Ecology and Environment ›› 2024, Vol. 33 ›› Issue (12): 1931-1943.DOI: 10.16258/j.cnki.1674-5906.2024.12.011
• Research Article [Environmental Science] • Previous Articles Next Articles
GUAN Guoqing1,2(), HUANG Zilin3, JIANG Longfei1, LUO Chunling1,**(
)
Received:
2024-04-12
Online:
2024-12-18
Published:
2024-12-31
Contact:
LUO Chunling
官国庆1,2(), 黄紫琳3, 江龙飞1, 罗春玲1,**(
)
通讯作者:
罗春玲
作者简介:
官国庆(1998年生),男,硕士研究生,研究方向为烃类污染物的生物降解。E-mail: guanguoqing@gig.ac.cn基金资助:
CLC Number:
GUAN Guoqing, HUANG Zilin, JIANG Longfei, LUO Chunling. Influence of Sedum plumbizincicola on the Reduction of Organic Contaminants and Microorganisms in Soil Contaminated with Heavy Metals and Polycyclic Aromatic Hydrocarbons[J]. Ecology and Environment, 2024, 33(12): 1931-1943.
官国庆, 黄紫琳, 江龙飞, 罗春玲. 伴矿景天对重金属-多环芳烃复合污染土壤有机污染物消减及微生物的影响[J]. 生态环境学报, 2024, 33(12): 1931-1943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.12.011
指标 | 量值 |
---|---|
有机质质量分数/(g∙kg‒1) | 14.2 |
全氮质量分数/(g∙kg‒1) | 0.740 |
全磷质量分数/(g∙kg‒1) | 0.750 |
全钾质量分数/(g∙kg‒1) | 3.75 |
碱解氮质量分数/(mg∙kg−1) | 70.6 |
有效磷质量分数/(mg∙kg−1) | 16.5 |
速效钾质量分数/(mg∙kg−1) | 337 |
pH | 5.91 |
有机碳百分比/% | 1.60 |
总镉质量分数/(mg∙kg−1) | 0.830 |
总铜质量分数/(mg∙kg−1) | 327 |
总铅质量分数/(mg∙kg−1) | 68.1 |
总锌质量分数/(mg∙kg−1) | 116 |
总铬质量分数/(mg∙kg−1) | 91.8 |
16种优控多环芳烃质量分数/(mg∙kg−1) | 2.28 |
菲质量分数/(mg∙kg−1) | 2.01 |
209种多氯联苯质量分数/(mg∙kg−1) | 0.600 |
砂粒百分比/% | 35.4 |
粉粒百分比/% | 59.6 |
黏粒百分比/% | 5.00 |
Table 1 Basic physicochemical properties of the tested soil
指标 | 量值 |
---|---|
有机质质量分数/(g∙kg‒1) | 14.2 |
全氮质量分数/(g∙kg‒1) | 0.740 |
全磷质量分数/(g∙kg‒1) | 0.750 |
全钾质量分数/(g∙kg‒1) | 3.75 |
碱解氮质量分数/(mg∙kg−1) | 70.6 |
有效磷质量分数/(mg∙kg−1) | 16.5 |
速效钾质量分数/(mg∙kg−1) | 337 |
pH | 5.91 |
有机碳百分比/% | 1.60 |
总镉质量分数/(mg∙kg−1) | 0.830 |
总铜质量分数/(mg∙kg−1) | 327 |
总铅质量分数/(mg∙kg−1) | 68.1 |
总锌质量分数/(mg∙kg−1) | 116 |
总铬质量分数/(mg∙kg−1) | 91.8 |
16种优控多环芳烃质量分数/(mg∙kg−1) | 2.28 |
菲质量分数/(mg∙kg−1) | 2.01 |
209种多氯联苯质量分数/(mg∙kg−1) | 0.600 |
砂粒百分比/% | 35.4 |
粉粒百分比/% | 59.6 |
黏粒百分比/% | 5.00 |
处理组 | w(Cd)/(mg∙kg−1) | w(PHE)/(mg∙kg−1) | 是否种植物 |
---|---|---|---|
Rhizo-0 | 0 | 100 | 是 |
Rhizo-1 | 1 | 100 | 是 |
Rhizo-5 | 5 | 100 | 是 |
Rhizo-10 | 10 | 100 | 是 |
Bulk-0 | 0 | 100 | 否 |
Bulk-1 | 1 | 100 | 否 |
Bulk-5 | 5 | 100 | 否 |
Bulk-10 | 10 | 100 | 否 |
Table 2 Scheme of the pot experiments
处理组 | w(Cd)/(mg∙kg−1) | w(PHE)/(mg∙kg−1) | 是否种植物 |
---|---|---|---|
Rhizo-0 | 0 | 100 | 是 |
Rhizo-1 | 1 | 100 | 是 |
Rhizo-5 | 5 | 100 | 是 |
Rhizo-10 | 10 | 100 | 是 |
Bulk-0 | 0 | 100 | 否 |
Bulk-1 | 1 | 100 | 否 |
Bulk-5 | 5 | 100 | 否 |
Bulk-10 | 10 | 100 | 否 |
Cd添加量/(mg∙kg−1) | f |
---|---|
0 | 15.1±1.06b |
1 | 29.8±2.82a |
5 | 15.2±0.53b |
10 | 18.6±0.66b |
Table 3 Bioconcentration factor of different treatments
Cd添加量/(mg∙kg−1) | f |
---|---|
0 | 15.1±1.06b |
1 | 29.8±2.82a |
5 | 15.2±0.53b |
10 | 18.6±0.66b |
ASV | Phylum | Class | Order | Family | Genus | 处理 |
---|---|---|---|---|---|---|
ASV_1 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-5 |
ASV_2 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-1 |
ASV_18 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Ramlibacter | Rhizo-10 |
ASV_56 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Bulk-10 | |
ASV_69 | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanobacterium | Bulk-10 |
ASV_80 | Bacteroidota | Bacteroidia | Cytophagales | Hymenobacteraceae | Adhaeribacter | Bulk-1, Bulk-5 |
ASV_155 | Acidobacteriota | Blastocatellia | Blastocatellales | Blastocatellaceae | Bulk-10, Rhizo-5 | |
ASV_168 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Rhizo-0 | |
ASV_182 | Chloroflexi | Ktedonobacteria | Ktedonobacterales | JG30-KF-AS9 | JG30-KF-AS9 | Rhizo-1 |
ASV_223 | Actinobacteriota | Actinobacteria | Micrococcales | Micrococcaceae | Rhizo-0 | |
ASV_579 | Bacteroidota | Bacteroidia | Sphingobacteriales | KD3-93 | Rhizo-10 | |
ASV_913 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Nitrosomonadaceae | Ellin6067 | Rhizo-1 |
ASV_1170 | Actinobacteriota | Actinobacteria | Propionibacteriales | Nocardioidaceae | Nocardioides | Rhizo-10 |
Table 4 Taxonomic information of identified phenanthrene-degrading bacteria in different treatments
ASV | Phylum | Class | Order | Family | Genus | 处理 |
---|---|---|---|---|---|---|
ASV_1 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-5 |
ASV_2 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Flavisolibacter | Bulk-1 |
ASV_18 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Ramlibacter | Rhizo-10 |
ASV_56 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Comamonadaceae | Bulk-10 | |
ASV_69 | Euryarchaeota | Methanobacteria | Methanobacteriales | Methanobacteriaceae | Methanobacterium | Bulk-10 |
ASV_80 | Bacteroidota | Bacteroidia | Cytophagales | Hymenobacteraceae | Adhaeribacter | Bulk-1, Bulk-5 |
ASV_155 | Acidobacteriota | Blastocatellia | Blastocatellales | Blastocatellaceae | Bulk-10, Rhizo-5 | |
ASV_168 | Bacteroidota | Bacteroidia | Chitinophagales | Chitinophagaceae | Rhizo-0 | |
ASV_182 | Chloroflexi | Ktedonobacteria | Ktedonobacterales | JG30-KF-AS9 | JG30-KF-AS9 | Rhizo-1 |
ASV_223 | Actinobacteriota | Actinobacteria | Micrococcales | Micrococcaceae | Rhizo-0 | |
ASV_579 | Bacteroidota | Bacteroidia | Sphingobacteriales | KD3-93 | Rhizo-10 | |
ASV_913 | Proteobacteria | Gammaproteobacteria | Burkholderiales | Nitrosomonadaceae | Ellin6067 | Rhizo-1 |
ASV_1170 | Actinobacteriota | Actinobacteria | Propionibacteriales | Nocardioidaceae | Nocardioides | Rhizo-10 |
[1] | AHMED A, HASNAIN S, 2010. Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum[J]. Pure and Applied Chemistry, 82(1): 313-319. |
[2] | BACOSA H P, STEICHEN J, KAMALANATHAN M, et al., 2020. Polycyclic aromatic hydrocarbons (PAHs) and putative PAH-degrading bacteria in Galveston Bay, TX (USA), following Hurricane Harvey (2017)[J]. Environmental Science and Pollution Research, 27(28): 34987-34999. |
[3] | BAO H, WANG J, ZHANG H, et al., 2021. Enhanced rhizodegradation of polycyclic aromatic hydrocarbons in corn straw-amended soil related to changing of bacterial community and functional gene expression[J/OL]. PREPRINT (Version 1) available at Research Square, [2021-03-30]. https://doi.org/10.21203/rs.3.rs-332456/v1 |
[4] | BENEDUZI A, AMBROSINI A, PASSAGLIA L M, 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 35(4(suppl)): 1044-1051. |
[5] |
BOLYEN E, RIDEOUT J R, DILLON M R, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 37(8): 852-857.
DOI PMID |
[6] |
BRINCH U C, EKELUND F, JACOBSEN C S, 2002. Method for spiking soil samples with organic compounds[J]. Applied and Environmental Microbiology, 68(4): 1808-1816.
DOI PMID |
[7] | CAO Y, LI Z Y, DU P H, et al., 2024. Effects of different dwarfing interstocks on the rhizosphere, endophytic bacteria, and drought resistance of apple trees[J]. Microbiological Research, 283: 127690. |
[8] | CÉBRON A, NORINI M-P, BEGUIRISTAIN T, et al., 2008. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 73(2): 148-159. |
[9] |
CHAKRABORTY P, SAMPATH S, MUKHOPADHYAY M, et al., 2019. Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities[J]. Environmental Pollution, 248: 1036-1045.
DOI PMID |
[10] |
CRAMPON M, BODILIS J, PORTET-KOLTALO F, 2018. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential[J]. Journal of Hazardous Materials, 359: 500-509.
DOI PMID |
[11] | CUI W Z, LIU Y Y, LI W G, et al., 2023. Remediation agents drive bacterial community in a Cd-contaminated soil[J]. Toxics, 11(1): 53. |
[12] |
DE SOUZA E M, BASSANI V L, SPEROTTO R A, et al., 2016. Inoculation of new rhizobial isolates improve nutrient uptake and growth of bean (Phaseolus vulgaris) and arugula (Eruca sativa)[J]. Journal of the Science of Food and Agriculture, 96(10): 3446-3453.
DOI PMID |
[13] | GLÖCKNER F O, 2019. The SILVA database project: An ELIXIR core data resource for high-quality ribosomal RNA sequences[J]. Biodiversity Information Science and Standards, 3: e36125. |
[14] | HONG S H, HAM SY, KIM J S, et al., 2016. Application of sodium polyacrylate and plant growth-promoting bacterium, Micrococcaceae HW-2, on the growth of plants cultivated in the rooftop[J]. International Biodeterioration & Biodegradation, 113: 297-303. |
[15] | HUANG X F, CHAPARRO J M, REARDON K F, et al., 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities[J]. Botany, 92: 267-275. |
[16] | HUANG Z L, JIANG L F, LU W S, et al., 2022. Elsholtzia splendens promotes phenanthrene and polychlorinated biphenyl degradation under Cu stress through enrichment of microbial degraders[J]. Journal of Hazardous Materials, 438: 129492. |
[17] | HUSSAIN I, PUSCHENREITER M, GERHARD S, et al., 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications[J]. Environmental and Experimental Botany, 147: 202-219. |
[18] | JIANG L F, SONG M K, LUO C L, et al., 2015. Novel phenanthrene-degrading bacteria identified by DNA-stable isotope probing[J]. PLOS ONE, 10(6): e0130846. |
[19] | JIANG L F, ZHANG D Y, SONG M K, et al., 2022. The positive role of root decomposition on the bioremediation of organic pollutants contaminated soil: A case study using PCB-9 as a model compound[J]. Soil Biology and Biochemistry, 171: 108726. |
[20] | LI J, GURAJALA H K, WU L H, et al., 2018. Hyperaccumulator plants from China: A synthesis of the current state of knowledge[J]. Environmental Science & Technology, 52(21): 11980-11994. |
[21] |
LIU J, CHEN X, SHU H Y, et al., 2018. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China[J]. Environmental Pollution, 235: 171-179.
DOI PMID |
[22] | LIU M, HUANG B, BI X H, et al., 2013. Heavy metals and organic compounds contamination in soil from an e-waste region in South China[J]. Environmental Science: Processes & Impacts, 15(5): 919-929. |
[23] | LUO J P, GU S H, GUO X Y, et al., 2022. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance[J]. Environmental Science & Technology, 56(18): 12975-12987. |
[24] | MARK G L, DOW J M, KIELY P D, et al., 2005. Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions[J]. Proceedings of the National Academy of Sciences, 102(48): 17454-17459. |
[25] | MISHRA J, SINGH R, ARORA NK, 2017. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms[J]. Frontiers in Microbiology, 8: 295763. |
[26] |
NARASIMHAN K, BASHEER C, BAJIC V B, et al., 2003. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls[J]. Plant Physiology, 132(1): 146-153.
PMID |
[27] | NGUYEN P M, AFZAL M, ULLAH I, et al., 2019. Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency[J]. Environmental Science and Pollution Research, 26: 21109-21126. |
[28] | SALIMI F, KHORSHIDI M, AMIRAHMADI F, et al., 2023. Effectiveness of phosphate and zinc solubilizing Paenarthrobacter nitroguajacolicus P1 as Halotolerant rhizobacterium with growth-promoting activity on Pistacia vera L[J]. Current Microbiology, 80(10): 336. |
[29] | SANSINENEA E, 2019. Bacillus spp.: As plant growth-promoting bacteria[M]//SINGH H, KESWANI C, REDDY M, et al., Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Singapore: Springer: 225-237. |
[30] | SINGHA LP, PANDEY P, 2020. Rhizobacterial community of Jatropha curcas associated with pyrene biodegradation by consortium of PAH-degrading bacteria[J]. Applied Soil Ecology, 155: 103685. |
[31] |
SMITH M, FLOWERS T, DUNCAN H, et al., 2011. Study of PAH dissipation and phytoremediation in soils: Comparing freshly spiked with weathered soil from a former coking works[J]. Journal of Hazardous Materials, 192(3): 1219-1225.
DOI PMID |
[32] |
SONG M K, LUO C L, JIANG L F, et al., 2019. The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis[J]. Environment International, 124: 121-129.
DOI PMID |
[33] |
SONG Y F, WILKE B M, SONG X Y, et al., 2006. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 65(10): 1859-1868.
PMID |
[34] | STOREY S, ASHAARI M M, CLIPSON N, et al., 2018. Opportunistic bacteria dominate the soil microbiome response to phenanthrene in a microcosm-based study[J]. Frontiers in Microbiology, 9: 339359. |
[35] |
TANG X J, SHEN C F, SHI D Z, et al., 2010. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 173(1-3): 653-660.
DOI PMID |
[36] |
TONG H, LIU C S, LI F B, et al., 2015. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing[J]. Journal of Hazardous Materials, 298: 252-260.
DOI PMID |
[37] |
WU L H, LI Z, AKAHANE I, et al., 2012. Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola[J]. International Journal of Phytoremediation, 14(10): 1024-1038.
PMID |
[38] |
XIA S Q, SHI Y, FU Y G, et al., 2005. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems[J]. Applied Microbiology and Biotechnology, 69(1): 99-105.
PMID |
[39] |
XIAO X, FAN M C, WANG E T, et al., 2017. Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants[J]. Applied Microbiology and Biotechnology, 101(23-24): 8485-8497.
DOI PMID |
[40] | YANG W H, WANG S S, NI W Z, et al., 2019. Enhanced Cd-Zn-Pb-contaminated soil phytoextraction by Sedum alfredii and the rhizosphere bacterial community structure and function by applying organic amendments[J]. Plant and Soil, 444(1-2): 101-118. |
[41] |
YE Q H, LIANG C Y, CHEN X W, et al., 2019. Molecular characterization of methanogenic microbial communities for degrading various types of polycyclic aromatic hydrocarbon[J]. Journal of Environmental Sciences, 86: 97-106.
DOI PMID |
[42] | YI M L, ZHANG L L, LI Y, et al., 2022. Structural, metabolic, and functional characteristics of soil microbial communities in response to benzo[a]pyrene stress[J]. Journal of Hazardous Materials, 431: 128632. |
[43] |
YILMAZ E I, 2003. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1[J]. Research in Microbiology, 154(6): 409-415.
PMID |
[44] | ZHANG Y C, KOMOREK R, SON J Y, et al., 2021. Molecular imaging of plant-microbe interactions on the brachypodium seed surface[J]. Analyst, 146(19): 5855-5865. |
[45] | ZHANG Z H, RENGEL Z, CHANG H, et al., 2012. Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs)[J]. Geoderma, 175-176: 1-8. |
[46] |
ZHAO X H, FAN F Q, ZHOU H D, et al., 2018. Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons[J]. Bioprocess and Biosystems Engineering, 41(6): 871-883.
DOI PMID |
[47] | 姜悦, 罗继鹏, 乔亚蓓, 等, 2023. 土壤类型对超积累植物东南景天叶际微生物群落结构和功能的影响[J/OL]. 浙江大学学报(农业与生命科学版), 1-13 [2024-10-29]. http://kns.cnki.net/kcms/detail/33.1247.S.20231123.1610.002.html. |
JIANG Y, LUO J P, QIAO Y B, et al., 2023. Effects of soil types on phyllosphere microbial community structure and function of hyperaccumulator Sedum alfredii[J/OL]. Journal of Zhejiang University (Agriculture & Life Sciences), 1-13[2024-10-29]. http://kns.cnki.net/kcms/detail/33.1247.S.20231123.1610.002.html. | |
[48] | 李婉怡, 於维维, 余琼阳, 等, 2023. 土壤重金属-有机物复合污染环境效应与修复技术研究进展[J]. 土壤, 55(3): 453-463. |
LI W Y, YU W W, YU Q Y, et al., 2023. Environmental Effects and Remediation Technologies of Heavy Metal-Organic Pollutant Co-contaminated Soil: A Review[J]. Soils, 55(3): 453-463. | |
[49] | 宋孟珂, 江龙飞, 王琰, 等, 2014. 稳定同位素探针技术在有机污染物生物降解中的应用[J]. 微生物学通报, 41(4): 699-711. |
SONG M K, JIANG L F, WANG Y, et al., 2014. Application of stable isotope probing in biodegradation of organic pollutants[J]. Microbiology China, 41(4): 699-711. |
[1] | ZHANG Jinglei, WANG Guoliang, WU Bo, JIA Chunlin, ZHANG Jinhong, ZHOU Yuan, MA Bing. The Effects of Alfalfa-Triticale Rotation on Soil Bacterial and Fungal Community Diversity and Co-occurrence Network in Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2024, 33(7): 1048-1062. |
[2] | LI Xuan, WANG Luming, YAN Chunni, HUANG Juan. Differences in Responses of Microbial Communities in Constructed Wetlands Exposed to Metal Oxide and Non-mental Oxide Nanoparticles [J]. Ecology and Environment, 2024, 33(7): 1089-1095. |
[3] | LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant [J]. Ecology and Environment, 2024, 33(5): 781-790. |
[4] | ZHANG Tengyun, WANG Jing, GAO Jianlei, GE Wenjing, WANG Zongyao, HAN Long. Study on Cadmium Transfer and Transformation in Winter Wheat at Different Growth Stages in Alkaline Field Soil [J]. Ecology and Environment, 2024, 33(3): 450-459. |
[5] | LIU Chutian, GUO Dongdong, HOU Lei, LIANG Qibin, WANG Yanxia, SHI Yanting, QI Yane. Analysis of the Effect Model for Nutrient Regulation on Cadmium Accumulation in Populus yunnanensis Seedlings [J]. Ecology and Environment, 2024, 33(3): 460-468. |
[6] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[7] | JI Shengying, LI Jie, LI Xin, TAO Yu, CHEN Juan, WANG Xiaoyu. Research on the Interaction of Environmental Factors and Genotypes on Cadmium Accumulation in Cucurbit Vegetables and the Soil Safe Threshold [J]. Ecology and Environment, 2024, 33(12): 1944-1952. |
[8] | SONG Jiangqin, YIN Yali, ZHAO Wen, LIU Yan, SUI Qiqi, HUO Jiuyan, ZHENG Wenxian, LI Shixiong. Characteristics of Spatial Differentiation of Soil Microbial Communities in Degraded Grassland on the “Black Soil Beaches” of Qinghai Plateau [J]. Ecology and Environment, 2024, 33(11): 1696-1707. |
[9] | SHI Run, LI Fayun, ZHOU Chunliang, WANG Wei, ZHOU Yanqiu. The Effect of Using Impatiens Balsam Seed Coat as a Carrier for Immobilized Microorganisms to Remediate Petroleum Hydrocarbon-contaminated Soil [J]. Ecology and Environment, 2023, 32(9): 1700-1708. |
[10] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[11] | FAN Wanyi, TU Chen, WANG Shunyang, WU Xinyou, LI Xuanzhen, LUO Yongming. Cadmium Accumulation Characteristics and Pollution Reduction Potential of Different Tobacco Species in Lightly Contaminated Farmland Soils [J]. Ecology and Environment, 2023, 32(8): 1516-1524. |
[12] | LIANG Yitong, LI Zemin, WU Yulun, QIU Guanglei, WU Haizhen, WEI Chaohai. Effects of Nitrite on Nitrogen Removal Efficiency and Microbial Community in Anammox-based Coupled System [J]. Ecology and Environment, 2023, 32(7): 1275-1284. |
[13] | WANG Lihua, WANG Lei, XU Duanping, XUE Yang. Adsorption Characteristics of Copper and Cadmium on Coal Colloid [J]. Ecology and Environment, 2023, 32(7): 1293-1300. |
[14] | LI Zhimei, AN Ya, LI Mei, WANG Shiping, QIN Haoli. Study on Passivation Behavior for Cadmium with Sulfhydryl/iron-based Functionalized Montmorillonite in Soil [J]. Ecology and Environment, 2023, 32(7): 1301-1312. |
[15] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn