficiency using Phragmites australis and Cyperus papyrus[J]. Data in Brief, 30: 105584.
DOI URL |
| [6] |
GUO F C, LUO Y, NIE M, et al., 2023a. A comprehensive evaluation of biochar for enhancing nitrogen removal from secondary effluent in constructed wetlands[J]. Chemical Engineering Journal, 478: 147469.
DOI URL |
| [7] |
GUO F C, LUO Y, NIE W B, et al., 2023c. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties[J]. Bioresource Technology, 379: 129000.
DOI URL |
| [8] |
GUO X, XIE H M, PAN W L, et al., 2023b. Enhanced nitrogen removal via biochar-mediated nitrification, denitrification, and electron transfer in constructed wetland microcosms[J]. Environmental Science and Pollution Research, 30(28): 72710-72720.
DOI |
| [9] |
GUPTA P, ANN T W, LEE S M, 2016. Use of biochar to enhance constructed wetland performance in wastewater reclamation[J]. Environmental Engineering Research, 21(1): 36-44.
DOI URL |
| [10] |
HUANG L, XIONG H F, JIANG C L, et al., 2023. Pathways and biological mechanisms of N2O emission reduction by adding biochar in the constructed wetland based on 15N stable isotope tracing[J]. Journal of Environmental Management, 342: 118359.
DOI URL |
| [11] |
HUO J Y, HU X J, CHENG S Y, et al., 2022. Effects and mechanisms of constructed wetlands with different substrates on N2O emission in wastewater treatment[J]. Environmental Science and Pollution Research, 29(13): 19045-19053.
DOI |
| [12] |
JI B H, CHEN J Q, MEI J, et al., 2020. Roles of biochar media and oxygen supply strategies in treatment performance, greenhouse gas emissions, and bacterial community features of subsurface-flow constructed wetlands[J]. Bioresource Technology, 302: 122890.
DOI URL |
| [13] |
JIA L, HUANG L, 2021a. Long term effect of biochar on the efficiency of subsurface flow wetland pollutant treatment[J]. Desalination and Water Treatment, 219: 11-17.
DOI URL |
| [14] |
JIA W, YANG L Y, 2021b. Community composition and spatial distribution of N-Removing microorganisms optimized by Fe-modified biochar in a constructed wetland[J]. International Journal of Environmental Research and Public Health, 18(6): 2938.
DOI URL |
| [15] |
KASAK K, TRUU J, OSTONEN I, et al., 2018. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands[J]. Science of The Total Environment, 639: 67-74.
DOI URL |
| [16] |
KIZITO S, LV T, WU S B, et al., 2017. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation[J]. Science of The Total Environment, 592: 197-205.
DOI URL |
| [17] |
LI J, FAN J L, LIU D X, et al., 2019. Enhanced nitrogen removal in biochar-added surface flow constructed wetlands: Dealing with seasonal variation in the north China[J]. Environmental Science and Pollution Research, 26(4): 3675-3684.
DOI |
| [18] |
LI J, FAN J L, ZHANG J, et al., 2018. Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands[J]. Environmental Science and Pollution Research, 25(14): 13929-13937.
DOI |
| [19] |
LIANG J F, LI Q W, GAO J Q, et al., 2021. Biochar-compost addition benefits Phragmites australis growth and soil property in coastal wetlands[J]. Science of The Total Environment, 769: 145166.
DOI URL |
| [20] |
LIANG Y K, WANG Q H, HUANG L, et al., 2020. Insight into the mechanisms of biochar addition on pollutant removal enhancement and nitrous oxide emission reduction in subsurface flow constructed wetlands: Microbial community structure, functional genes and enzyme activity[J]. Bioresource Technology, 307: 123249.
DOI URL |
| [21] |
LIAO Y, JIANG L, CAO X K, et al., 2022. Efficient removal mechanism and microbial characteristics of tidal flow constructed wetland based on in-situ biochar regeneration (BR-TFCW) for rural gray water[J]. Chemical Engineering Journal, 431: 134185.
DOI URL |
| [22] |
LIN G W, DING Y, 2024. Enhancement of immobilized biochar/FeS on nitrogen removal in constructed wetland at low temperature[J]. Journal of Water Process Engineering, 58: 104834.
DOI URL |
| [23] |
PANGHAL V, SINGH A, ARORA D, et al., 2024. Biochar-modified constructed wetlands using Eclipta alba as a plant for sustainable rural wastewater treatment[J]. Environmental Science and Pollution Research, 31(11): 17387-17400.
DOI |
| [24] |
PELISSARI C, GUIVERNAU M, VINAS M, et al., 2018. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands[J]. Water Research, 141: 185-195.
DOI PMID |
| [25] | QI Z P, LIU Q, ZHU Z R, et al., 2016. Rhodamine B removal from aqueous solutions using loofah sponge and activated carbon prepared from loofah sponge[J]. Desalination & Water Treatment, 57(60): 29421-29433. |
| [26] |
SAEED T, YASMIN N, SUN G, et al., 2019. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage[J]. Environmental Science and Pollution Research, 26(1): 586-599.
DOI |
| [27] |
SANJRANI M A, ZHOU B, ZHAO H, et al., 2019. The influence of wetland media in improving the performance of pollutant removal during water treatment: A review[J]. Applied Ecology and Environmental Research, 17(2): 3803-3818.
DOI URL |
| [28] |
SHANG Z X, WANG Y R, WANG S Q, et al., 2022. Enhanced phosphorus removal of constructed wetland modified with novel Lanthanum-ammonia-modified hydrothermal biochar: Performance and mechanism[J]. Chemical Engineering Journal, 449: 137818.
DOI URL |
| [29] |
SUN Y C, WANG T T, 2023. Application of biochar, adsorbent and nanomaterials in wastewater treatment[J]. Water, 15(7): 1320.
DOI URL |
| [30] |
TAO J Q, XU H Q, ZHANG T, et al., 2022. Study on reed straw carbon source-enhanced nitrogen removal effect in wetland system[J]. Water Air and Soil Pollution, 233(11): 429.
DOI |
| [31] |
VISTANTY H BUDIYONO, BUDIHARDJO M A, et al., 2025. Full-scale application and performance of circulated biological and constructed wetland system for batik wastewater treatment[J]. Journal of Environmental Chemical Engineering, 13(1): 115101.
DOI URL |
| [32] |
VYMAZAL J, SOCHACKI A, FUCÍK P, et al., 2020. Constructed wetlands with subsurface flow for nitrogen removal from tile drainage[J]. Ecological Engineering, 155: 105943.
DOI URL |
| [33] |
WANG F, LIU Y, MA Y X, et al., 2012. Characterization of nitrification and microbial community in a shallow moss constructed wetland at cold temperatures[J]. Ecological Engineering, 42: 124-129.
DOI URL |
| [34] |
WANG H X, SHENG L X, ZANG S Y, 2023b. Study on H2SO4-modified corn straw biochar as substrate material of constructed wetland[J]. Environmental Science and Pollution Research International, 30(54): 115556-115570.
DOI |
| [35] |
WANG H X, TENG H W, WANG X Y, et al., 2022c. Physicochemical modification of corn straw biochar to improve performance and its application of constructed wetland substrate to treat city tail water[J]. Journal of Environmental Management, 310: 114758.
DOI URL |
| [36] | WANG H X, XU J L, SHENG L X, et al., 2022b. Study on treatment of city tail water by constructed wetland with corn straw biochar substrate[J]. Environmental Technology & Innovation, 28: 102855. |
| [37] |
WANG S H, YANG H R, CHE F F, et al., 2023a. Removal efficacy of fly ash composite filler on tailwater nitrogen and phosphorus and its application in constructed wetlands[J]. Frontiers in Chemistry, 11: 1160489.
DOI URL |
| [38] |
WANG T, LIU Z Y, KUANG B, et al., 2022a. Electroactive algae-bacteria wetlands for the treatment of micro-polluted aquaculture wastewater: Pilot-scale verification[J]. Biochemical Engineering Journal, 184: 108471.
DOI URL |
| [39] |
XING C J, XU X X, XU Z H, et al., 2021. Study on the decontamination effect of biochar-constructed wetland under different hydraulic conditions[J]. Water, 13(7): 893.
DOI URL |
| [40] |
ZHAO Y Q, COLLUM S, PHELAN M, et al., 2013. Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials[J]. Chemical Engineering Journal, 229: 364-370.
DOI URL |
| [41] |
ZHAO Y Q, YANG H, XIA S B, et al., 2022. Removal of ammonia nitrogen, nitrate, and phosphate from aqueous solution using biochar derived from Thalia dealbata Fraser: Effect of carbonization temperature[J]. Environmental Science and Pollution Research, 29: 57773-57789.
DOI |
| [42] |
ZHENG F F, FANG J H, GUO F C, et al., 2022. Biochar based constructed wetland for secondary effluent treatment: Waste resource utilization[J]. Chemical Engineering Journal, 432: 134377.
DOI URL |
| [43] |
ZHONG L, YANG S S, DING J, et al., 2021. Enhanced nitrogen removal in an electrochemically coupled biochar-amended constructed wetland microcosms: The interactive effects of biochar and electrochemistry[J]. Science of The Total Environment, 789: 147761.
DOI URL |
| [44] |
ZHOU L, WANG J J, XU D F, et al., 2020. Responses of nitrogen transformation and dissolved oxygen in constructed wetland to biochar and earthworm amendment[J]. Environmental Science and Pollution Research, 27(23): 29475-29484.
DOI |
| [45] |
ZHOU X, WANG R G, LIU H, et al., 2019b. Nitrogen removal responses to biochar addition in intermittent-aerated subsurface flow constructed wetland microcosms: Enhancing role and mechanism[J]. Ecological Engineering, 128: 57-65.
DOI URL |
| [46] |
ZHOU X, WU S B, WANG R G, et al., 2019a. Nitrogen removal in response to the varying C/N ratios in subsurface flow constructed wetland microcosms with biochar addition[J]. Environmental Science and Pollution Research, 26(4): 3382-3391.
DOI |
| [47] | 邓朝仁, 梁银坤, 黄磊, 等, 2019. 生物炭对潜流人工湿地污染物去除及N2O排放影响[J]. 环境科学, 40(6): 2840-2846. |
| DENG Z R, LIANG Y K, HUANG L, et al., 2019. Influences of biochar on pollutant removal efficiencies and nitrous oxide emissions in a subsurface flow constructed wetland[J]. Environmental Science, 40(6): 2840-2846. | |
| [48] | 陈梅, 王芳, 张德俐, 等, 2019. 生物炭结构性质对氨氮的吸附特性影响[J]. 环境科学, 40(12): 5421-5429. |
| CHEN M, WANG F, ZHANG D L, et al., 2019. Effect of biochar structure on adsorption characteristics of ammonia nitrogen[J]. Environmental Science, 40(12): 2840-2846. | |
| [49] |
陈旭, 张璐, 2019. 生物炭基质潮汐流人工湿地处理生活污水性能[J]. 生态环境学报, 28(7): 1443-1449.
DOI |
| CHEN X, ZHANG L, 2019. Treatment of domestic wastewater in biochar-packed tidal flow constructed wetland[J]. Ecology and Environmental Sciences, 28(7): 1443-1449. | |
| [50] | 陈鑫童, 郝庆菊, 熊艳芳, 等, 2022. 铁矿石和生物炭添加对潜流人工湿地污水处理效果和温室气体排放及微生物群落的影响[J]. 环境科学, 43(3): 1492-1499. |
| CHEN X T, HAO Q J, XIONG Y F, et al., 2022. Effects of hematite and biochar addition on wastewater treatment efficiency, greenhouse gas emission, and microbial community in subsurface flow constructed wetland[J]. Environmental Science, 43(3): 1492-1499. | |
| [51] | 侯洁, 2017. 生物炭对潜流人工湿地生物脱氮影响机理研究[D]. 重庆: 西南大学: 1-75. |
| HOU J, 2017. Influences of biochar on biological Nitrogen Removal in subsurface flow constructed wetland[D]. Chongqing: Xinan University: 1-75. | |
| [52] | 黄磊, 陈玉成, 赵亚琦, 等, 2018. 生物炭添加对湿地植物生长及氧化应激响应的影响[J]. 环境科学, 39(6): 2904-2910. |
| HUANG L, CHEN Y C, ZHAO Y Q, et al., 2018. Influence of biochar application on growth and antioxidative a responses of macrophytes in subsurface flow constructed wetlands[J]. Environmental Science, 39(6): 2904-2910. | |
| [53] | 李静, 2019. 生物炭基人工湿地强化脱氮研究[D]. 济南: 山东大学: 1-89. |
| LI J, 2019. Study on enhanced nitrogen removal in biochar-based constructed wetland[D]. Ji’nan: Shandong University: 1-89. | |
| [54] | 马柯, 2019. 基于生物炭/零价铁强化的复合流人工湿地性能研究[D]. 杭州: 浙江大学: 1-85. |
| MA K, 2019. Research on the performance of hybrid constructed wetlands enhanced with biochar-ZVI[D]. Hangzhou: Zhejiang University: 1-85. | |
| [55] | 吴晓磊, 1995. 人工湿地废水处理机理[J]. 环境科学, 16(3): 83-86, 96. |
| WU X L, 1955. Mechanism of constructed wetland wastewater treatment[J]. Environmental Science, 16(3): 83-86, 96. | |
| [56] | 徐德福, 潘潜澄, 李映雪, 等, 2018. 生物炭对人工湿地植物根系形态特征及净化能力的影响[J]. 环境科学, 39(7): 3187-3193. |
| XU D F, PAN Q C, LI Y X, et al., 2018. Effect of biochar on root morphological characteristics of wetland plants and purification capacity of constructed wetland[J]. Environmental Science, 39(7): 3187-3193. | |
| [57] | 闫军芬, 杨凯心, 王志康, 等, 2025. 生物炭对滨海盐碱农田土壤肥力和玉米生长的影响[J/OL]. 鲁东大学学报(自然科学版), 1-11 [2025-10-13]. https://link.cnki.net/urlid/37.1453.N.20250624.1355.002. |
| YAN J F, YANG K X, WANG Z K, et al., 2025. The comprehensive effects of biochar on soil fertility and maize growth in coastal saline-alkali soil[J/OL]. Journal of Ludong University (Natural Science Edition), 1-11 [2025-10-13]. https://link.cnki.net/urlid/37.1453.N.20250624.1355.002. |
| [1] | LIU Qing, GONG Yushun, WANG Wei, FANG Xiantao, WU Jinshui, SHEN Jianlin. Spatio-temporal Characteristics of Soil Organic Carbon and Its Components in Typical tea Gardens in Hunan Province, China [J]. Ecology and Environmental Sciences, 2025, 34(9): 1386-1397. |
| [2] | ZHANG Mei, CONG Peidong, DUAN Siyang, ZHAO Xiuting, LI Fuxiang, LIU Li, LI Haiyan. Functional Trait Differentiation of Leaf, Stem and Inflorescence of Invasive Plant Sicyos angulatus in Different Habitats of Lower Yalu River [J]. Ecology and Environmental Sciences, 2025, 34(8): 1255-1264. |
| [3] | LIU Fengjuan, MA Chao, HUANG Linghan, CHEN Qi, LUO Xuqiang. Effects of Biochar Addition on the Phytoavailability of As and Sb in Tailings-contaminated Soil [J]. Ecology and Environmental Sciences, 2025, 34(8): 1273-1281. |
| [4] | CAI Min, ZHOU Li, ZHANG Xu, CUI Naxin, PANG Si, ZOU Guoyan, YUAN Quan, HUANG Weiwei, ZHAO Zhiyong. Effects of Plant Extracts on Phytoplankton Community Structure and Function in Aquaculture Water [J]. Ecology and Environmental Sciences, 2025, 34(7): 1090-1099. |
| [5] | HE Huan, ZHOU Dandan, MA Zhixuan, LI Fangfang, QIN Shanshan, DOU Sixian. Effect of Calcium Modification on the Binding of Biochar-derived Dissolved Organic Matter with Cd(II) [J]. Ecology and Environmental Sciences, 2025, 34(7): 1121-1132. |
| [6] | LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil [J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719. |
| [7] | ZHANG Shujuan, CHEN Xinlong, QI Jingfan, DONG Yuexiao, YU Jiazheng, YOU Zhaoyang. Remediation of Soil Polluted with Vanadium Via Arbuscular Mycorrhiza [J]. Ecology and Environmental Sciences, 2025, 34(4): 631-641. |
| [8] | MEI Yaoping, WU Benli, HUANG Long, WU Cangcang, CHEN Jing, CHEN Xiajun, HE Jixiang. Purification of Nitrogen and Phosphorus in Aquaculture Wastewater Using Different Aquatic Plants [J]. Ecology and Environmental Sciences, 2025, 34(3): 442-450. |
| [9] | WANG Chunmei, JIANG Bingqi, HU Jun, CHEN Daiwen, HUANG Lihua, CHENG Wanwan. Multi-scale Variations and Influencing Factors of Total Radioactivity in Atmospheric Environment Around Nuclear Power Plants [J]. Ecology and Environmental Sciences, 2025, 34(12): 1900-1908. |
| [10] | WU Xiaoling, DU Yanhong, DOU Fei, GAO Shuangquan, WANG Xiangqin. A Long-term Positioning Experiment of Heavy Metal-Contaminated Vegetable Fields Remediated by Biochar and Humus [J]. Ecology and Environmental Sciences, 2025, 34(12): 1952-1961. |
| [11] | WANG Yongmei, YUAN Yuzhen, WANG Zicheng, LI Zhifeng, GAO Shuangquan, LIU Chuanping, DU Yanhong. Long-term Effects of Biochar Coupled with Chemical Fertilizer Reduction on the Safe Production of Sweet Corn in Heavy Metal-Contaminated Soils [J]. Ecology and Environmental Sciences, 2025, 34(12): 1962-1973. |
| [12] | JI Bo, CHENG Hongguang, HAN Shiming, XING Dan, WU Zhibing, ZHANG Jinlian, LIU Fang, ZHU Yi, DENG Lirong, ZHANG Xiaosong. Research Advances in the Effects of Biochar and Arbuscular Mycorrhizal Fungi on Soil Phosphorus Supply [J]. Ecology and Environmental Sciences, 2025, 34(11): 1812-1826. |
| [13] | CHEN Tingting, CAI Yiwei, SUN Tong, LI Guiying, AN Taicheng. Response Mechanism of Bacteria in Bioaerosol under the Stress of Volatile Organic Sulfur Compounds [J]. Ecology and Environmental Sciences, 2025, 34(10): 1588-1597. |
| [14] | ZHAO Jingshu, LIU Jie, JIANG Xusheng, HUANG Zhangui, YANG Lin. Succession of Rhizosphere Microbial Communities in Cd-Pb-Zn Co-Contaminated Soil Mediated by Celosia argentea L. [J]. Ecology and Environmental Sciences, 2025, 34(10): 1644-1653. |
| [15] | WANG Yini, CAI Yiwei, SUN Tong, LI Guiying, CHOI Wonyong, AN Taicheng. The Deactivation Mechanism of Photocatalyst Inactivation of Bacteria Caused by Complex Components in Mariculture Water [J]. Ecology and Environmental Sciences, 2025, 34(1): 89-98. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn