Ecology and Environment ›› 2024, Vol. 33 ›› Issue (5): 781-790.DOI: 10.16258/j.cnki.1674-5906.2024.05.011
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Linfeng1,2,3(), XU Zisheng1,2,3, CHEN Yong1,2,3, LI Qi1,2,3, LIN Xiaoyang1,2,3, LI Yichun1,2,3,*(
)
Received:
2024-02-06
Online:
2024-05-18
Published:
2024-06-27
李林峰1,2,3(), 徐梓盛1,2,3, 陈勇1,2,3, 李奇1,2,3, 林晓扬1,2,3, 李义纯1,2,3,*(
)
通讯作者:
* 李义纯。E-mail: 作者简介:
李林峰(1986年生),男,副研究员,博士,研究方向为农田重金属污染防治。E-mail: lilinfeng@gdaas.cn
基金资助:
CLC Number:
LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant[J]. Ecology and Environment, 2024, 33(5): 781-790.
李林峰, 徐梓盛, 陈勇, 李奇, 林晓扬, 李义纯. 施硅水平对水稻根表铁膜和体内Cd累积分布的影响[J]. 生态环境学报, 2024, 33(5): 781-790.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.05.011
功能基因 | 基因登录号 | 引物序列 | |
---|---|---|---|
抗氧化酶基因 | OsSOD-Cu/Zn | LOC_Os07g46990 | F: CTGTGACGGGAAGTGTCTCTG |
R: GGCGGTTCTCATCTTGTGG | |||
OsSOD-Fe | LOC_Os06g05110 | F: AAGCATACAACAACGGCAACC | |
R: TCTTCAAGACAAGCCAAACCC | |||
OsAPX1 | LOC_Os03g17690 | F: CTGATGCTACCAAGGGTTCTG | |
R: AAGGTCCCTCAAAACCAGATC | |||
OsAPX3 | LOC_Os04g14680 | F: GGATTTGATGGTGCCTGGAC | |
R: ATAGCGGCGGAATGTAGGAT | |||
OsCATa | LOC_Os02g02400 | F: CAAGGGCTTCTTCGAGTGC | |
R: GTGGAGAAGCGGACGATGA | |||
OsCATb | LOC_Os06g51150 | F: GGCATCCCACTCAACTACAGG | |
R: CTGCAATAGAATCAGTCAAGTCCTT | |||
乙烯合成酶基因 | OsACS1 | LOC_Os03g51740 | F: ACTCGTCCTACTTCCTGGGG |
R: GGTTCTTCTCCAGCCACTCC | |||
OsACS2 | LOC_Os04g48850 | F: CACCACCACCACCTCAGC | |
R: GACGTAGTAAGGCGCAGCAT |
Table 1 Primers for qPCR analysis of the functional genes
功能基因 | 基因登录号 | 引物序列 | |
---|---|---|---|
抗氧化酶基因 | OsSOD-Cu/Zn | LOC_Os07g46990 | F: CTGTGACGGGAAGTGTCTCTG |
R: GGCGGTTCTCATCTTGTGG | |||
OsSOD-Fe | LOC_Os06g05110 | F: AAGCATACAACAACGGCAACC | |
R: TCTTCAAGACAAGCCAAACCC | |||
OsAPX1 | LOC_Os03g17690 | F: CTGATGCTACCAAGGGTTCTG | |
R: AAGGTCCCTCAAAACCAGATC | |||
OsAPX3 | LOC_Os04g14680 | F: GGATTTGATGGTGCCTGGAC | |
R: ATAGCGGCGGAATGTAGGAT | |||
OsCATa | LOC_Os02g02400 | F: CAAGGGCTTCTTCGAGTGC | |
R: GTGGAGAAGCGGACGATGA | |||
OsCATb | LOC_Os06g51150 | F: GGCATCCCACTCAACTACAGG | |
R: CTGCAATAGAATCAGTCAAGTCCTT | |||
乙烯合成酶基因 | OsACS1 | LOC_Os03g51740 | F: ACTCGTCCTACTTCCTGGGG |
R: GGTTCTTCTCCAGCCACTCC | |||
OsACS2 | LOC_Os04g48850 | F: CACCACCACCACCTCAGC | |
R: GACGTAGTAAGGCGCAGCAT |
[1] | AMARAL D C, LOPES G, GUILHERME L R, et al., 2017. A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice[J]. Environmental Science & Technology, 51(1): 38-45. |
[2] | BHOOMIKA K, PYNGROPE S, DUBEY R S, 2013. Differential responses of antioxidant enzymes to aluminum toxicity in two rice (Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar[J]. Plant Growth Regulation, 71: 235-252. |
[3] | CAI Y X, PAN B G, LIU B Q, et al., 2022. The Cd sequestration effects of rice roots affected by different Si management in Cd-contaminated paddy soil[J]. Science of the Total Environment, 849: 157718. |
[4] | CHEN R, ZHANG C B, ZHAO Y L, et al., 2018. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants[J]. Environmental Science and Pollution Research, 25(3): 2361-2368. |
[5] |
CLEMENS S, AARTS M G M, THOMINE S, et al., 2013. Plant science: the key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 18(2): 92-99.
DOI PMID |
[6] |
COSKUN D, DESHMUKH R, SONAH H, et al., 2019. The controversies of silicon's role in plant biology[J]. New Phytologist, 221(1): 67-85.
DOI PMID |
[7] | DOELSCH E, ROSE J R, MASION A, et al., 2000. Speciation and crystal chemistry of iron(III) chloride hydrolyzed in the presence of SiO4 ligands. 1. An Fe K-edge EXAFS study[J]. Langmuir, 16(10): 4726-4731. |
[8] |
FAROOQ M A, DETTERBECK A, CLEMENS S, et al., 2016. Silicon-induced reversibility of cadmium toxicity in rice[J]. Journal of Experimental Botany, 67(11): 3573-3585.
DOI PMID |
[9] | FENDIYA M H, SATRIO R D, PRATAMI M P, et al., 2021. Analysis of Superoxide Dismutase (OsSOD) gene expression using qRT-PCR, its morphophysiological characters and path analysis in rice variety IR64 under aluminum stress[J]. International Journal of Agriculture and Biology, 26(4): 546-554 |
[10] |
FLECK A T, NYE T, REPENNING C, et al., 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa)[J]. Journal of Experimental Botany, 62(6): 2001-2011.
DOI PMID |
[11] | FLECK A T, SCHULZE S, HINRICHS M, et al., 2015. Silicon promotes exodermal casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes[J]. PLoS One, 10(9): e0138555. |
[12] |
GILL S S, TUTEJA N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 48(12): 909-930.
DOI PMID |
[13] | GONG H J, RANDALL D P, FLOWERS T J, 2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow[J]. Plant Cell and Environment, 29(10): 1970-1979. |
[14] | GUO Y, ZHU C H, GAN L J, et al., 2014. Ethylene is involved in the complete-submergence induced increase in root iron and manganese plaques in Oryza sativa[J]. Plant Growth Regulation, 76(3): 259-268. |
[15] | HUANG G X, DING C F, LI Y S, et al., 2020. Selenium enhances iron plaque formation by elevating the radial oxygen loss of roots to reduce cadmium accumulation in rice (Oryza sativa L.)[J]. Journal of Hazardous Materials, 398: 122860. |
[16] | JONES A M, COLLINS R N, ROSE J, et al., 2009. The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals[J]. Geochimica et Cosmochimica Acta, 73(15): 4409-4422. |
[17] | LI L F, LI Y C, WANG Y H, et al., 2021. Si-rich amendment combined with irrigation management to reduce Cd accumulation in brown rice[J]. Journal of Soil Science and Plant Nutrition, 21(4): 3221-3231. |
[18] | LIMMER M A, MANN J, AMARAL D C, et al., 2018. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry[J]. Science of the Total Environment, 624: 1360-1368. |
[19] | LIMMER M A, THOMAS J, SEYFFERTH A L, 2022. The effect of silicon on the kinetics of rice root iron plaque formation[J]. Plant and Soil, 477: 171-181. |
[20] | LIU S H, JI X H, CHEN Z L, et al., 2023. Silicon facilitated the physical barrier and adsorption of cadmium of iron plaque by changing the biochemical composition to reduce cadmium absorption of rice roots[J]. Ecotoxicology and Environmental Safety, 256: 114879. |
[21] | LIU W J, ZHU Y G, HU Y, et al., 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.)[J]. Environmental Science & Technology, 40(18): 5730-5736. |
[22] |
MA J, CAI H M, HE C W, et al., 2015. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J]. New Phytologist, 206(3): 1063-1074.
DOI PMID |
[23] | MEHRABANJOUBANI P, ABDOLZADEH A, SADEGHIPOUR H R, et al., 2019. Silicon increases cell wall thickening and lignification in rice (Oryza sativa) root tip under excess Fe nutrition[J]. Plant Physiology and Biochemistry, 44: 264-273. |
[24] | MENDELSOHN I A, KLEISS B A, WAKELEY J S, 1995. Factors controlling the formation of oxidized root channels: A review[J]. Wetlands, 15: 37-46. |
[25] | RIAZ M, KAMRAN M, RIZWAN M, et al., 2021. Cadmium uptake and translocation: Selenium and silicon roles in Cd detoxification for the production of low Cd crops: A critical review[J]. Chemosphere, 273: 129690. |
[26] | RODDA M S, LI G, REID R J, 2011. The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant and Soil, 347(1-2): 105-114. |
[27] | SAED M A, SOHRABI F, FASIHFAR E et al., 2021. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: A comprehensive study on genomics and expression profiling, bioinformatics, heritability, and phenotypic variability[J]. BioMed Central Plant Biology, 21(1): 1-19. |
[28] | SCHWERTMANN U, THALMANN H, 1976. The influence of [Fe(II)], [Si], and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions[J]. Clay Minerals, 11(3): 189-200. |
[29] | SEYFFERTH A L, LIMMER M, WU W D, 2019. Si and water management drives changes in Fe and Mn pools that affect As cycling and uptake in rice[J]. Soil Systems, 3(3): 58. |
[30] |
SHAO J F, CHE J, YAMAJI N, et al., 2017. Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice[J]. Journal of Experimental Botany, 68(20): 5641-5651.
DOI PMID |
[31] |
WU C, ZOU Q, XUE S G, et al., 2016. The effect of silicon on iron plaque formation and arsenic accumulation in rice genotypes with different radial oxygen loss (ROL)[J]. Environmental Pollution, 212: 27-33.
DOI PMID |
[32] |
YAMAUCHI T, SHIONO K, NAGANO M, et al., 2015. Ethylene biosynthesis is promoted by very-long-chain fatty acids during lysigenous aerenchyma formation in rice roots[J]. Plant Physiology, 169(1): 180-193.
DOI PMID |
[33] | YANG J C, ZHANG H, ZHANG J H, 2012. Root morphology and physiology in relation to the yield formation of rice[J]. Journal of Integrative Agriculture, 11(6): 920-926. |
[34] | ZHAN L P, PENG D L, WANG X L, et al., 2018. Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice[J]. BioMed Central Plant Biology, 18(1): 50. |
[35] | ZHANG Q, LIU J C, LU H L, et al., 2015. Effects of silicon on growth, root anatomy, radial oxygen loss (ROL) and Fe/Mn plaque of Aegiceras corniculatum (L.) Blanco seedlings exposed to cadmium[J]. Environmental Nanotechnology, Monitoring & Management, 4: 6-11. |
[36] | ZHOU J, GAO M, CUI H B, et al., 2021. Influence of silicon and selenium and contribution of the node to cadmium allocation and toxicity in rice[J]. Agricultural Science Technology, 1(5): 550-557. |
[37] | 曹庭悦, 刘鸣达, 沃惜慧, 等, 2020. 硅、磷配施对水稻镉吸收转运的影响及其机制[J]. 农业环境科学学报, 39(1): 37-44. |
CAO T Y, LIU M D, WO X H, et al., 2020. Effects of combined application of silicon and phosphorus on cadmium uptake and transport in rice and its mechanisms[J]. Journal of Agro-Environment Science, 39(1): 37-44. | |
[38] | 高明霞, 胡正义, 王国栋, 2007. 水稻根表胶膜的浸提及其元素测定方法[J]. 环境化学, 26(3): 331-334. |
GAO M X, HU Z Y, WANG G D, 2007. The extraction and elemental analysis of iron plaque from the surface of rice roots[J]. Environmental Chemistry, 26(3): 331-334. | |
[39] | 环境保护部, 国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业, 36(5): 10-11. |
Department of Environmental Protection, Ministry of Land and Resources, 2014. National soil pollution survey report[J]. China Environmental Protection Industry, 36(5): 10-11. | |
[40] | 李林峰, 文伟发, 徐梓盛, 等, 2023. 施硅对水稻铁膜砷固定和体内砷转运的影响[J]. 环境科学, 44(5): 2899-2907. |
LI L F, WEN W F, XU Z S, et al., 2023. Effects of silicon application on arsenic sequestration in iron plaque and arsenic translocation in rice[J]. Environmental Science, 44(5): 2899-2907. | |
[41] | 李天哲, 陈爱婷, 李彩, 等, 2018. 镉胁迫下硅对水稻幼苗生长与生理响应的影响[J]. 农业环境科学学报, 37(6): 1072-1078. |
LI T Z, CHEN A T, LI C, et al., 2018. Effects of silicon on growth and physiological responses of rice seedlings under cadmium stress[J]. Journal of Agro-Environment Science, 37(6): 1072-1078. | |
[42] | 彭鸥, 刘玉玲, 铁柏清, 等, 2019. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 38(4): 1049-1056. |
PENG O, LIU Y L, TIE B Q, et al., 2019. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress[J]. Chinese Journal of Ecology, 38(4): 1049-1056. | |
[43] | 生态环境部国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB15618—2018[S]. 北京: 中国环境出版集团: 1-4. |
Ministry of Ecology and Environment, State Administration for Market Regulation,2018. Soil environmental quality Risk control standard for soil contamination of agricultural land (Trial): GB15618—2018[S]. Beijing: China Environmental Publishing Group: 1-4. | |
[44] | 闫国超, 樊小平, 谭礼, 等, 2020. 盐胁迫下添加外源硅提高水稻抗氧化酶活性与钠钾平衡相关基因表达[J]. 植物营养与肥料学报, 26(11): 1935-1943. |
YAN G C, FAN X P, TAN L, et al., 2020. Exogenous silicon effectively enhances salt stress resistance of rice by upregulating antioxidant enzymes activities and expression of genes related to Na/K homeostasis[J]. Journal of Plant Nutrition and Fertilizers, 26(11): 1935-1943. | |
[45] | 杨旭健, 傅友强, 沈宏, 等, 2014. 水稻根表铁膜及其形成的形态生理及分子机理综述[J]. 生态学杂志, 33(8): 2235-2244. |
YANG X J, FU Y Q, SHEN H, et al., 2014. A review on iron plaque on rice (Oryza sativa) root surface and the morphology, physiology and molecular biology of its formation mechanism[J]. Chinese Journal of Ecology, 33(8): 2235-2244. | |
[46] | 汪鹏, 王静, 陈宏坪, 等, 2018. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 37(7): 1409-1417. |
WANG P, WANG J, CHEN H P, et al., 2018. Cadmium risk and mitigation in paddy systems in China[J]. Journal of Agro-Environment Science, 37(7): 1409-1417. | |
[47] | 王玉军, 刘存, 周东美, 等, 2014. 客观地看待我国耕地土壤环境质量的调查公报中有关问题的讨论和建议[J]. 农业环境科学学报, 33(8): 1465-1473. |
WANG Y J, LIU C, ZHOU D M, et al., 2014. A Critical view on the status quo of the farmland soil environmental quality in China: Discussion and suggestion of relevant issues on report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 33(8): 1465-1473. | |
[48] | 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局, |
The National Health Commission of the People's Republic of China, State Administration for Market Regulation, 2022. National food safety standard Limits of contaminants in foods: GB 2762—2017[S]. Beijing: Standards Press of China:1-18. |
[1] | ZHANG Tengyun, WANG Jing, GAO Jianlei, GE Wenjing, WANG Zongyao, HAN Long. Study on Cadmium Transfer and Transformation in Winter Wheat at Different Growth Stages in Alkaline Field Soil [J]. Ecology and Environment, 2024, 33(3): 450-459. |
[2] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environment, 2024, 33(3): 460-468. |
[3] | WANG Xinglai, MIAO Shujie, QIAO Yunfa. Evaluating the Carbon Footprint of the Rice-Wheat Rotation System Based on Localized Parameters in Jiangsu Province [J]. Ecology and Environment, 2023, 32(9): 1682-1691. |
[4] | WANG Jinming, QIN Xiaobo, WAN Yunfan, ZHOU Sheng, ZHANG Zhiwei. Structure and Regional Differences of Carbon Footprint of Rice Food System in China [J]. Ecology and Environment, 2023, 32(8): 1405-1418. |
[5] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[6] | GONG Liang, JIN Dandan, NIU Shiwei, WANG Nan, ZOU Xiaojin, ZHANG Xin, SUI Shijiang, Xie Zhanjun, HAN Yingzuo. Potential Analysis of Carbon Sequestration and Emission Reduction in Rice Fields in Liaoning Province [J]. Ecology and Environment, 2023, 32(7): 1226-1236. |
[7] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[8] | LI Zhimei, AN Ya, LI Mei, WANG Shiping, QIN Haoli. Study on Passivation Behavior for Cadmium with Sulfhydryl/iron-based Functionalized Montmorillonite in Soil [J]. Ecology and Environment, 2023, 32(7): 1301-1312. |
[9] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[10] | HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants [J]. Ecology and Environment, 2023, 32(6): 1115-1122. |
[11] | YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation [J]. Ecology and Environment, 2023, 32(5): 933-942. |
[12] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[13] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[14] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[15] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn