Ecology and Environment ›› 2024, Vol. 33 ›› Issue (12): 1944-1952.DOI: 10.16258/j.cnki.1674-5906.2024.12.012
• Research Article [Environmental Science] • Previous Articles Next Articles
JI Shengying1(), LI Jie2,3, LI Xin1, TAO Yu1, CHEN Juan1,*(
), WANG Xiaoyu2,3,*
Received:
2024-08-17
Online:
2024-12-18
Published:
2024-12-31
Contact:
CHEN Juan,WANG Xiaoyu
纪晟莹1(), 李杰2,3, 李鑫1, 陶禹1, 陈娟1,*(
), 王晓玉2,3,*
通讯作者:
陈娟,王晓玉
作者简介:
纪晟莹(1992年生),女,助理研究员,硕士,主要研究方向为蔬菜栽培与农业环境。E-mail: 19495403@qq.com
基金资助:
CLC Number:
JI Shengying, LI Jie, LI Xin, TAO Yu, CHEN Juan, WANG Xiaoyu. Research on the Interaction of Environmental Factors and Genotypes on Cadmium Accumulation in Cucurbit Vegetables and the Soil Safe Threshold[J]. Ecology and Environment, 2024, 33(12): 1944-1952.
纪晟莹, 李杰, 李鑫, 陶禹, 陈娟, 王晓玉. 环境与基因型互作对瓜类蔬菜镉积累的影响及产地土壤安全阈值研究[J]. 生态环境学报, 2024, 33(12): 1944-1952.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.12.012
种类 | 蔬菜编号 | 品种名 | 商品名 |
---|---|---|---|
冬瓜 | V1 | 黑皮冬瓜 | 兴蔬墨地龙 |
V2 | 粉皮冬瓜 | 兴蔬粉地龙 | |
丝瓜 | V3 | 中熟长绿丝瓜 | 兴蔬新美佳 |
V4 | 极早熟绿丝瓜 | 兴蔬早佳 | |
南瓜 | V5 | 板栗南瓜 | 金优红板栗 |
V6 | 蜜本南瓜 | 兴蔬大果蜜本 |
Table 1 Category, varieties, trade names and numbers of cucurbit vegetables
种类 | 蔬菜编号 | 品种名 | 商品名 |
---|---|---|---|
冬瓜 | V1 | 黑皮冬瓜 | 兴蔬墨地龙 |
V2 | 粉皮冬瓜 | 兴蔬粉地龙 | |
丝瓜 | V3 | 中熟长绿丝瓜 | 兴蔬新美佳 |
V4 | 极早熟绿丝瓜 | 兴蔬早佳 | |
南瓜 | V5 | 板栗南瓜 | 金优红板栗 |
V6 | 蜜本南瓜 | 兴蔬大果蜜本 |
试验点 | 编号 | w(总镉)/(mg∙kg−1) | w(有效态镉)/(mg∙kg−1) | w(有机质)/(g∙kg−1) | pH |
---|---|---|---|---|---|
株洲市 | S1 | 2.55±0.07aA | 1.85±0.03aA | 35.18±1.60deDEF | 4.90±0.07cCD |
S3 | 1.95±0.05cC | 1.43±0.03bB | 33.39±0.39efEF | 4.59±0.07defDEF | |
S8 | 0.63±0.04fF | 0.42±0.04efgEF | 19.75±1.08hH | 5.30±0.10bB | |
S11 | 0.59±0.01fF | 0.32±0.01gFG | 37.69±0.62cdCD | 5.72±0.11aA | |
S12 | 0.91±0.05eE | 0.50±0.02eE | 35.09±0.66deDEF | 5.60±0.09aAB | |
湘潭市 | S2 | 2.25±0.06bB | 1.44±0.05bB | 36.31±0.97cdeCDE | 4.54±0.06efEF |
S4 | 1.29±0.03dD | 0.91±0.03cC | 31.32±1.03fF | 4.74±0.13cdeCDEF | |
S5 | 1.42±0.06dD | 0.82±0.07cCD | 24.48±0.90gG | 4.83±0.08cdCDE | |
S6 | 0.60±0.03fF | 0.38±0.01fgEF | 52.39±1.31aA | 4.46±0.05fF | |
S7 | 0.99±0.07eE | 0.70±0.05dD | 38.67±0.75cCD | 4.95±0.03cC | |
S9 | 0.62±0.05fF | 0.48±0.04efE | 39.28±1.02cC | 5.59±0.09aAB | |
长沙市 | S10 | 0.40±0.01gG | 0.20±0.00hG | 43.48±1.11bB | 4.12±0.06gG |
中国土壤环境质量标准(GB 15618—2018) | |||||
风险筛选值 | 0.3 | ‒ | ‒ | pH≤5.5 | |
0.3 | ‒ | ‒ | 5.5<pH≤6.5 | ||
风险管制值 | 1.5 | ‒ | ‒ | pH≤5.5 | |
2.0 | ‒ | ‒ | 5.5<pH≤6.5 |
Table 2 Soil physical and chemical properties, cadmium content and standard value of test sites
试验点 | 编号 | w(总镉)/(mg∙kg−1) | w(有效态镉)/(mg∙kg−1) | w(有机质)/(g∙kg−1) | pH |
---|---|---|---|---|---|
株洲市 | S1 | 2.55±0.07aA | 1.85±0.03aA | 35.18±1.60deDEF | 4.90±0.07cCD |
S3 | 1.95±0.05cC | 1.43±0.03bB | 33.39±0.39efEF | 4.59±0.07defDEF | |
S8 | 0.63±0.04fF | 0.42±0.04efgEF | 19.75±1.08hH | 5.30±0.10bB | |
S11 | 0.59±0.01fF | 0.32±0.01gFG | 37.69±0.62cdCD | 5.72±0.11aA | |
S12 | 0.91±0.05eE | 0.50±0.02eE | 35.09±0.66deDEF | 5.60±0.09aAB | |
湘潭市 | S2 | 2.25±0.06bB | 1.44±0.05bB | 36.31±0.97cdeCDE | 4.54±0.06efEF |
S4 | 1.29±0.03dD | 0.91±0.03cC | 31.32±1.03fF | 4.74±0.13cdeCDEF | |
S5 | 1.42±0.06dD | 0.82±0.07cCD | 24.48±0.90gG | 4.83±0.08cdCDE | |
S6 | 0.60±0.03fF | 0.38±0.01fgEF | 52.39±1.31aA | 4.46±0.05fF | |
S7 | 0.99±0.07eE | 0.70±0.05dD | 38.67±0.75cCD | 4.95±0.03cC | |
S9 | 0.62±0.05fF | 0.48±0.04efE | 39.28±1.02cC | 5.59±0.09aAB | |
长沙市 | S10 | 0.40±0.01gG | 0.20±0.00hG | 43.48±1.11bB | 4.12±0.06gG |
中国土壤环境质量标准(GB 15618—2018) | |||||
风险筛选值 | 0.3 | ‒ | ‒ | pH≤5.5 | |
0.3 | ‒ | ‒ | 5.5<pH≤6.5 | ||
风险管制值 | 1.5 | ‒ | ‒ | pH≤5.5 | |
2.0 | ‒ | ‒ | 5.5<pH≤6.5 |
评价因素 | 差异来源 | SF | df | F | S |
---|---|---|---|---|---|
蔬菜镉含量 | 环境 | 0.0234 | 11 | 101.05** | 62.90% |
品种 | 0.0055 | 5 | 52.35** | 14.81% | |
环境×品种 | 0.0061 | 54 | 5.35** | 16.34% | |
BCF | 环境 | 0.0085 | 11 | 35.11** | 36.67% |
品种 | 0.0047 | 5 | 42.74** | 20.30% | |
环境×品种 | 0.0063 | 54 | 5.28** | 27.06% |
Table 3 Multivariate variance analysis of cadmium accumulation in cucurbit vegetables
评价因素 | 差异来源 | SF | df | F | S |
---|---|---|---|---|---|
蔬菜镉含量 | 环境 | 0.0234 | 11 | 101.05** | 62.90% |
品种 | 0.0055 | 5 | 52.35** | 14.81% | |
环境×品种 | 0.0061 | 54 | 5.35** | 16.34% | |
BCF | 环境 | 0.0085 | 11 | 35.11** | 36.67% |
品种 | 0.0047 | 5 | 42.74** | 20.30% | |
环境×品种 | 0.0063 | 54 | 5.28** | 27.06% |
[1] |
AL MAMUN S, CHANSON G, BENYAS E, et al., 2016. Municipal composts reduce the transfer of Cd from soil to vegetables[J]. Environmental Pollution, 213: 8-15.
DOI PMID |
[2] |
CHAUDRI A, MCGRATH S, GIBBS P, et al., 2007. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts[J]. Chemosphere, 66(8): 1415-1423.
PMID |
[3] | CHI Y H, LI F B, TAM N F, et al., 2018. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials[J]. Science of the Total Environment, 643: 1314-1324. |
[4] | DING C F, ZHANG T L, WANG X X, et al., 2013. Prediction model for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety[J]. Journal of Agricultural and Food Chemistry, 61(43): 10273-10282. |
[5] |
DOABI S A, KARAMI M, AFYUNI M, et al., 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran[J]. Ecotoxicology and Environmental Safety, 163: 153-164.
DOI PMID |
[6] | DUAN G L, SHAO G S, TANG Z, et al., 2017. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 10(1): 9. |
[7] | GAO J T, YE X X, WANG X Y, et al., 2021. Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil[J]. Ecotoxicology and Environmental Safety, 220: 112404. |
[8] |
YANG J X, GUO H T, MA Y B, et al., 2010. Genotypic variations in the accumulation of Cd exhibited by different vegetables[J]. Journal of Environmental Sciences, 22(8): 1246-1252.
PMID |
[9] | KORSMAN J C, SCHIPPER A M, HENDRIKS A J, 2016. Dietary toxicity thresholds and ecological risks for birds and mammals based on species sensitivity distributions[J]. Environmental Science & Technology, 50(19): 10644-10652. |
[10] | KWIATKOWSKA-MALINA J, 2018. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals[J]. Applied Soil Ecology, 123: 542-545. |
[11] |
LIANG Z F, DING Q, WEI D P, et al., 2013. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants[J]. Ecotoxicology and Environmental Safety, 93: 180-185.
DOI PMID |
[12] | LU J H, YANG X P, MENG X C, et al., 2017. Predicting cadmium safety thresholds in soils based on cadmium uptake by Chinese cabbage[J]. Pedosphere, 27(3): 475-481. |
[13] |
MI B B, LIU F, XIE L L, et al., 2019. Evaluation of the uptake capacities of heavy metals in Chinese cabbage[J]. Ecotoxicology and Environmental Safety, 171: 511-517.
DOI PMID |
[14] | MU D M, ZHENG S N, LIN D S, et al., 2023. Derivation and validation of soil cadmium thresholds for the safe farmland production of vegetables in high geological background area[J]. Science of The Total Environment, 873: 162171. |
[15] |
NIU Z G, DU L, LI J F, et al., 2018. Ecological risk assessment of microcystin-LR in the upstream section of the Haihe River based on a species sensitivity distribution model[J]. Chemosphere, 193: 403-411.
DOI PMID |
[16] | SUN T, HU Y N, WANG Z Y, et al., 2022. A tissue atlas of cadmium accumulation and the correlation with thiol-containing chelates in zucchini provide insights into cadmium partitioning and food safety[J]. Journal of Hazardous Materials, 421: 126756. |
[17] | WANG Y F, SU Y, LU S G, 2020. Predicting accumulation of Cd in rice (Oryza sativa L.) and soil threshold concentration of Cd for rice safe production[J]. Science of the Total Environment, 738: 139805. |
[18] |
WHEELER J R, GRIST E P M, LEUNG K M Y, et al., 2002. Species sensitivity distributions: Data and model choice[J]. Marine Pollution Bulletin, 45(1-12): 192-202.
PMID |
[19] |
XIAO W D, YE X Z, ZHANG Q, et al., 2018. Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents[J]. Ecotoxicology and Environmental Safety, 164: 355-362.
DOI PMID |
[20] | XU F L, LI Y L, WANG Y, et al., 2015. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 54: 227-237. |
[21] | XU M Q, YANG L Y, CHEN Y L, et al., 2022. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst[J]. Ecotoxicology and Environmental Safety, 247: 114244. |
[22] | YANG Y, LI Y L, CHEN W P, et al., 2020. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling[J]. Environmental Pollution, 267: 115613. |
[23] | YUE X M, SONG J X, FANG B, et al., 2021. BcNRAMP1 promotes the absorption of cadmium and manganese in Arabidopsis[J]. Chemosphere, 283: 131113. |
[24] |
ZHANG F, PENG D, LIU L, et al., 2022. Cultivar-dependent rhizobacteria community and cadmium accumulation in rice: Effects on cadmium availability in soils and iron-plaque formation[J]. Journal of Environmental Sciences, 116: 90-102.
DOI PMID |
[25] | ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759. |
[26] |
ZHONG T Y, XUE D W, ZHAO L M, et al., 2018. Concentration of heavy metals in vegetables and potential health risk assessment in China[J]. Environmental Geochemistry and Health, 40: 313-322.
DOI PMID |
[27] | ZHOU H, YANG W T, ZHOU X, et al., 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment[J]. International Journal of Environmental Research and Public Health, 13(3): 289. |
[28] |
ZHU H H, CHEN C, XU C, et al., 2016. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 219: 99-106.
DOI PMID |
[29] | 柴冠群, 蔡景行, 吴道明, 等, 2023. 十一个辣椒品种的镉富集和转运能力比较[J]. 南方农业, 17(9): 56-60, 74. |
CHAI G Q, CAI J X, WU D M, et al., 2023. Comparison of Cd enrichment and transport ability among 11 pepper varieties[J]. South China Agriculture, 17(9): 56-60, 74. | |
[30] | 高广贤, 刘义强, 杨波, 等, 2023. 化肥减量配施有机肥对盐碱地土壤性状及镉形态的影响[J]. 中国土壤与肥料 (1): 30-38. |
GAO G X, LIU Y Q, YANG B, et al., 2023. Effects of chemical fertilizer reduction combined with organic fertilizer on soil properties and cadmium forms in saline alkali soil[J]. Soil and Fertilizer Sciences in China (1): 30-38. | |
[31] | 和君强, 刘代欢, 邓林, 等, 2017. 农田土壤镉生物有效性及暴露评估研究进展[J]. 生态毒理学报, 12(6): 69-82. |
HE J Q, LIU D H, DENG L, et al., 2017. Progress in the bioavailability and exposure assessment of cadmium in farmland soil[J]. Asian Journal of Ecotoxicology, 12(6): 69-82. | |
[32] | 黄贞慧, 2015. 微量元素铅镉的检测及临床意义分析[J]. 深圳中西医结合杂志, 25(3): 43-44. |
HUANG C H, 2015. Detection and clinical significance analysis of the trace element lead-cadmium[J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 25(3): 43-44. | |
[33] | 甲卡拉铁, 喻华, 冯文强, 等, 2009. 淹水条件下不同氮磷钾肥对土壤pH和镉有效性的影响研究[J]. 环境科学, 30(11): 3414-3421. |
JIA K L T, YU H, FENG W Q, et al., 2009. Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions[J]. Environmental Science, 30(11): 3414-3421. | |
[34] | 李沛轩, 钟理, 郭蕊, 2021. 重金属镉致心血管疾病的潜在机制及治疗对策[J]. 中国科学: 生命科学, 51(9): 1241-1253. |
LI P X, ZHONG L, GUO R, 2021. Potential mechanism and treatment of heavy metal cadmium-induced cardiovascular disease[J]. Scientia Sinica (Vitae), 51(9): 1241-1253. | |
[35] | 李学德, 花日茂, 岳永德, 等, 2004. 合肥市蔬菜中铬、铅、镉和铜污染现状评价[J]. 安徽农业大学学报, 31(2): 143-147. |
LI X D, HUA R M, YUE Y D, et al., 2004. Evaluation on Contamination of Cr, Pb, Cd and Cu in Vegetables of Hefei Region[J]. Journal of Anhui Agricultural University, 31(2): 143-147. | |
[36] | 廖敏, 黄昌勇, 谢正苗, 1999. pH对镉在土水系统中的迁移和形态的影响[J]. 环境科学学报, 19(1): 83-88. |
LIAO M, HUANG C Y, XIE Z M, 1999. Effects of pH on the migration and morphology of cadmium in soil-water system[J]. Journal of Environmental Science, 19(1): 83-88. | |
[37] |
柳赛花, 纪雄辉, 谢运河, 等, 2021. 基于GGE双标图和BLUP分析筛选镉砷同步低累积水稻品种[J]. 生态环境学报, 30(2): 405-411.
DOI |
LIU S H, JI X H, XIE Y H, et al., 2021. Screening of cadmium and arsenic synchronous low-accumulating rice cultivars based on GGE double plot and BLUP analysis[J]. Ecology and Environmental Sciences, 30(2): 405-411. | |
[38] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社. |
LU R K, 2000. Methods for soil agricultural chemical analysis[M]. Beijing: China Agricultural Science and Technology Press. | |
[39] | 彭佳师, 王娅婷, 王梦琦, 等, 2024. 植物重金属镉积累调控机制及其应用研究进展[J]. 植物生理学报, 60(2): 185-210. |
PENG J S, WANG Y T, WANG M Y, et al., 2024. Research and regulation of cadmium uptake, transport and accumulation in plants[J]. Plant Physiology Journal, 60(2): 185-210. | |
[40] | 史明易, 王祖伟, 王嘉宝, 等, 2020. 基于富集系数对蔬菜地土壤重金属的安全阈值研究[J]. 干旱区资源与环境, 34(2): 130-134. |
SHI M Y, WANG Z W, WANG J B, et al., 2020. Study on safety threshold of heavy metals in vegetable soils based on bioaccumulation factor[J]. Journal of Arid Land Resources and Environment, 34(2): 130-134. | |
[41] | 谭璐璐, 2023. 父代镉暴露对子代肝脏糖脂代谢的影响及其机制[D]. 合肥: 安徽医科大学. |
TAN L L, 2023. Effect and its mechanisms of paternal cadmium exposure on hepatic glucose and lipid metabolism in offspring[D]. Hefei: Anhui Medical University. | |
[42] | 文典, 刘香香, 王其枫, 等, 2012. 菜薹(菜心)对土壤中重金属的富集特征及产地土壤安全临界值[J]. 中国蔬菜, 262(12): 83-90. |
WEN D, LIU X X, WANG Q F, et al., 2012. Heavy metal accumulation characteristics and environmental critical values in flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production area for food security[J]. China Vegetables, 262(12): 83-90. | |
[43] |
文典, 赵沛华, 陈楚国, 等, 2022. 珠三角典型区域蔬菜产地土壤Cd安全阈值研究[J]. 生态环境学报, 31(3): 603-609.
DOI |
WEN D, ZHAO P H, CHEN C G, et al., 2022. Study on safety threshold of soil cadmium in the vegetable producing areas of the Pearl River Delta[J]. Ecology and Environment Sciences, 31(3): 603-609.
DOI |
|
[44] | 谢运河, 田发祥, 张凤, 等, 2024. 水稻镉砷累积的基因型和环境互作效应分析[J/OL]. 农业环境科学学报, 1-15[2024-07-29]. http://kns.cnki.net/kcms/detail/12.1347.S.20240514.1020.002.html. |
XIE Y H, TIAN F X, ZHANG F, et al., 2024. Responses of cadmium and arsenic accumulation in rice to cultivar-environment interactions[J/OL]. Journal of Agro-Environment Science, 1-15 [2024-07-29]. http://kns.cnki.net/kcms/detail/12.1347.S.20240514.1020.002.html. | |
[45] | 徐亚平, 刘凤枝, 蔡彦明, 等, 2005. 土壤中铅镉有效态提取剂的选择[J]. 农业环境与发展, 22(4): 46-48. |
XU Y P, LIU F Z, CAI Y M, et al., 2005. Selection of effective extractants for Pb and Cd in soil[J]. Agricultural Environment and Development, 22(4): 46-48. | |
[46] | 杨菲, 吴琦, 季辉, 等, 2011. 土壤重金属Pb和Cd在小白菜中的富集特征及产地环境安全临界值[J]. 中国农学通报, 27(13): 194-198. |
YANG F, WU Q, JI H, et al., 2011. Soil Pb and Cd accumulation characteristics of pakchoi (Brassica chinensis L.) and their environmental critical values in pakchoi production area for food security[J]. Chinese Agricultural Science Bulletin, 27(13): 194-198. | |
[47] | 俞果, 陈梦华, 蒋萍萍, 等, 2019. 黄瓜吸收积累镉的品种差异研究[J]. 工业安全与环保, 45(5): 99-102. |
YU G, CHEN M H, JIANG P P, et al., 2019. Cadmium absorption and accumulation of different cucumber cultivars[J]. Industrial Safety and Environmental Protection, 45(5): 99-102. | |
[48] | 张丙春, 王磊, 范丽霞, 等, 2015. 铅、镉在蔬菜中的累积特性及对蔬菜生长的影响[J]. 生态学杂志, 34(10): 2873-2878. |
ZHANG B C, WANG L, FAN L X, et al., 2015. Accumulation characteristics of lead and cadmium in vegetables and their effects on the growth of vegetables[J]. Chinese Journal of Ecology, 34(10): 2873-2878. | |
[49] | 章明奎, 郑顺安, 王丽平, 2007. 土壤中颗粒状有机质对重金属的吸附作用[J]. 土壤通报, 38(6): 1100-1104. |
ZHANG M K, ZHENG S A, WANG L P, 2007. Adsorption of heavy metals by soil particulate organic matter[J]. Chinese Journal of Soil Science, 38(6): 1100-1104. | |
[50] | 中华人民共和国环境保护部, 2016. 土壤和沉积物12种金属元素的测定王水提取-电感耦合等离子体质谱法: HJ 803—2016 [S]. 北京: 中国环境科学出版社: 1-19. |
Ministry of Ecology and Environment of the People’s Republic of China, 2016. Soil and sediment-Determination of aqua regia extracts of 12 metal elements Inductively coupled plasma mass spectrometry: HJ 803—2016 [S]. Beijing: China Environmental Publishing Group: 1-19. | |
[51] | 中华人民共和国生态环境部, 2024. 2023中国生态环境状况公报[EB/OL]. [2024-06-05]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202406/P020240604551536165161.pdf. |
Ministry of Ecology and Environment of the People’s Republic of China, 2024. China's ecological environment bulletin 2023[EB/OL]. [2024-06-05]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202406/P020240604551536165161.pdf. | |
[52] | 中华人民共和国生态环境部, 国家市场监督管理总局,, 2018. 土壤环境质量农用地土壤污染风险管控标准(试行): GB 15618—2018 [S]. 北京: 中国环境出版集团: 1-4. |
Ministry of Ecology and Environment, State Administration for Market Regulation of the People’s Republic of China, 2018. Soil environmental quality Risk control standard for soil contamination of agricultural land (Trial): GB 15618—2018 [S]. Beijing: China Environmental Publishing Group: 1-4. | |
[53] | 中华人民共和国生态环境部, 自然资源部, 2014. 全国土壤污染状况调查公报[EB/OL]. [2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf. |
Ministry of Ecology and Environment, Ministry of Natural Resources of the People’s Republic of China, 2014. National soil pollution survey bulletin[EB/OL]. [2014-04-17]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf. | |
[54] | 中华人民共和国国家卫生健康委员会, 国家市场监督管理总局, 2022. 食品安全国家标准食品中污染物限量: GB 2762—2022 [S]. 北京: 中国标准出版社: 1-18. |
The National Health Commission, State Administration for Market Regulation of the People’s Republic of China, 2022. National food safety standard Limits of contaminants in foods: GB 2762—2022 [S]. Beijing: Standards Press of China: 1-18. | |
[55] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局, 2016. 食品安全国家标准食品中多元素的测定:GB 5009. 268—2016 [S]. 北京: 中国标准出版社: 1-14 |
The National Health Commission, National Medical Products Administration of the People’s Republic of China, 2016. National standards for food safety Determination of multielement in food: GB 5009. 268—2016 [S]. Beijing: Standards Press of China: 1-14. |
[1] | LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant [J]. Ecology and Environment, 2024, 33(5): 781-790. |
[2] | ZHANG Tengyun, WANG Jing, GAO Jianlei, GE Wenjing, WANG Zongyao, HAN Long. Study on Cadmium Transfer and Transformation in Winter Wheat at Different Growth Stages in Alkaline Field Soil [J]. Ecology and Environment, 2024, 33(3): 450-459. |
[3] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environment, 2024, 33(3): 460-468. |
[4] | GUAN Guoqing, HUANG Zilin, JIANG Longfei, LUO Chunling. Influence of Sedum plumbizincicola on the Reduction of Organic Contaminants and Microorganisms in Soil Contaminated with Heavy Metals and Polycyclic Aromatic Hydrocarbons [J]. Ecology and Environment, 2024, 33(12): 1931-1943. |
[5] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[6] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[7] | LI Zhimei, AN Ya, LI Mei, WANG Shiping, QIN Haoli. Study on Passivation Behavior for Cadmium with Sulfhydryl/iron-based Functionalized Montmorillonite in Soil [J]. Ecology and Environment, 2023, 32(7): 1301-1312. |
[8] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[9] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[10] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[11] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
[12] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[13] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[14] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[15] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn