Ecology and Environment ›› 2025, Vol. 34 ›› Issue (4): 621-630.DOI: 10.16258/j.cnki.1674-5906.2025.04.011
• Research Article【Environmental Science】 • Previous Articles Next Articles
WU Xinyou1,2(), TU Chen1,2, LIU Guoming1, YANG Shuai1, WANG Yi1,2, WANG Xuyang1,3, LUO Runlai4,5, LI Zhongyuan4,5, LUO Yongming1,2,*(
)
Received:
2025-01-06
Online:
2025-04-18
Published:
2025-04-24
Contact:
LUO Yongming
吴昕优1,2(), 涂晨1,2, 刘国明1, 杨帅1, 王译1,2, 王旭洋1,3, 骆润来4,5, 李忠元4,5, 骆永明1,2,*(
)
通讯作者:
骆永明
作者简介:
吴昕优(1999年生),女,硕士研究生,研究方向为土壤重金属污染与减量修复。E-mail: xinyouwu1211@163.com
基金资助:
CLC Number:
WU Xinyou, TU Chen, LIU Guoming, YANG Shuai, WANG Yi, WANG Xuyang, LUO Runlai, LI Zhongyuan, LUO Yongming. Structural, Physicochemical and Cadmium Adsorption Properties of Millimeter-Scale Magnetic Composite Clay-Based Remediation Materials[J]. Ecology and Environment, 2025, 34(4): 621-630.
吴昕优, 涂晨, 刘国明, 杨帅, 王译, 王旭洋, 骆润来, 李忠元, 骆永明. 毫米级磁性复合黏土矿物修复材料的结构、性质及其对镉的吸附特征[J]. 生态环境学报, 2025, 34(4): 621-630.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.04.011
准一级动力学拟合 | 准二级动力学拟合 | Elovich模型拟合 | 颗粒内扩散模型 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g−1) | k1 | R2 | Qe/(mg·g−1) | k2 | R2 | α | β | R2 | ki1 | R | ki2 | R2 | |||
26.06 | 0.01 | 0.989 | 31.39 | 1.34 | 0.997 | 0.19 | 0.13 | 0.971 | 1.15 | 0.990 | 0.24 | 0.983 |
Table 1 Fitting parameters of the adsorption kinetics of Cd on millimeter-scale magnetic composite clay-based remediation materials
准一级动力学拟合 | 准二级动力学拟合 | Elovich模型拟合 | 颗粒内扩散模型 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qe/(mg·g−1) | k1 | R2 | Qe/(mg·g−1) | k2 | R2 | α | β | R2 | ki1 | R | ki2 | R2 | |||
26.06 | 0.01 | 0.989 | 31.39 | 1.34 | 0.997 | 0.19 | 0.13 | 0.971 | 1.15 | 0.990 | 0.24 | 0.983 |
吸附等温线 模型拟合 | Langmuir拟合 | Freundlich拟合 | |||||
---|---|---|---|---|---|---|---|
qmax/(mg·g−1) | kL | R2 | kF | 1/n | R2 | ||
46.14 | 0.054 | 0.961 | 8.85 | 0.328 | 0.947 |
Table 2 Fitting parameters of the adsorption isotherm of Cd on millimeter-scale magnetic composite clay-based remediation materials
吸附等温线 模型拟合 | Langmuir拟合 | Freundlich拟合 | |||||
---|---|---|---|---|---|---|---|
qmax/(mg·g−1) | kL | R2 | kF | 1/n | R2 | ||
46.14 | 0.054 | 0.961 | 8.85 | 0.328 | 0.947 |
[1] | BULIN C, ZHENG R X, SONG J L, et al., 2023. Magnetic graphene oxide-chitosan nanohybrid for efficient removal of aqueous Hg(Ⅱ) and the interaction mechanism[J]. Journal of Molecular Liquids, 370: 121050. |
[2] | CHEN R P, ZHANG Y L, SHEN L F, et al., 2015. Lead(Ⅱ) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid[J]. Chemical Engineering Journal, 268: 348-355. |
[3] | CUI M K, JIAO H T, YUAN S J, et al., 2024. Develop reusable carbon sub-micrometer composites with record-high Cd(Ⅱ) removal capacity[J]. Advanced Science, 12(3): 2570014. |
[4] | FACCHI D P, CAZETTA A L, CANESIN E A, et al., 2018. New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(Ⅱ) ions from aqueous systems[J]. Chemical Engineering Journal, 337: 595-608. |
[5] | GHAFIL A J, MAZLOOM G, ABDI J, et al., 2024. Ti3C2Tx/ZIF-67 hybrid nanocomposite as a highly effective adsorbent for Pb(Ⅱ) removal from water: Synthesis and DFT calculations[J]. Applied Surface Science, 643: 158642. |
[6] | GOUMA V, TZIASIOU C, POURNARA A D, et al., 2022. A novel approach to sorbent-based remediation of soil impacted by organic micropollutants and heavy metals using granular biochar amendment and magnetic separation[J]. Journal of Environmental Chemical Engineering, 10(2): 107316. |
[7] | HOSSEINI S S, HAMADI A, FOROUTAN R, et al., 2022. Decontamination of Cd2+ and Pb2+ from aqueous solution using a magnetic nanocomposite of eggshell/starch/Fe3O4[J]. Journal of Water Process Engineering, 48: 102911. |
[8] | JI J M, XIE W L, 2021. Removal of aflatoxin B1 from contaminated peanut oils using magnetic attapulgite[J]. Food Chemistry, 339: 128072. |
[9] | KHOSHRAFTAR Z, MASOUMI H, GHAEMI A, 2023. On the performance of perlite as a mineral adsorbent for heavy metals ions and dye removal from industrial wastewater: A review of the state of the art[J]. Case Studies in Chemical and Environmental Engineering, 8: 100385. |
[10] |
LEI T, JIANG X, ZHOU Y, et al., 2023. A multifunctional adsorbent based on 2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions[J]. Journal of Colloid and Interface Science, 636: 153-166.
DOI PMID |
[11] | LIANG X F, XU Y M, TAN X, et al., 2013. Heavy metal adsorbents mercapto and amino functionalized palygorskite: preparation and characterization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 426: 98-105. |
[12] | LIU G M, TU C, LI Y, et al., 2024. Rapidly reducing cadmium from contaminated farmland soil by novel magnetic recyclable Fe3O4/ mercapto-functionalized attapulgite beads[J]. Environmental Pollution, 351: 124056. |
[13] | LIU K, QIN Y L, MUHAMMAD Y, et al., 2019. Effect of Fe3O4 content and microwave reaction time on the properties of Fe3O4/ZnO magnetic nanoparticles[J]. Journal of Alloys and Compounds, 781: 790-799. |
[14] | LU L, SIM J, ZHAO R R, 2024. Mechanics of hard-magnetic soft materials: A review[J]. Mechanics of Materials, 189: 104874. |
[15] | MA B, WANG J Y, ZHANG L, 2023. Two cadmium-resistant strains of agricultural soil effective in remediating soil cadmium pollution[J]. Journal of Environmental Chemical Engineering, 11(6): 111189. |
[16] | MA J, MA Y, YU F, et al., 2018. Rotating magnetic field-assisted adsorption mechanism of pollutants on mechanically strong sodium alginate/graphene/l-cysteine beads in batch and fixed-bed column systems[J]. Environmental Science & Technology, 52(23): 13925-13934. |
[17] | MESDAGHINIA A, AZARI A, NODEH R N, et al., 2017. Removal of phthalate esters (PAEs) by zeolite/Fe3O4: investigation on the magnetic adsorption separation, catalytic degradation and toxicity bioassay[J]. Journal of Molecular Liquids, 233: 378-390. |
[18] | MO Z L, TAI D Z, ZHANG H, et al., 2022. A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water[J]. Chemical Engineering Journal, 443: 136320. |
[19] | NG N T, KEYON A S A, IBRAHIM W A W, et al., 2023. Amino-functionalised chrysin as adsorbent in dispersive micro-solid phase extraction of selected heavy metal ions from stingless bee honey[J]. Journal of Food Composition and Analysis, 123: 105561. |
[20] | OTUNOLA B O, OLOLAD O O, 2020. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes[J]. Environmental Technology & Innovation, 18: 100692. |
[21] | PATHAK P D, MANDAVGANE S A, 2015. Preparation and characterization of raw and carbon from banana peel by microwave activation: Application in citric acid adsorption[J]. Journal of Environmental Chemical Engineering, 3(4): 2435-2447. |
[22] | QIAN Y, FU P X, YIN R Z, et al., 2024. Preparation of bifunctional electrocatalyst by recycling heavy metal ions from wastewater using EDTAD-functionalized MOF as highly efficient adsorbent[J]. Rare Metals, 43(10): 5105-5116. |
[23] |
RAI P K, LEE S S, ZHANG M, et al., 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 125: 365-385.
DOI PMID |
[24] | SALEM D B, OUAKOUAK A, TOUAHRA F, et al., 2023. Easy separable, floatable, and recyclable magnetic-biochar/alginate bead as super-adsorbent for adsorbing copper ions in water media[J]. Bioresource Technology, 383: 129225. |
[25] | SING K S W, 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 57(4): 603-619. |
[26] | SUN J H, CHEN Y, YU H Q, et al., 2018. Removal of Cu2+, Cd2+ and Pb2+ from aqueous solutions by magnetic alginate microsphere based on Fe3O4/MgAl-layered double hydroxide[J]. Journal of Colloid and Interface Science, 532: 474-484. |
[27] | SUN P, ZHANG W, ZOU B Z, et al., 2021. Efficient adsorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ) from waste water by PANI@APTS-magnetic attapulgite composites[J]. Applied Clay Science, 209: 106151. |
[28] | WANG L L, SHI Y, YAO D K, et al., 2019. Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study[J]. Chemical Engineering Journal, 366: 569-576. |
[29] | WANG S J, LIU X X, ZHANG C Y, et al., 2025. Adsorption and selective mechanism of Pb2+ and Cd2+ on the surface of calcined modified attapulgite[J]. Separation and Purification Technology, 353(Part C): 128377. |
[30] |
WANG Y Q, FENG Y, ZHANG X F, et al., 2018. Alginate-based attapulgite foams as efficient and recyclable adsorbents for the removal of heavy metals[J]. Journal of Colloid and Interface Science, 514: 190-198.
DOI PMID |
[31] | WU S S, GUO J, WANG Y, et al., 2021. Facile preparation of magnetic sodium alginate/carboxymethyl cellulose composite hydrogel for removal of heavy metal ions from aqueous solution[J]. Journal of Materials Science, 56: 13096-13107. |
[32] | XIANG X W, MAO X Y, DING X Q, et al., 2024. Assembly of core-shell Fe3O4@CD-MOFs derived hollow magnetic microcubes for efficient extraction of hazardous substances: Plausible mechanisms for selective adsorption[J]. Journal of Hazardous Materials, 473: 134588. |
[33] | XIE S J, HUANG L, SU C Q, et al., 2024. Application of clay minerals as adsorbents for removing heavy metals from the environment[J]. Green and Smart Mining Engineering, 1(3): 249-261. |
[34] | XU C L, FENG Y L, LI H R, et al., 2022. Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives[J]. Journal of Cleaner Production, 344: 131065. |
[35] |
XU J W, LIU C, HSU P-C, et al., 2019. Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry[J]. Nature Communications, 10(1): 2440.
DOI PMID |
[36] | YANG R L, ZHANG Q, SHI J, et al., 2023. A novel magnetic loading porous liquid absorbent for removal of Cu(Ⅱ) and Pb(Ⅱ) from the aqueous solution[J]. Separation and Purification Technology, 314: 123605. |
[37] | YANG S, LI Y, SHI S C et al., 2022. Feasibility of a combined solubilization and eluent drainage system to remove Cd and Cu from agricultural soil[J]. Science of the Total Environment, 807(Part 2): 150733. |
[38] | ZHANG Y K, WU X G, T Y, et al., 2023. Effect of plant growth-promoting rhizobacteria on oilseed rape Brassica juncea and phytoextraction of cadmium[J]. Journal of Soils and Sediments, 23(9): 3472-3484. |
[39] | ZHANG Y M, REN Y L, ZU Y, et al., 2024. Disassembly-reassembly-phosphating strategy to fabricate hydrothermally-stable hierarchical P@ZSM-5 zeolite for efficient methanol-to-propylene[J]. Chemical Engineering Journal, 497: 154755. |
[40] | ZHAO H H, HUANG X R, ZHANG G B, et al., 2020. Possibility of removing cadmium pollution from the environment using a newly synthesized material coal fly ash[J]. Environmental Science and Pollution Research, 27: 4997-5008. |
[41] | 胡志龙, 孙寒雪, 魏慧娟, 等, 2019. 多孔材料在去除废水中重金属离子方面的研究进展[J]. 化工新型材料, 47(7): 46-49. |
HU Z L, SUN H X, WEI H J, et al., 2019. Research progress of porous material applied in removing heavy metal ions from wastewater[J]. New Chemical Materials, 47(7): 46-49. | |
[42] | 骆永明, 滕应, 2020. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报, 57(5): 1137-1142. |
LUO Y M, TENG Y, 2020. Research progress and prospects on soil pollution and remediation in China[J]. Acta Pedologica Sinica, 57(5): 1137-1142. | |
[43] | 王启豪, 刘国明, 涂晨, 等, 2023. MgAl-LDHs磁性颗粒对镉污染农田土壤的减量修复研究[J]. 土壤, 55(6): 1297-1305. |
WANG Q H, LIU G M, TU C, et al., 2023. Reduced remediation of cadmium contaminated farmland soil by Mg-Al-Layered double hydroxide magnetic particles[J]. Soils, 55(6): 1297-1305. | |
[44] |
邢献军, 罗甜, 卜玉蒸, 等, 2023. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 42(3): 1527-1539.
DOI |
XING X J, LOU T, BU Y Z, et al., 2023. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 42(3): 1527-1539. | |
[45] | 贠豪, 李远, 杨帅, 等, 2021. 磁性黏土颗粒对污染土壤中镉去除作用的初步研究[J]. 土壤, 53(5): 1015-1022. |
YUN H, LI Y, YANG S, et al., 2021. Preliminary study on removal of cadmium from contaminated soils by magnetic clay particles[J]. Soils, 53(5): 1015-1022. | |
[46] |
杨新衡, 纪志永, 郭志远, 等, 2024. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 43(9): 5262-5274.
DOI |
YANG X H, JI Z Y, GUO Z Y, et al., 2024. Preparation of lithium aluminum layered double hydroxides and their lithium deintercalation performance[J]. Chemical Industry and Engineering Progress, 43(9): 5262-5274.
DOI |
[1] | CUI Xuedan, DUAN Guilan, WANG Xiangqin, LI Zhifeng, DOU Fei, DU Yanhong, YUAN Yuzhen, LIU Chuanping, LI Fangbai. Evaluation of the Effects and Soil Health Impacts of Iron-Modified Woody Peat in the Remediation of Moderately Cadmium and Arsenic Contaminated Paddy Fields Based on Multi-Site Long-Term Positioning Experiments [J]. Ecology and Environment, 2025, 34(4): 608-620. |
[2] | NING Jing, WANG Chun, LU Guanling, WEI Lu. Exposure of Zebrafish to Cadmium and Melatonin Induces Changes in Gut Organization, Oxidative Damage, and Microbial Diversity [J]. Ecology and Environment, 2025, 34(1): 77-88. |
[3] | CAO Zhenyu, TU Chen, LIU Ying, HAN Junchao, XING Qianwen, LUO Yongming. Preliminary Study on the Biosorption of Cadmium by Magnetospirillum gryphiswaldense MSR-1 [J]. Ecology and Environment, 2025, 34(1): 99-107. |
[4] | LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant [J]. Ecology and Environment, 2024, 33(5): 781-790. |
[5] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environment, 2024, 33(3): 460-468. |
[6] | ZHANG Tengyun, WANG Jing, GAO Jianlei, GE Wenjing, WANG Zongyao, HAN Long. Study on Cadmium Transfer and Transformation in Winter Wheat at Different Growth Stages in Alkaline Field Soil [J]. Ecology and Environment, 2024, 33(3): 450-459. |
[7] | GUAN Guoqing, HUANG Zilin, JIANG Longfei, LUO Chunling. Influence of Sedum plumbizincicola on the Reduction of Organic Contaminants and Microorganisms in Soil Contaminated with Heavy Metals and Polycyclic Aromatic Hydrocarbons [J]. Ecology and Environment, 2024, 33(12): 1931-1943. |
[8] | JI Shengying, LI Jie, LI Xin, TAO Yu, CHEN Juan, WANG Xiaoyu. Research on the Interaction of Environmental Factors and Genotypes on Cadmium Accumulation in Cucurbit Vegetables and the Soil Safe Threshold [J]. Ecology and Environment, 2024, 33(12): 1944-1952. |
[9] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[10] | LI Zhimei, AN Ya, LI Mei, WANG Shiping, QIN Haoli. Study on Passivation Behavior for Cadmium with Sulfhydryl/iron-based Functionalized Montmorillonite in Soil [J]. Ecology and Environment, 2023, 32(7): 1301-1312. |
[11] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[12] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[13] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[14] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[15] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn