Ecology and Environment ›› 2025, Vol. 34 ›› Issue (3): 474-483.DOI: 10.16258/j.cnki.1674-5906.2025.03.014
• Review • Previous Articles Next Articles
CHEN Lin(), LAN Guanyu, XU Yan, LI Xue, MAO Xuefei(
)
Received:
2024-08-18
Online:
2025-03-18
Published:
2025-03-24
Contact:
MAO Xuefei
通讯作者:
毛雪飞
作者简介:
陈琳(2000年生),女,硕士研究生,主要研究方向为食品质量与安全研究、污染物检测。E-mail: chenlin000914@163.com
基金资助:
CLC Number:
CHEN Lin, LAN Guanyu, XU Yan, LI Xue, MAO Xuefei. Advances in Hydrogen-bonded Organic Framework Materials for Adsorption and Detection of Environmental Pollutants[J]. Ecology and Environment, 2025, 34(3): 474-483.
陈琳, 兰冠宇, 徐妍, 李雪, 毛雪飞. 氢键有机框架材料在环境污染物吸附和检测中的研究进展[J]. 生态环境学报, 2025, 34(3): 474-483.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.03.014
Figure 4 Schematic representation of the process of self-assembly and selective enrichment and detection of paraquat and chlormequat by MP HOFs (Lü et al., 2022)
[1] | BILAL M, BAGHERI A R, BHATT P, et al., 2021. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds[J]. Journal of Environmental Management, 291: 112685. |
[2] | CAO S, LI B, ZHU R M, et al., 2019. Design and synthesis of covalent organic frameworks towards energy and environment fields[J]. Chemical Engineering Journal, 355: 602-623. |
[3] | CHEN L F, ZHANG B Y, CHEN L L, et al., 2022a. Hydrogen-bonded organic frameworks: Design, applications, and prospects[J]. Materials advances, 3(9): 3680-3708. |
[4] | CHEN Y, YANG Y S, WANG Y, et al., 2022b. Ultramicroporous hydrogen-bonded organic framework material with a thermoregulatory gating effect for record propylene separation[J]. Journal of the American Chemical Society, 144(37): 17033-17040. |
[5] |
CÔTÉ A P, BENIN A I, OCKWIG N W, et al., 2005. Porous, crystalline, covalent organic frameworks[J]. Science, 310(5751): 1166-1170.
PMID |
[6] |
CRIPPA M, SOLAZZO E, GUIZZARDI D, et al., 2022. Air pollutant emissions from global food systems are responsible for environmental impacts, crop losses and mortality[J]. Nature Food, 3: 942-956.
DOI PMID |
[7] | DOMÍNGUEZ-GONZÁLEZ R, ROJAS-LEÓN I, MARTÍNEZ-AHUMADA E, et al., 2019. UNAM-1: a robust CuIand CuIIcontaining 3D-hydrogen-bonded framework with permanent porosity and reversible SO2sorption[J]. Journal of Materials Chemistry A, 7(47): 26812-26817. |
[8] | DUCHAMP D J, MARSH R E, 1969. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid)[J]. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 25: 5-19. |
[9] | FENG J F, LIU T F, CAO R, 2020a. An electrochromic hydrogen‐bonded organic framework film[J]. Angewandte Chemie International Edition, 132(50): 22578-22582. |
[10] | FENG S, SHANG Y X, WANG Z K, et al., 2020b. Fabrication of a hydrogen‐bonded organic framework membrane through solution processing for pressure‐regulated gas separation[J]. Angewandte Chemie International Edition, 59(10): 3840-3845. |
[11] | HE Y B, XIANG S C, CHEN B L. 2011. A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C2H2/C2H4 Separation at Ambient Temperature[J]. Journal of the American Chemical Society, 133(37): 14570-14573. |
[12] | HISAKI I, SUZUKI Y, GOMEZ E, et al., 2018. Docking strategy to construct thermostable, single‐crystalline, hydrogen‐bonded organic framework with high surface area[J]. Angewandte Chemie International Edition, 57(39): 12650-12655. |
[13] | HU Y L, LI Y Y, SHI Y R, et al., 2023a. A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea[J]. Food Chemistry, 415: 135790. |
[14] | HU Y L, LIU Y F, KUANG Y X, et al., 2023b. Melamine-participant hydrogen-bonded organic frameworks with strong hydrogen bonds and hierarchical micropores driving extraction of nitroaromatic compounds[J]. Analytica Chimica Acta, 1277: 341652. |
[15] | HU Z Q, YAN B, 2024. A sustainable, eco-friendly Tb/Eu-modified HOFs for ultrasensitive detection and efficient adsorption of carcinogens in complex water environments[J]. Journal of Hazardous Materials, 474: 134742. |
[16] | HUANG J L, LI Y B, ZHANG H, et al., 2023. A microporous hydrogen‐bonded organic framework based on hydrogen‐bonding tetramers for efficient Xe/Kr separation[J]. Angewandte Chemie International Edition, 135(52): e202315987. |
[17] | KAUSHIK A, MARVANIYA K, KULKARNI Y, et al., 2022b. Large-area self-standing thin film of porous hydrogen-bonded organic framework for efficient uranium extraction from seawater[J]. Chem, 8(10): 2749-2765. |
[18] | KAUSHIK P, KHANDELWAL R, RAWAT N, et al., 2022a. Environmental hazards of heavy metal pollution and toxicity: A review[J]. Flora and Fauna, 28: 315-327. |
[19] |
KE Z J, CHEN K X, LI Z Z, et al., 2021. Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection[J]. Chinese Chemical Letters, 32(10): 3109-3112.
DOI |
[20] | LAI X X, LIU X X, YANG Y, et al., 2024. In situ generated dimethylamine constructs a robust hydrogen-bonded organic framework for selective fluorescence detection[J]. CrystEngComm, 26(13): 1876-83. |
[21] | LI G H, LIU S, BIAN Y L, et al., 2024. In Situ Fabrication of photoluminescent hydrogen-bonded organic framework-functionalized Ca(II) hydrogel film for the tetracyclines visual sensor and information security[J]. ACS Applied Materials & Interfaces, 16(8): 10522-10531. |
[22] | LI P H, LI P, RYDER M R, et al., 2019. Interpenetration isomerism in triptycene‐based hydrogen‐bonded organic frameworks[J]. Angewandte Chemie International Edition, 58(6): 1664-1669. |
[23] | LI P, HE Y B, GUANG J, et al., 2014a. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 136(2): 547-549. |
[24] | LI P, HE Y B, ZHAO Y F, et al., 2014b. A rod‐packing microporous hydrogen‐bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 54(2): 574-577. |
[25] | LI Y B, WANG X, ZHANG H, et al., 2023a. A microporous hydrogen bonded organic framework for highly selective separation of carbon dioxide over acetylene[J]. Angewandte Chemie International Edition, 62(39): e202311419. |
[26] | LI Y L, ALEXANDROV E V, YIN Q, et al., 2020. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors[J]. Journal of the American Chemical Society, 142(15): 7218-7224. |
[27] | LI Y L, WANG H L, CHEN Z C, et al., 2023b. Lanthanoid hydrogen-bonded organic frameworks: Enhancement of luminescence by the coordination-promoted antenna effect and applications in heavy-metal ion sensing and sterilization[J]. Chemical Engineering Journal, 451(2): 138880. |
[28] |
LIN Y X, JIANG X F, KIM S T, et al., 2017. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water[J]. Journal of the American Chemical Society, 139(21): 7172-7175.
DOI PMID |
[29] | LIN Z J, QIN J Y, ZHAN X P, et al., 2022. Robust mesoporous functional hydrogen-bonded organic framework for hypochlorite detection[J]. ACS Applied Materials & Interfaces, 14(18): 21098-21105. |
[30] | LIU B T, PAN X H, NIE D Y, et al., 2020. Ionic hydrogen‐bonded organic frameworks for ion‐responsive antimicrobial membranes[J]. Advanced Materials, 32(48): 2005912. |
[31] | LIU P F, LI X R, ZHANG C L, et al., 2023. It is time to reduce atmospheric pollutant emissions from agricultural and residential activities in rural china for the sustainable improvement of air quality[J]. Environmental Science & Technology, 57(48): 19102-19105. |
[32] | LIU X M, LIU G L, FU T, et al., 2024a. Structural design and energy and environmental applications of hydrogen-bonded organic frameworks: A systematic review[J]. Advanced Science, 11(22): 2400101. |
[33] | LIU Y H, ZHU K, YAN B, 2024b. Food and environmental safety monitoring platform based on Tb(III) functionalized HOF hybrids for ultrafast detection of thiabendazole and 2-chlorophenol[J]. Talanta, 272: 125829. |
[34] | LÜ Y X, QIN X H, HU K, et al., 2022. Microporous hydrogen-bond organic frameworks-based SALDI-TOF MS for simultaneous enrichment and high sensitivity detection of paraquat and chlormequat[J]. Sensors and Actuators B: Chemical, 353: 131132. |
[35] | LUO Y H, ZHANG L, FANG W X, et al., 2021. 2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation[J]. Chemical Communications, 57(48): 5901-5904. |
[36] | MA K, LI P, XIN J H, et al., 2020. Ultrastable mesoporous hydrogen-bonded organic framework-based fiber composites toward mustard gas detoxification[J]. Cell Reports Physical Science, 1(2): 100024. |
[37] | MASTALERZ M, OPPEL I M, 2012. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area[J]. Angewandte Chemie International Edition, 51(21): 5252-5255. |
[38] | MOHAMMED A K, RAYA J, PANDIKASSALA A, et al., 2023. Chemically gradient hydrogen-bonded organic framework crystal film[J]. Angewandte Chemie International Edition, 62(29): e202304313. |
[39] | MOHAN B, SINGH G, GUPTA R K, et al., 2024. Hydrogen-bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring[J]. Trends in Analytical Chemistry, 170: 117436. |
[40] |
NICKS J, BOER S A, WHITE N G, et al., 2021. Monolayer nanosheets formed by liquid exfoliation of charge-assisted hydrogen-bonded frameworks[J]. Chemical Science, 12(9): 3322-3327.
DOI PMID |
[41] | QIN W K, SI D H, YIN Q, et al., 2022. Reticular Synthesis of hydrogen‐bonded organic frameworks and their derivatives via mechanochemistry[J]. Angewandte Chemie International Edition, 134(27): e202202089. |
[42] | RAD S M, RAY A K, BARGHI S, 2022. Water pollution and agriculture pesticide[J]. Clean Technologies, 4(4): 1088-1102. |
[43] | SHEN K Y, ZHAN J L, SHEN L, et al., 2023. Hydrogen bond organic frameworks as radical reactors for enhancement in ECL efficiency and their ultrasensitive biosensing[J]. Analytical Chemistry, 95(10): 4735-4743. |
[44] | SUKU S, RAVINDRAN R, 2021. Synthesis, characterization and dielectric properties of porous hydrogen-bonded organic framework of pyridine-2,6-dicarboxylic acid with 4-methoxyaniline and its Bi(III) complex[J]. Journal of Molecular Structure, 1226(Part B): 129314. |
[45] | TAN X H, WANG S, HAN N, 2023. Metal organic frameworks derived functional materials for energy and environment related sustainable applications[J]. Chemosphere, 313: 137330. |
[46] | TANG F H M, LENZEN M, MCBRATNEY A, et al., 2021. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 14: 206-210. |
[47] | WANG B, HE R, XIE L H, et al., 2020b. A microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline[J]. Journal of the American Chemical Society, 142(28): 12478-12485. |
[48] | WANG S Q, LIU J, FENG S W, et al., 2024. Anionic hydrogen‐bonded frameworks showing tautomerism and colorful luminescence for the ultrasensitive detection of acetone[J]. Angewandte Chemie International Edition, 63(13): e202400742. |
[49] | WANG Y J, ZHANG M H, YANG Q Q, et al., 2020a. Single-crystal-to-single-crystal transformation and proton conductivity of three hydrogen-bonded organic frameworks[J]. Chemical Communications, 56(99): 15529-15532. |
[50] |
WEISSKOPF L, SCHULZ S, GARBEVA P, 2021. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions[J]. Nature Reviews Microbiology, 19: 391-404.
DOI PMID |
[51] | WU P, YIN X Y, ZHAO Y F, et al., 2023. Porphyrin-based hydrogen-bonded organic framework for visible light driven photocatalytic removal of U(VI) from real low-level radioactive wastewater[J]. Journal of Hazardous Materials, 459: 132179. |
[52] | XIA F, ZHAO Z F, NIU X, et al., 2024. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil[J]. Journal of Hazardous Materials, 465: 133215. |
[53] | YANG C Y, ZHU K, YAN B, 2024a. Efficient multi-stimulus-responsive luminescent Eu(III)-modified HOFs materials: detecting thiram and caffeic acid and constructing a flexible substrate anti-counterfeiting platform[J]. ACS Applied Materials & Interfaces, 16(16): 20744-20754. |
[54] | YANG J Y, WANG J K, ZHANG X N, et al., 2022b. Exploration of hydrogen-bonded organic framework (HOF) as highly efficient adsorbent for rhodamine B and methyl orange[J]. Microporous and Mesoporous Materials, 330: 111624. |
[55] | YANG J Y, ZHANG X N, CHEN M, et al., 2022a. Versatile hydrogen-bonded organic framework (HOF) platform for simultaneous detection and efficient removal of heavy metal ions[J]. Journal of Environmental Chemical Engineering, 10(6): 108983. |
[56] | YANG L J, YUAN J W, WANG G, et al., 2023. Construction of tri-functional HOFs material for efficient selective adsorption and photodegradation of bisphenol A and hydrogen production[J]. Advanced Functional Materials, 33(28): 2300954. |
[57] |
YANG W B, GREENAWAY A, LIN X, et al., 2010. Exceptional thermal stability in a supramolecular organic framework: Porosity and gas storage[J]. Journal of the American Chemical Society, 132(41): 14457-14469.
DOI PMID |
[58] | YANG W, WANG J W, WANG H L, et al., 2017. Highly interpenetrated robust microporous hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 17(11): 6132-6137. |
[59] | YANG Y K, ZHANG X Y, WANG X M, et al., 2024b. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/ HOF heterojunction for the detection of bisphenol A[J]. Food Chemistry, 443: 138499. |
[60] | YIN Q, ZHAO P, SA R J, et al., 2018. An ultra‐robust and crystalline redeemable hydrogen‐bonded organic framework for synergistic chemo‐photodynamic therapy[J]. Angewandte Chemie International Edition, 57(26): 7691-7696. |
[61] | ZHANG N, WANG X T, XIONG Z P, et al., 2021b. Hydrogen bond organic frameworks as a novel electrochemiluminescence luminophore: Simple synthesis and ultrasensitive biosensing[J]. Analytical Chemistry, 93(51): 17110-17118. |
[62] | ZHANG X, WANG J X, LI L B, et al., 2021a. A rod‐packing hydrogen‐bonded organic framework with suitable pore confinement for benchmark ethane/ethylene separation[J]. Angewandte Chemie International Edition, 60(18): 10304-10310. |
[63] | ZHANG Y, LI Y L, FANG Z B, et al., 2022. Facile preparation of hydrogen-bonded organic framework/Cu2O heterostructure films via electrophoretic deposition for efficient CO2 photoreduction[J]. ACS Applied Materials & Interfaces, 14(18): 21050-21058. |
[64] | ZHANG Y, TIAN M F, MAJEED Z, et al., 2023. Application of hydrogen-bonded organic frameworks in environmental remediation: Recent advances and future trends[J]. Separations, 10(3): 196. |
[65] | ZHOU H, YE Q, WU X Y, et al., 2015. A thermally stable and reversible microporous hydrogen-bonded organic framework: Aggregation induced emission and metal ion-sensing properties[J]. Journal of Materials Chemistry C, 3(45): 11874-11880. |
[66] | ZIĘBA S, GZELLA A, DUBIS A T, et al., 2021. Combination of negative, positive, and near-zero thermal expansion in bis (imidazolium) terephthalate with a helical hydrogen-bonded network[J]. Crystal Growth & Design, 21(7): 3838-3849. |
[67] | 池立欣, CLARISSE NTAMPAKA D, 孙中华, 等, 2023. 氨基酸类衍生物MOFs的制备及吸附降解有机染料研究[J]. 离子交换与吸附, 39(6): 489-500. |
CHI L X, CLARISSE NTAMPAKA D, SUN Z H, et al., 2023. Preparation of amino acid derivatives MOFs and study on adsorption degradation of organic dyes[J]. Ion Exchange and Adsorption, 39(6): 489-500. | |
[68] | 巩伟, 2019. 基于螺环骨架的手性晶态多孔材料的设计合成与不对称催化性能[D]. 上海: 上海交通大学. |
GONG W, 2019. Design, synthesis and asymmetric catalytic properties of chiral crystalline porous materials based on spirobiindane[D]. Shanghai: Shanghai Jiao Tong University. | |
[69] | 侯耀, 杨莹, 熊仁萱, 2024. 零价钨活化高碘酸盐降解水中双酚A的研究[J]. 四川环境, 43(2): 159-166. |
HOU Y, YANG Y, XIONG R X, 2024. Study on degradation of bisphenol A in water through periodate activated by zero-valent tungsten[J]. Sichuan Environment, 43(2): 159-166. |
[1] | CHANG Chunying, WANG Gang, CAO Haoxuan, DENG Yirong, TAO Liang. Impact of Simulated Dry-wet Process on Nickel (Ni) and Lead (Pb) in Stabilization Remediated Soils [J]. Ecology and Environment, 2025, 34(1): 118-125. |
[2] | CONG Xin, ZHANG Huaidi, ZHANG Rong, ZHAO Cen, CHEN Kun, LIU Hanbing. Pollution Characteristics and Risk Analysis of Heavy Metal in Farmland Soils of China in Recent 10 Years Based on Meta Analysis [J]. Ecology and Environment, 2024, 33(9): 1451-1459. |
[3] | LIU Dongyi, QU Yonghua, FENG Yaowei, QU Ran. Research on Chromium Ion Content Inversion of GF-5 Satellite Images Based on Grid Search Optimization CatBoost Model [J]. Ecology and Environment, 2024, 33(9): 1460-1470. |
[4] | OUYANG Meifeng, YIN Yuying, ZHANG Jinchen, LIU Qinglin, XIE Yinan, FANG Ping. Spatial Distribution Characteristics and Source Analysis of Heavy Metals in Typical Water Areas of Dongting Lake [J]. Ecology and Environment, 2024, 33(8): 1269-1278. |
[5] | WU Wenwei, SHEN Cheng, SHA Chenyan, LIN Kuangfei, WU Jian, XIE Yuqing, ZHOU Xuan. Soil Heavy Metal Enrichment Characteristics, Risk Assessment, and Source Analysis in Redevelopment Areas during Urban Industrial Plots [J]. Ecology and Environment, 2024, 33(5): 791-801. |
[6] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environment, 2024, 33(4): 617-625. |
[7] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[8] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[9] | JIANG Runhai, WEN Shaofu, ZHU Chengqiang, ZHANG Mei, YANG Runling, WANG Chunxue, HOU Xiuli. Research on the Promotion of Maize Growth and Immobilization of Pb in the Rhizosphere by Pb-tolerant Phosphate Solubilizing Bacteria in Pb-contaminated Mining Areas [J]. Ecology and Environment, 2024, 33(2): 291-300. |
[10] | TANG Shuya, WANG Chunhui, SONG Jing, LI Gang. Characteristics and Risk Assessment of Soil Heavy Metal Pollution in the Xiangshan Bay Area [J]. Ecology and Environment, 2024, 33(11): 1768-1781. |
[11] | HUANG Rui, LU Lei, LI Weijun, DU Huihui. Redistribution of Tungsten During the Crystalline Phase Transformation of Ferrihydrite [J]. Ecology and Environment, 2024, 33(10): 1563-1569. |
[12] | LI Danyi, HUANG Xianting, LI Jichao, LI Yingjie, YAN Jiapu, LIN Wei. Advances in the Removal of Antibiotics from Water by Graphene Oxide and Its Composites [J]. Ecology and Environment, 2024, 33(1): 144-155. |
[13] | YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings [J]. Ecology and Environment, 2024, 33(1): 156-166. |
[14] | WANG Ning, LIU Xiaodong, GAN Xianhua, SU Yuqiao, WU Guozhang, HUANG Fangfang, ZHANG Weiqiang. Water Quality Effect in Precipitation by Typical Forests in Subtropical Region of China [J]. Ecology and Environment, 2023, 32(8): 1365-1375. |
[15] | LI Jiaman, WANG Xiaoming, HU Xinrui, XIE Yingying, WEN Zhen. Effects of Fe-S Ratio on the Microstructure and Cr Adsorption Properties of Schwertmannite [J]. Ecology and Environment, 2023, 32(8): 1478-1486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn