Ecology and Environment ›› 2025, Vol. 34 ›› Issue (1): 99-107.DOI: 10.16258/j.cnki.1674-5906.2025.01.011
• Research Article [Environmental Science] • Previous Articles Next Articles
CAO Zhenyu1,2(), TU Chen1,2, LIU Ying1,2, HAN Junchao1,3, XING Qianwen1,4, LUO Yongming1,2,*
Received:
2024-02-11
Online:
2025-01-18
Published:
2025-01-21
Contact:
LUO Yongming
曹振宇1,2(), 涂晨1,2, 刘颖1,2, 韩军超1,3, 邢倩雯1,4, 骆永明1,2,*
通讯作者:
骆永明
作者简介:
曹振宇(1998年生),男,硕士研究生,研究方向为镉污染的生物修复技术。E-mail: caozhenyu21@mails.ucas.ac.cn
基金资助:
CLC Number:
CAO Zhenyu, TU Chen, LIU Ying, HAN Junchao, XING Qianwen, LUO Yongming. Preliminary Study on the Biosorption of Cadmium by Magnetospirillum gryphiswaldense MSR-1[J]. Ecology and Environment, 2025, 34(1): 99-107.
曹振宇, 涂晨, 刘颖, 韩军超, 邢倩雯, 骆永明. 趋磁细菌Magnetospirillum gryphiswaldense MSR-1对镉的生物吸附初步研究[J]. 生态环境学报, 2025, 34(1): 99-107.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.01.011
吸附动力学拟合 | 准一级动力学拟合 | 准二级动力学拟合 | |||||
---|---|---|---|---|---|---|---|
qe/(mg·g−1) | k1 | R | qe/(mg·g−1) | k2 | R | ||
0.259 | 0.614 | 0.998 | 0.261 | 13.865 | 0.999 | ||
吸附热力学拟合 | Langmuir拟合 | Freundlich拟合 | |||||
qmax/(mg·g−1) | kL | R | kF | n | R | ||
1.490 | 0.228 | 0.998 | 0.337 | 2.212 | 0.965 |
Table 1 Parameters fitted to the kinetic equations and isotherm models for Cd(Ⅱ) adsorption by strain MSR-1
吸附动力学拟合 | 准一级动力学拟合 | 准二级动力学拟合 | |||||
---|---|---|---|---|---|---|---|
qe/(mg·g−1) | k1 | R | qe/(mg·g−1) | k2 | R | ||
0.259 | 0.614 | 0.998 | 0.261 | 13.865 | 0.999 | ||
吸附热力学拟合 | Langmuir拟合 | Freundlich拟合 | |||||
qmax/(mg·g−1) | kL | R | kF | n | R | ||
1.490 | 0.228 | 0.998 | 0.337 | 2.212 | 0.965 |
[1] |
ABDOLALI A, NGO H H, GUO W, et al., 2015. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies[J]. Bioresource Technology, 193:477-487.
DOI PMID |
[2] | AFROOZ M R, MOGHADAS B K, TAMJIDI S, 2022. Performance of functionalized bacterial as bio-adsorbent for intensifying heavy metal uptake from wastewater: A review study[J]. Journal of Alloys and Compounds, 893:162321. |
[3] | AMIRNIA S, RAY M B, MARGARITIS A, 2015. Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor-biosorption system[J]. Chemical Engineering Journal, 264(1):863-872. |
[4] |
ARAUJO A C V, ABREU F, SILVA K T, et al., 2015. Magnetotactic bacteria as potential sources of bioproducts[J]. Marine Drugs, 13(1):389-430.
DOI PMID |
[5] | ARIVALAGAN P, SINGARAJ D, HARIDASS V, et al., 2014. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus[J]. Ecological Engineering, 71:728-735. |
[6] |
BAZYLINSKI D A, FRANKEL R B, 2004. Magnetosome formation in prokaryotes[J]. Nature Reviews Microbiology, 2:217-230.
PMID |
[7] |
BLAKEMORE R, 1975. Magnetotactic bacteria[J]. Science, 190:377-379.
PMID |
[8] |
CHAKRAVARTY R, BANERJEE P C, 2008. Morphological changes in an acidophilic bacterium induced by heavy metals[J]. Extremophiles, 12:279-284.
DOI PMID |
[9] |
CHANDRANGSU P, RENSING C, HELMANN J D, 2017. Metal homeostasis and resistance in bacteria[J]. Nature Reviews Microbiology, 15(6):338-350.
DOI PMID |
[10] | CHOIŃSKA-PULIT A, SOBOLCZYK-BEDNAREK J, ŁABA W, 2018. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design[J]. Ecotoxicology and Environmental Safety, 149:275-283. |
[11] | DENG M, LI K, YAN Y J, et al., 2022. Enhanced cadmium removal by growing Bacillus cereus RC-1 immobilized on different magnetic biochars through simultaneous adsorption and bioaccumulation[J]. Environmental Science and Pollution Research, 29:18495-18507. |
[12] | HASSAN M, NAIDU R, DU J, et al., 2020. Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment[J]. Science of The Total Environment, 702:134893. |
[13] | HE N, RAN M, HU L, et al., 2023. Periplasmic space is the key location for Pb(II) biomineralization by Burkholderia cepacian[J]. Journal of Hazardous Materials, 445:130465. |
[14] | HOSSAIN S T, MALLICK I, MUKHERJEE S K, 2012. Cadmium toxicity in Escherichia coli: Cell morphology, Z-ring formation and intracellular oxidative balance[J]. Ecotoxicology and Environmental Safety, 86:54-59. |
[15] | HUANG F, DANG Z, GUO C L, et al., 2013. Biosorption of Cd(Ⅱ) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil[J]. Colloids and Surfaces B: Biointerfaces, 107:11-18. |
[16] | HUANG F, WANG Z H, CAI Y X, et al., 2018. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions[J]. Ecotoxicology and Environmental Safety, 157:216-226. |
[17] | LI D D, XU X J, YU H R, et al., 2017. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China[J]. Journal of Environmental Management, 196:8-15. |
[18] | LIMCHAROENSUK T, SOOKSAWAT N, SUMARNROTE A, et al., 2015. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand[J]. Ecotoxicology and Environmental Safety, 122:322-330. |
[19] | LIU S N, WIATROWSKI H A, 2018. Reduction of Hg(Ⅱ) to Hg(0) by biogenic magnetite from two magnetotactic bacteria[J]. Geomicrobiology Journal, 35(3):198-208. |
[20] | LÜ B B, YANG C L, TAN Z X, et al., 2023. Association between cadmium exposure and pulmonary function reduction: Potential mediating role of telomere attrition in chronic obstructive pulmonary disease patients[J]. Ecotoxicology and Environmental Safety, 251:114548. |
[21] | MARKOU G, MITROGIANNIS D, ÇELEKLI A, et al., 2015. Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions[J]. Chemical Engineering Journal, 259:806-813. |
[22] | MOHITE B V, KOLI S H, PATIL S V, 2018. Heavy metal stress and its consequences on exopolysaccharide (EPS)-Producing Pantoea agglomerans[J]. Applied Biochemistry and Biotechnology, 186(Part C):199-216. |
[23] | PABST M W, MILLER C D, DIMKPA C O, et al., 2010. Defining the surface adsorption and internalization of copper and cadmium in a soil bacterium, Pseudomonas putida[J]. Chemosphere, 81:904-910. |
[24] | PARK J H, CHON H T, 2016. Characterization of cadmium biosorption by Exiguobacterium sp. isolated from farmland soil near Cu-Pb-Zn mine[J]. Environmental Science and Pollution Research, 23:11814-11822. |
[25] | PENG D H, QIAO S Y, LUO Y, et al., 2020. Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil[J]. Journal of Hazardous Materials, 400:123116. |
[26] | PHAM V H T, KIM J, CHANG S, et al., 2022. Bacterial biosorbents, an efficient heavy metals green clean-up strategy: prospects, challenges, and opportunities[J]. Microorganisms, 10(3):610. |
[27] | PRIYADARSHANEE M, DAS S, 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review[J]. Journal of Environmental Chemical Engineering, 9(1):104686. |
[28] | QU Y M, ZHANG X M, XU J, et al., 2014. Removal of hexavalent chromium from wastewater using magnetotactic bacteria[J]. Separation and Purification Technology, 136:10-17. |
[29] |
SANNIGRAHI S, SUTHINDHIRAN K, 2019. Metal recovery from printed circuit boards by magnetotactic bacteria[J]. Hydrometallurgy, 187:113-124.
DOI |
[30] |
SATARUG S, VESEY D A, GOBE G C, et al., 2023. Estimation of health risks associated with dietary cadmium exposure[J]. Archives of Toxicology, 97(2):329-358.
DOI PMID |
[31] | SOHBATZADEH H, KESHTKAR A R, SAFDARI J, et al., 2017. Insights into the biosorption mechanisms of U(Ⅵ) by chitosan bead containing bacterial cells: A supplementary approach using desorption eluents, chemical pretreatment and PIXE-RBS analyses[J]. Chemical Engineering Journal, 323:492-501. |
[32] | SONG H P, LI X G, SUN J S, et al., 2008. Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(Ⅲ) from contaminated wastewater with a magnetic separator[J]. Chemosphere, 72(4):616-621. |
[33] | SREEDEVI P R, SURESH K, JIANG G, 2022. Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications[J]. Journal of Water Process Engineering, 48:102884. |
[34] | SUN X F, WANG S G, ZHANG X M, et al., 2009. Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules[J]. Journal of Colloid and Interface Science, 335(1):11-17. |
[35] | TAJER-MOHAMMAD-GHAZVINI P, KASRA-KERMANSHAHI R, NOZAD-GOLIKAND A, et al., 2016. Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation[J]. Bioprocess and Biosystems Engineering, 39(12):1899-1911. |
[36] |
UEBE R, SCHÜLER D, 2016. Magnetosome biogenesis in magnetotactic bacteria[J]. Nature Reviews Microbiology, 14:621-637.
DOI PMID |
[37] | WANG Y H, GAO H, SUN J S, et al., 2011. Selective reinforced competitive biosorption of Ag(Ⅰ) and Cu(Ⅱ) on Magnetospirillum gryphiswaldense[J]. Desalination, 270(1-3):258-263. |
[38] |
WU G, KANG H B, ZHANG X, et al., 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 174(1-3):1-8.
DOI PMID |
[39] | WU S C, HSIAO W C, ZHAO Y C, et al., 2023. Hexavalent chromate bioreduction by a magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 and the effect of magnetosome synthesis[J]. Chemosphere, 330:138739. |
[40] |
YAN L, ZHANG S, CHEN P, et al., 2012. Magnetotactic bacteria, magnetosomes and their application[J]. Microbiological Research, 167(9):507-519.
DOI PMID |
[41] |
ZHAO L Z, WU D, WU L F, et al., 2007. A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer[J]. Journal of Biochemical and Biophysical Methods, 70(3):377-383.
DOI PMID |
[42] |
陈宇婷, 盛光遥, 谢康颖, 等, 2021. 枯草芽孢杆菌耐镉能力驯化及镉吸附特性研究[J]. 工业水处理, 41(2):97-102.
DOI |
CHEN Y T, SHENG G Y, XIE K Y, et al., 2021. Acclimation of cadmium tolerance and cadmium adsorption characteristics of Bacillus subtilis[J]. Industrial Water Treatment, 41(2):97-102. | |
[43] | 韩秀英, 郭瑞雪, 邵美丽, 等, 2013. 响应面分析法优化磁螺菌 (M. gryphiswaldense MSR-1) 的培养条件[J]. 安徽农业科学, 41(12):5179-5182, 5232. |
HAN X Y, GUO R X, SHAO M L, et al., 2013. Optimization of growth condition of Magnetospirillum gryphiswaldense MSR-1 via response surface methodology[J]. Journal of Anhui Agricultural Science, 41(12):5179-82, 232. | |
[44] |
李卓阳, 曹苗苗, 周登博, 等, 2022. 高耐镉细菌Burkholderia sp. DF3-1对镉的吸附特性及机理[J]. 热带作物学报, 43(3):589-596.
DOI |
LI Z Y, CAO M M, ZHOU D B, et al., 2022. Adsorption characteristics and mechanism of high cadmium-tolerant bacteria Burkholder sp. DF-1 to cadmium[J]. Chinese Journal of Tropical Crops, 43(3):589-96. | |
[45] | 宋慧平, 李鑫钢, 孙津生, 等, 2007. Biosorption equilibrium and kinetics of Au(Ⅲ) and Cu(Ⅱ) on magnetotactic Bacteria[J]. 中国化学工程学报: 英文版, 15(6):847-854. |
SONG H P, LI X G, SUN J S, et al., 2007. Biosorption equilibrium and kinetics of Au(Ⅲ) and Cu(Ⅱ) on magnetotactic Bacteria[J]. Chinese Journal of Chemical Engineering, 15(6):847-854. | |
[46] | 邵鑫, 孙凯, 熊婧, 等, 2017. 耐镉乳酸菌对重金属镉的吸附机制[J]. 食品与发酵工业, 43(3):48-53, 60. |
SHAO X, SUN K, XIONG J, et al., 2017. The cadmium removal mechanism of lactobacillus strains[J]. Food and Fermentation Industries, 43(3):48-53, 60. | |
[47] | 燕传明, 贺卓, 葛占标, 等, 2018. 两株重金属抗性细菌对铅镉吸附特性的比较研究[J]. 环境科学学报, 38(9):3597-3604. |
YAN C M, HE Z, GE Z B, et al., 2018. Comparative study on adsorption characteristics of lead and cadmium by two heavy metal resistant bacteria[J]. Acta Scientiae Circumstantiae, 38(9):3597-3604. | |
[48] | 张楠, 杨洁秋, 蔡思恒, 等, 2023. Sphingopyxis sp.YF1吸附镉的特性及其机制[J]. 微生物学通报, 50(8):3330-3344. |
ZHANG N, YANG J Q, CAI X H, et al., 2023. Characteristics and mechanisms of cadmium adsorption by Sphingopyxis sp. YF1[J]. Microbiology China, 50(8):3330-3344. |
[1] | HAN Junchao, ZHENG Maokun, TU Chen, LIU Ying, CAO Zhenyu, XING Qianwen, SHEN Weishou, LUO Yongming. Research Progresses and Prospects on the Application of Magnetotactic Bacteria in Environmental Remediation [J]. Ecology and Environment, 2025, 34(1): 145-155. |
[2] | YOU Qi, YANG Yi, ZHANG Yinqing, ZHU Lingyan. Chemical Transformation and Influencing Factors of Silver Nanoparticles in Aquatic Environments [J]. Ecology and Environment, 2025, 34(1): 156-166. |
[3] | NING Jing, WANG Chun, LU Guanling, WEI Lu. Exposure of Zebrafish to Cadmium and Melatonin Induces Changes in Gut Organization, Oxidative Damage, and Microbial Diversity [J]. Ecology and Environment, 2025, 34(1): 77-88. |
[4] | LI Yanlin, CHEN Yangyang, YANG Shuangrong, LIU Jumei. Study on the Effects of Organic Acids in Plant Root Exudates on Soil Organic Carbon and Nitrogen Mineralization [J]. Ecology and Environment, 2024, 33(9): 1362-1371. |
[5] | DAI Xiaoai, MA Jiaxin, TANG Yiling, LI Weile. Spatio-temporal Dynamics and Attribution Analysis of Vegetation in Gansu Province [J]. Ecology and Environment, 2024, 33(8): 1163-1173. |
[6] | ZHANG Baodong, WANG Biao, WU Yanlan, MENG Yu, XU Sheng, QIAN Zhenbing, QIN Jun. Analysis and Identification of Characteristics of Rural Black and Odorous Water Bodies in Anhui Province [J]. Ecology and Environment, 2024, 33(8): 1257-1268. |
[7] | WANG Xuerong, GONG Jianzhou, YU Fangyuan. Mutual Feedback Relationships and Mechanisms of Ecosystem Four Regulating Services in the Greater Bay Area of Guangdong, Hongkong and Macao [J]. Ecology and Environment, 2024, 33(7): 1130-1141. |
[8] | ZHANG Weichen, WANG Xingqi, WANG Bojie. Spatiotemporal Pattern and Influencing Factors of the Ecosystem Services in the Tabu River Basin [J]. Ecology and Environment, 2024, 33(7): 1142-1152. |
[9] | LI Haiyan, YANG Tao, LIAO Yilin, QU Yajie. Analysis of Distribution Pattern and Driving Habitat Quality of Rivers in the Wei River Basin (Shaanxi section) [J]. Ecology and Environment, 2024, 33(7): 1153-1162. |
[10] | WANG Jiechun, DENG Yujiao, ZHU Huaiwei, KONG Yunqi. Spatiotemporal Variations of Vegetation NPP of Different Ecosystems in Guangdong Province and Its Response to Climate Factors [J]. Ecology and Environment, 2024, 33(6): 831-840. |
[11] | LI Cheng, CHENG Zhipeng, LIU Yujin, YAO Yiming, LI Chunlei. Research on Ecological Risks and Its Control Policies of Per- and Polyfluoroalkyl Substances [J]. Ecology and Environment, 2024, 33(6): 980-996. |
[12] | WANG Meinai, FAN Shunxiang, SHU Hanjun, ZHANG Jianjie, CHU Liqi, FA Yuqi. Spatio-temporal Variations in Soil Erosion and Its Economic Value of Soil Conservation in Henan Province [J]. Ecology and Environment, 2024, 33(5): 730-744. |
[13] | LI Linfeng, XU Zisheng, CHEN Yong, LI Qi, LIN Xiaoyang, LI Yichun. The Impact of Silicon Application Levels on the Iron Plaque of Rice Roots and the Accumulation and Distribution of Cadmium Within the Plant [J]. Ecology and Environment, 2024, 33(5): 781-790. |
[14] | HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China [J]. Ecology and Environment, 2024, 33(4): 499-508. |
[15] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environment, 2024, 33(4): 509-519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn