Ecology and Environment ›› 2023, Vol. 32 ›› Issue (3): 627-634.DOI: 10.16258/j.cnki.1674-5906.2023.03.020
• Research Articles • Previous Articles Next Articles
YANG Yaodong(), CHEN Yumei, TU Pengfei, ZENG Qingru*(
)
Received:
2022-12-29
Online:
2023-03-18
Published:
2023-06-02
Contact:
ZENG Qingru
通讯作者:
曾清如
作者简介:
杨耀东(1994年生)男,硕士研究生,研究方向为农田土壤重金属修复研究。E-mail: 375777498@qq.com
基金资助:
CLC Number:
YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland[J]. Ecology and Environment, 2023, 32(3): 627-634.
杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.03.020
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 1.51±0.15c | 0.46±0.11a | 0.28±0.06a | - | - | - | |
油菜 | 0.47±0.04a | 0.29±0.09a | 1.40±0.10c | 0.48±0.06b | 0.18±0.03a | - | ||
油葵-油菜 | 油葵 | 0.93±0.16b | 1.04±0.06b | 1.10±0.14b | 0.34±0.07a | 0.99±0.20c | 0.90±0.10a | |
油菜 | 0.68±0.04ab | 0.35±0.04a | 1.19±0.09bc | 0.33±0.03a | 0.24±0.03a | - | ||
白芝麻-亚麻 | 白芝麻 | 1.55±0.32c | 1.21±0.12b | 1.13±0.09b | 0.87±0.06d | 0.69±0.10b | - | |
亚麻 | 2.37±0.27d | 1.14±0.17b | 3.08±0.26d | 0.71±0.08c | 0.86±0.05bc | 2.88±0.27b |
Table 1 Cadmium content in various parts of three crop rotation patterns mg·kg-1
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 1.51±0.15c | 0.46±0.11a | 0.28±0.06a | - | - | - | |
油菜 | 0.47±0.04a | 0.29±0.09a | 1.40±0.10c | 0.48±0.06b | 0.18±0.03a | - | ||
油葵-油菜 | 油葵 | 0.93±0.16b | 1.04±0.06b | 1.10±0.14b | 0.34±0.07a | 0.99±0.20c | 0.90±0.10a | |
油菜 | 0.68±0.04ab | 0.35±0.04a | 1.19±0.09bc | 0.33±0.03a | 0.24±0.03a | - | ||
白芝麻-亚麻 | 白芝麻 | 1.55±0.32c | 1.21±0.12b | 1.13±0.09b | 0.87±0.06d | 0.69±0.10b | - | |
亚麻 | 2.37±0.27d | 1.14±0.17b | 3.08±0.26d | 0.71±0.08c | 0.86±0.05bc | 2.88±0.27b |
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 4.45±0.51c | 27.21±3.47b | 8.28±1.14c | - | - | - | |
油菜 | 1.09±0.17a | 7.04±0.83a | 0.85±0.09a | 4.54±0.52c | 4.12±0.46b | - | ||
油葵-油菜 | 油葵 | 2.43±0.24b | 7.60±0.58a | 2.24±0.29b | 1.74±0.17b | 4.95±0.62c | 5.69±0.71b | |
油菜 | 1.11±0.17a | 7.46±0.83a | 0.90±0.09a | 4.21±0.52c | 3.98±0.46b | - | ||
白芝麻-亚麻 | 白芝麻 | 0.86±0.13a | 5.84±0.72a | 3.09±0.40b | 1.68±0.21b | 1.17±0.13a | - | |
亚麻 | 0.83±0.09a | 8.00±0.97a | 0.54±0.06a | 0.26±0.04a | 0.88±0.12a | 1.50±0.18a |
Table 2 Biomass of the economic crops used in the experimental rotation t·hm-2
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 4.45±0.51c | 27.21±3.47b | 8.28±1.14c | - | - | - | |
油菜 | 1.09±0.17a | 7.04±0.83a | 0.85±0.09a | 4.54±0.52c | 4.12±0.46b | - | ||
油葵-油菜 | 油葵 | 2.43±0.24b | 7.60±0.58a | 2.24±0.29b | 1.74±0.17b | 4.95±0.62c | 5.69±0.71b | |
油菜 | 1.11±0.17a | 7.46±0.83a | 0.90±0.09a | 4.21±0.52c | 3.98±0.46b | - | ||
白芝麻-亚麻 | 白芝麻 | 0.86±0.13a | 5.84±0.72a | 3.09±0.40b | 1.68±0.21b | 1.17±0.13a | - | |
亚麻 | 0.83±0.09a | 8.00±0.97a | 0.54±0.06a | 0.26±0.04a | 0.88±0.12a | 1.50±0.18a |
轮作模式 | 作物 | 地下部分 | 地上部分 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | ||||
甜高粱-油菜 | 甜高粱 | 6.72±0.12d | 12.61±1.53d | 2.32±0.19c | - | - | - | 21.65±1.50d | |
油菜 | 0.51±0.06a | 2.05±0.32a | 1.18±0.07a | 2.17±0.18d | 0.75±0.11a | - | 6.67±0.69a | ||
油葵-油菜 | 油葵 | 2.25±0.29c | 7.88±0.58bc | 2.46±0.27c | 0.60±0.08b | 4.91±0.39b | 5.12±0.27b | 23.22±1.39d | |
油菜 | 0.75±0.13a | 2.64±0.26a | 1.07±0.18a | 1.40±0.13c | 0.96±0.10a | - | 6.83±0.59a | ||
白芝麻-亚麻 | 白芝麻 | 1.34±0.09b | 7.05±0.85b | 3.49±0.18d | 1.46±0.16c | 0.81±0.15a | - | 14.15±0.76b | |
亚麻 | 1.97±0.15c | 9.15±1.44c | 1.65±0.27b | 0.19±0.02a | 0.76±0.14a | 4.32±0.50a | 18.03±1.54c |
Table 3 Total cadmium extraction from economic crops in each crop rotation pattern g·hm-2
轮作模式 | 作物 | 地下部分 | 地上部分 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | ||||
甜高粱-油菜 | 甜高粱 | 6.72±0.12d | 12.61±1.53d | 2.32±0.19c | - | - | - | 21.65±1.50d | |
油菜 | 0.51±0.06a | 2.05±0.32a | 1.18±0.07a | 2.17±0.18d | 0.75±0.11a | - | 6.67±0.69a | ||
油葵-油菜 | 油葵 | 2.25±0.29c | 7.88±0.58bc | 2.46±0.27c | 0.60±0.08b | 4.91±0.39b | 5.12±0.27b | 23.22±1.39d | |
油菜 | 0.75±0.13a | 2.64±0.26a | 1.07±0.18a | 1.40±0.13c | 0.96±0.10a | - | 6.83±0.59a | ||
白芝麻-亚麻 | 白芝麻 | 1.34±0.09b | 7.05±0.85b | 3.49±0.18d | 1.46±0.16c | 0.81±0.15a | - | 14.15±0.76b | |
亚麻 | 1.97±0.15c | 9.15±1.44c | 1.65±0.27b | 0.19±0.02a | 0.76±0.14a | 4.32±0.50a | 18.03±1.54c |
轮作模式 | 作物 | 地上部分 | 地下部分 | 全植株 |
---|---|---|---|---|
甜高粱-油菜 | 甜高粱 | 1.79 | 0.81 | 2.60 |
油菜 | 0.76 | 0.06 | 0.83 | |
油葵-油菜 | 油葵 | 2.52 | 0.27 | 2.79 |
油菜 | 0.76 | 0.09 | 0.85 | |
白芝麻-亚麻 | 白芝麻 | 1.54 | 0.16 | 1.70 |
亚麻 | 1.97 | 0.24 | 2.22 | |
甜高粱-油菜 | - | 2.53 | 0.87 | 3.40 |
油葵-油菜 | - | 3.25 | 0.36 | 3.61 |
白芝麻-亚麻 | - | 3.47 | 0.40 | 3.87 |
Table 4 Phytoextraction efficiency of the crop rotation pattern %
轮作模式 | 作物 | 地上部分 | 地下部分 | 全植株 |
---|---|---|---|---|
甜高粱-油菜 | 甜高粱 | 1.79 | 0.81 | 2.60 |
油菜 | 0.76 | 0.06 | 0.83 | |
油葵-油菜 | 油葵 | 2.52 | 0.27 | 2.79 |
油菜 | 0.76 | 0.09 | 0.85 | |
白芝麻-亚麻 | 白芝麻 | 1.54 | 0.16 | 1.70 |
亚麻 | 1.97 | 0.24 | 2.22 | |
甜高粱-油菜 | - | 2.53 | 0.87 | 3.40 |
油葵-油菜 | - | 3.25 | 0.36 | 3.61 |
白芝麻-亚麻 | - | 3.47 | 0.40 | 3.87 |
土壤 | 总Cd |
---|---|
原始土 | 0.320±0.03a |
种植甜高粱后 | 0.310±0.02a |
种植甜高粱-油菜后 | 0.306±0.04a |
种植油葵后 | 0.308±0.03a |
种植油葵-油菜后 | 0.304±0.03a |
种植白芝麻后 | 0.313±0.04a |
种植白芝麻-亚麻后 | 0.303±0.02a |
Table 5 Soil total Cd content mg·kg-1
土壤 | 总Cd |
---|---|
原始土 | 0.320±0.03a |
种植甜高粱后 | 0.310±0.02a |
种植甜高粱-油菜后 | 0.306±0.04a |
种植油葵后 | 0.308±0.03a |
种植油葵-油菜后 | 0.304±0.03a |
种植白芝麻后 | 0.313±0.04a |
种植白芝麻-亚麻后 | 0.303±0.02a |
[1] |
BROOKS R R, LEE J, REEVES R D, et al., 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 7: 49-57.
DOI URL |
[2] |
BJELKOVÁ M, GENČUROVÁ V, GRIGA M, 2011. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils[J]. Industrial Crops and Products, 33(3): 761-774.
DOI URL |
[3] |
BAZALUK O, HAVRYSH V, FEDORCHUK M, et al., 2021. Energy assessment of sorghum cultivation in Southern Ukraine[J]. Agriculture, 11(8): 695.
DOI URL |
[4] |
CARNE G, LECONTE S, SIROT V, et al., 2021. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils[J]. Science of The Total Environment, 760: 143374.
DOI URL |
[5] |
DOUMETT S, LAMPERI L, CHECCHINI L, et al., 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents[J]. Chemosphere, 72(10): 1481-1490.
DOI PMID |
[6] | EVANGELOU M W H, PAPAZOGLOU E G, ROBINSON B H, et al., 2015. Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land[M]// Phytoremediation. Springer, Cham: 115-132. |
[7] |
FRANCO-HERNANDEZ M O, VÁSQUEZ-MURRIETA M, PATIÑO- SICILIANO A, et al., 2010. Heavy metals concentration in plants growing on mine tailings in Central Mexico[J]. Bioresour Technol, 101(11): 3864-3869.
DOI URL |
[8] | GRIGA M, BJELKOVÁ M, 2013. Flax (Linum usitatissimum L.) and Hemp (Cannabis sativa L.) as fibre crops for phytoextraction of heavy metals: Biological, agro-technological and economical point of view[M]// Plant-based remediation processes. Berlin, Heidelberg: Springer Berlin Heidelberg: 199-237. |
[9] | KHEIRATI ROUNIZI S, AKRAMI MOHAJERI F, MOSHTAGHI BROUJENI H, et al., 2021. The chemical composition and heavy metal content of sesame oil produced by different methods: A risk assessment study[J]. Food Science & Nutrition, 9(6): 2886-2893. |
[10] |
LI J X, HUANG L D, ZHANG J, et al., 2019. Diversifying crop rotation improves system robustness[J]. Agronomy for Sustainable Development, 39(4): 38.
DOI |
[11] |
LIU Z Q, LI H L, ZENG X J, et al., 2020. Coupling phytoremediation of cadmium-contaminated soil with safe crop production based on a sorghum farming system[J]. Journal of Cleaner Production, 275: 123002.
DOI URL |
[12] |
MCGRATH S P, ZHAO F J, 2003. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 14(3): 277-282.
DOI PMID |
[13] | MAHAR A, WANG P, ALI A, et al., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicol Ecotoxicology and Environmental Safety, 126: 111-121. |
[14] |
NEHNEVAJOVA E, HERZIG R, FEDERER G, et al., 2005. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis[J]. International Journal of Phytoremediation, 7(4): 337-349.
PMID |
[15] | REDDY B V S, RAMESH S, REDDY P S, et al., 2005. Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy[J]. International Sorghum and Millets Newsletter, 46: 79-86. |
[16] | SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al., 2012. Soil contamination of metals in the three industrial estates, Arak, Iran[J]. Bulletin of Environmental Contamination & Toxicology, 88(4): 634-638. |
[17] | SARWAR N, IMRAN M, SHAHEEN M R et al., 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere Oxford, 171: 710-721. |
[18] |
TANG L, HAMID Y, ZEHRA A, et al., 2020. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system[J]. Science of The Total Environment, 748: 142481.
DOI URL |
[19] |
WILLIAMS C H, DAVID D J, 1976. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants[J]. Soil Science, 121(2): 86-93.
DOI URL |
[20] | WALTER W, WENZEL, et al., 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments[J]. Plant & Soil, 249(1): 83-96. |
[21] |
WEI S H, WANG S S, ZHOU Q X, et al., 2010. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments[J]. Journal of Hazardous Materials, 181(1-3): 480-484.
DOI URL |
[22] |
YANG Y, LI H L, PENG L, et al., 2016. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food chemistry, 197(Part A): 482-488.
DOI PMID |
[23] |
YANG Y, ZHOU X H, TIE B Q, et al., 2017. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere, 188: 148-156.
DOI PMID |
[24] |
YANG W J, GU J F, ZHOU H, et al., 2020. Effect of three Napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization[J]. Environmental Science and Pollution Research, 27(14): 16134-16144.
DOI |
[25] | ZHUANG P, YANG Q W, WANG H B, et al., 2007. Phytoextraction of heavy metals by eight plant species in the field[J]. Springer Netherlands, 184(1): 235-242. |
[26] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759.
DOI URL |
[27] |
ZEHRA A, SAHITO Z A, TONG W, et al., 2020. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an Oxisol and an Inceptisol[J]. Ecotoxicology and Environmental Safety, 187: 109857.
DOI URL |
[28] | 窦春英, 2009. 施肥对东南景天吸收积累锌和镉的影响[D]. 杭州: 浙江林学院. |
DOU C Y, 2009. Effect of fertilizer application on soil heavy mental phytoremediation by Sedum Alfredii Hance[D]. Hangzhou: Zhejiang A & F University. | |
[29] | 樊霆, 叶文玲, 陈海燕, 等, 2013. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 22(10): 1727-1736. |
FAN T, YE W L, CHEN H Y, et al., 2013. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 22(10): 1727-1736. | |
[30] | 刘晓宏, 郝明德, 樊军, 2000. 黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响[J]. 干旱地区农业研究, 18(3): 1-7. |
LIU X H, HAO M D, FAN J, 2000. Effects of long term rotation and fertilization on N supply by soil in dryland area on loess plateau[J]. Agricultural Reseach in the Arid Areas, 18(3): 1-7. | |
[31] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 8-29. |
LU R K, 2000. Soil agriculture chemistry analysis methods[M]. Beijing: China Agriculture Press: 8-29. | |
[32] | 刘威, 束文圣, 蓝崇钰, 2003. 宝山堇菜 (Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报, 48(19): 2046-2049. |
LIU W, SHU W S, LAN C Y, 2003. Viola baoshanensis, a new cadmium hyperaccumulator[J]. Chinese Science Bulletin, 48(19): 2046-2049. | |
[33] | 李凝玉, 卢焕萍, 李志安, 等, 2010. 籽粒苋对土壤中镉的耐性和积累特征[J]. 应用与环境生物学报, 16(1): 28-32. |
LI N Y, LU H P, LI Z A, et al., 2010. Tolerance and accumulation of cadmium in soil by Amaranthus hypochondriacus L.[J]. Chinese Journal of Applied & Environmental Biology, 16(1): 28-32. | |
[34] | 林昕, 2010. 利用油菜对镉, 铅污染农田土壤植物修复研究[D]. 昆明: 昆明理工大学. |
LIN X, 2010. Study on phytoremediation of cadmium and lead contaminated farmland soil by rape[D]. Kunming: Kunming University of Science and Technology. | |
[35] | 聂发辉, 2006. 镉超富集植物商陆及其富集效应[J]. 生态环境, 15(2): 303-306. |
NIE F H, 2006. Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J]. Ecology and Environment, 15(2): 303-306. | |
[36] | 南帅帅, 王亚, 刘强, 等, 2018. 油菜对铅镉污染土壤的修复效果研究[J]. 环境研究与监测, 31(1): 5-8. |
NAN S S, WANG Y, LIU Q, et al., 2018. Study on remediation effect of rape on lead and cadmium contaminated soil[J]. Environmental Research and Monitoring, 31(1): 5-8. | |
[37] | 孙雷, 赵烨, 李强, 等, 2008. 北京东郊污水与清水灌区土壤中重金属含量的比较研究[J]. 安全与环境学报, 8(3): 29-33. |
SUN L, ZHAO Y, LI Q, et al., 2008. Comparative study of heavy metal contents in soil from irrigated areas of east suburb, Beijing[J]. Journal of Safety and Environment, 8(3): 29-33. | |
[38] | 涂鹏飞, 谭可夫, 陈璘涵, 等, 2020. 红叶甜菜-花生和油葵-花生轮作修复土壤Cd的能力[J]. 农业资源与环境学报, 37(4): 609-614. |
TU P F, TAN K F, CHEN L H, et al., 2020. Ability of red leaf beet-peanut and oil sunflower-peanut rotation patterns to remediate soil Cd[J]. Journal of Agricultural Resources and Environment, 37(4): 609-614. | |
[39] | 王艳秋, 朱翠云, 卢峰, 等, 2004. 甜高粱的用途及其发展前景[J]. 杂粮作物, 24(1): 55-56. |
WANG Y Q, ZHU C Y, LU F, et al., 2004. The use and development prospects of sweet sorghum[J]. Rain Fed Crops, 24(1): 55-56. | |
[40] | 魏树和, 周启星, 王新, 等, 2004. 一种新发现的镉超积累植物龙葵 (Solanum nigrum L.)[J]. 科学通报, 49(24): 2568-2573. |
WEI S H, ZHOU Q X, WANG X, et al., 2004. A newly discovered cadmium hyperaccumulator, Solanum nigrum L.[J]. Chinese Science Bulletin, 49(24): 2568-2573. | |
[41] | 魏树和, 周启星, 王新, 2005. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 26(3): 167-171. |
WEI S H, ZHOU Q X, WANG X, 2005. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics[J]. Environmental Science, 26(3): 167-171. | |
[42] | 王林, 周启星, 2008. 农艺措施强化重金属污染土壤的植物修复[J]. 中国生态农业学报, 16(3): 772-777. |
WANG L, ZHOU Q X, 2008. Strengthening phytoremediation of heavy-metal contaminated soils by agronomic management practices[J]. Chinese Journal of Eco-Agriculture, 16(3): 772-777. | |
[43] | 杨勇, 王巍, 江荣风, 等, 2009. 超累积植物与高生物量植物提取镉效率的比较[J]. 生态学报, 29(5): 2732-2737. |
YANG Y, WANG W, JIANG R F, et al., 2009. Comparison of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species[J]. Acta Ecologica Sinica, 29(5): 2732-2737. | |
[44] | 杨德光, 吴玥, 宋秀丽, 等, 2019. 轮作对土壤肥力及玉米生长发育的影响[J]. 玉米科学, 27(4): 127-133. |
YANG D G, WU Y, SONG X L, et al., 2019. Effects of crop rotation on soil fertility and growth and development of maize[J]. Journal of Maize Sciences, 27(4): 127-133. | |
[45] | 周海霞, 单爱琴, 孙晓菲, 等, 2008. 甘蓝和油菜对镉污染土壤的修复研究[J]. 江苏环境科技, 21(1): 17-19. |
ZHOU H X, SHAN A Q, SUN X F, et al., 2008. The role of cabbage and rape in remediation of cadmium polluted soil[J]. Jiangsu Environmental Science and Technology, 21(1): 17-19. | |
[46] | 张璐, 2014. 产铁载体细菌强化甜高粱修复土壤重金属污染[J]. 环境科学与技术, 37(4): 74-79. |
ZHANG L, 2014. Bioaugmentation with siderophore-producing bacteria to enhance phytoremediation of heavy metal polluted soil by sweet sorghum[J]. Environmental Science & Technology, 37(4): 74-79. | |
[47] | 张云霞, 宋波, 宾娟, 等, 2019. 超富集植物藿香蓟 (Ageratum conyzoides L.)对镉污染农田的修复潜力[J]. 环境科学, 40(5): 2453-2459. |
ZHANG Y X, SONG B, BIN J, et al., 2019. Remediation potential of Ageratum conyzoides L. on cadmium contaminated farmland[J]. Environmental Science, 40(5): 2453-2459. |
[1] | ZHANG Lu, HE Yufei, CHEN Tan, YANG Ting, ZHANG Bing, JIN Jun. The Spatial and Temporal Pattern Evolution of Carbon Footprint of Farmland Ecosystem in Fenwei Plain from 2011 to 2020 [J]. Ecology and Environment, 2023, 32(6): 1149-1162. |
[2] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[3] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[4] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[5] | XIAO Guoju, LI Xiujing, GUO Zhanqiang, HU Yanbin, WANG Jing. Effects of Soil Organic Carbon on Maize Growth and Water Use at the Eastern Foot of Helan Mountain in Ningxia [J]. Ecology and Environment, 2022, 31(9): 1754-1764. |
[6] | HAO Beibei, WANG Nan, WU Haoping, ZHOU Zhixin, ZHANG Siyi, HE Bin. Research on the Reduction Function of Ecological Ditches on Runoff Pollution from Rice Field in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1856-1864. |
[7] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[8] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[9] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[10] | SHANG GUAN Yuxian, YIN Hongliang, XU Yi, ZHONG Hongmei, HE Mingjiang, QIN Yusheng, GUO Song, YU Hua. Effects of Different Passivators on Cadmium Absorption in Rice and Wheat Grains [J]. Ecology and Environment, 2022, 31(2): 370-379. |
[11] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environment, 2022, 31(12): 2414-2421. |
[12] | YU Longsheng, LI Wei, XU Mingyu, LIN Zefan. Effect of Gibberellin Soaking on Seed Germination and Seedling Growth of Two Pioneer Plants for Ecological Restoration in Mining Areas [J]. Ecology and Environment, 2022, 31(11): 2225-2233. |
[13] | ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing, XIE Yue. Effects of Antibiotics on Soil Enzyme Activities in Different Soils [J]. Ecology and Environment, 2022, 31(11): 2234-2241. |
[14] | WANG Fei, ZHAO Ying. Pollution Characteristics and Risk Assessment of PAHs in Agricultural Soil from Sewage Irrigation Area of Taiyuan City, Shanxi Province [J]. Ecology and Environment, 2022, 31(1): 160-169. |
[15] | LI Xin, CHEN Xiaohua, GU Hairong, QIAN Xiaoyong, SHEN Genxiang, ZHAO Qingjie, BAI Yujie. Distribution Characteristics and Influencing Factors of Enzyme Activities in Typical Farmland Soils [J]. Ecology and Environment, 2021, 30(8): 1634-1641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn