Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1782-1791.DOI: 10.16258/j.cnki.1674-5906.2024.11.012
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Wenzhang1,2,5(), HU Yaru1,3,*(
), LI Fayun1,2,*(
), WANG Wei1,3, ZHANG Jining4, GUO Qin1,2
Received:
2024-06-21
Online:
2024-11-18
Published:
2024-12-06
Contact:
HU Yaru,LI Fayun
李文章1,2,5(), 胡亚茹1,3,*(
), 李法云1,2,*(
), 王玮1,3, 张继宁4, 郭琴1,2
通讯作者:
胡亚茹,李法云
作者简介:
李文章(1997年生),男,硕士研究生,研究方向为有机污染场地修复。E-mail: lwz18333286318@163.com
基金资助:
CLC Number:
LI Wenzhang, HU Yaru, LI Fayun, WANG Wei, ZHANG Jining, GUO Qin. Preparation of Iron Modified Biochar-attapulgite Carrier Immobilized Bacterial Agent and Its Remediation for Soil Contaminated by Chlorobenzene[J]. Ecology and Environment, 2024, 33(11): 1782-1791.
李文章, 胡亚茹, 李法云, 王玮, 张继宁, 郭琴. 铁改性生物炭-凹凸棒石载体固定化菌剂制备及其对氯苯污染土壤修复作用[J]. 生态环境学报, 2024, 33(11): 1782-1791.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.012
名称 | 分子式 | 分子量 | 辛醇-水分配系数 的对数值 | 相对密度 (水꞉1) | 熔点/ ℃ | 沸点/ ℃ |
---|---|---|---|---|---|---|
1-氯苯 | C6H5Cl | 112.56 | 2.84 | 1.10 | -45.2 | 132.2 |
Table 1 Physicochemical properties of chlorobenzene
名称 | 分子式 | 分子量 | 辛醇-水分配系数 的对数值 | 相对密度 (水꞉1) | 熔点/ ℃ | 沸点/ ℃ |
---|---|---|---|---|---|---|
1-氯苯 | C6H5Cl | 112.56 | 2.84 | 1.10 | -45.2 | 132.2 |
组别 | SYTO 9 | PI |
---|---|---|
Blank | ‒ | ‒ |
SYTO 9 | 2 μL、37 ℃避光培养30 min | ‒ |
SYTO 9+PI | 2 μL、37 ℃避光培养30 min | 4 μL、37 ℃避光培养30 min |
BFAT@W3 | 2 μL、37 ℃避光培养30 min | 4 μL、37 ℃避光培养30 min |
Table 2 Dyeing treatment of BFAT@W3
组别 | SYTO 9 | PI |
---|---|---|
Blank | ‒ | ‒ |
SYTO 9 | 2 μL、37 ℃避光培养30 min | ‒ |
SYTO 9+PI | 2 μL、37 ℃避光培养30 min | 4 μL、37 ℃避光培养30 min |
BFAT@W3 | 2 μL、37 ℃避光培养30 min | 4 μL、37 ℃避光培养30 min |
元素成分 | 相对分子质量 | 质量浓度/(mg·L-1) |
---|---|---|
KNO3 | 101.21 | 1900 |
NH4NO3 | 80.04 | 1650 |
KH2PO4 | 136.09 | 170 |
MgSO4·7H2O | 246.47 | 370 |
CaCl2·2H2O | 147.02 | 440 |
Table 3 The main components of MS medium
元素成分 | 相对分子质量 | 质量浓度/(mg·L-1) |
---|---|---|
KNO3 | 101.21 | 1900 |
NH4NO3 | 80.04 | 1650 |
KH2PO4 | 136.09 | 170 |
MgSO4·7H2O | 246.47 | 370 |
CaCl2·2H2O | 147.02 | 440 |
组别 | BFAT@W3 投加比例 | 加入BFAT@W3 质量/g | 氯苯溶液 体积/mL | |
---|---|---|---|---|
CK | 0 | 0 | 50 | |
T1 | 1꞉100 | 0.5 | 50 | |
T2 | 2꞉100 | 1.0 | 50 | |
T3 | 3꞉100 | 1.5 | 50 |
Table 4 Experimental design for the removal of chlorobenzene by BFAT@W3
组别 | BFAT@W3 投加比例 | 加入BFAT@W3 质量/g | 氯苯溶液 体积/mL | |
---|---|---|---|---|
CK | 0 | 0 | 50 | |
T1 | 1꞉100 | 0.5 | 50 | |
T2 | 2꞉100 | 1.0 | 50 | |
T3 | 3꞉100 | 1.5 | 50 |
组别 | 处理方式 |
---|---|
CK | 无 |
BC-Fe-ATP | 铁改性生物炭-凹凸棒石复合载体 |
W3 | 游离菌 |
BFAT@W3 | 复合载体固定化菌剂 |
Table 5 Experimental design of BFAT@W3 for remediation of contaminated soil
组别 | 处理方式 |
---|---|
CK | 无 |
BC-Fe-ATP | 铁改性生物炭-凹凸棒石复合载体 |
W3 | 游离菌 |
BFAT@W3 | 复合载体固定化菌剂 |
材料类型 | 平均孔径/nm | 比表面积/(m2·g-1) | 总孔体积/(m3·g-1) |
---|---|---|---|
BC | 5.07 | 23.4 | 0.03 |
BC-ATP | 8.43 | 26.5 | 0.04 |
BC-Fe-ATP | 2.30 | 210.7 | 0.13 |
Table 6 Average pore size, specific surface area, and total pore volume for the three carrier materials
材料类型 | 平均孔径/nm | 比表面积/(m2·g-1) | 总孔体积/(m3·g-1) |
---|---|---|---|
BC | 5.07 | 23.4 | 0.03 |
BC-ATP | 8.43 | 26.5 | 0.04 |
BC-Fe-ATP | 2.30 | 210.7 | 0.13 |
处理组 | pH | 电导率/(dS·m-1) | 有机碳质量分数/(g·kg-1) | |||
---|---|---|---|---|---|---|
修复前 | 修复后 | 修复前 | 修复后 | 修复前 | 修复后 | |
CK | 7.76±0.05 | 7.65±0.02 | 2.33±0.02 | 2.396±0.01 | 14.54±0.34 | 15.14±0.49 |
W3 | 7.46±0.04 | 2.10±0.06 | 13.63±0.38 | |||
BC-Fe-ATP | 8.4±0.05 | 2.914±0.01 | 18.26±0.39 | |||
BFAT@W3 | 7.74±0.04 | 2.213±0.04 | 17.90±0.46 |
Table 7 Changes of soil pH, electrical conductivity and organic carbon content before and after restoration
处理组 | pH | 电导率/(dS·m-1) | 有机碳质量分数/(g·kg-1) | |||
---|---|---|---|---|---|---|
修复前 | 修复后 | 修复前 | 修复后 | 修复前 | 修复后 | |
CK | 7.76±0.05 | 7.65±0.02 | 2.33±0.02 | 2.396±0.01 | 14.54±0.34 | 15.14±0.49 |
W3 | 7.46±0.04 | 2.10±0.06 | 13.63±0.38 | |||
BC-Fe-ATP | 8.4±0.05 | 2.914±0.01 | 18.26±0.39 | |||
BFAT@W3 | 7.74±0.04 | 2.213±0.04 | 17.90±0.46 |
样品 | Alpha多样性指数 | |||||
---|---|---|---|---|---|---|
Shannon | Chao | Ace | Simpson | Coverage | Shannoneven | |
CK | 6.00 | 2631.02 | 2723.79 | 0.03 | 0.99 | 0.76 |
W3 | 4.83 | 2314.85 | 2426.33 | 0.08 | 0.99 | 0.63 |
BC-Fe-ATP | 6.09 | 2565.87 | 2656.27 | 0.03 | 0.99 | 0.78 |
BFAT@W3 | 2.07 | 953.49 | 1017.84 | 0.4 | 1.00 | 0.31 |
Table 8 The Alpha diversity indexes of soils
样品 | Alpha多样性指数 | |||||
---|---|---|---|---|---|---|
Shannon | Chao | Ace | Simpson | Coverage | Shannoneven | |
CK | 6.00 | 2631.02 | 2723.79 | 0.03 | 0.99 | 0.76 |
W3 | 4.83 | 2314.85 | 2426.33 | 0.08 | 0.99 | 0.63 |
BC-Fe-ATP | 6.09 | 2565.87 | 2656.27 | 0.03 | 0.99 | 0.78 |
BFAT@W3 | 2.07 | 953.49 | 1017.84 | 0.4 | 1.00 | 0.31 |
[1] | ALABI A B, AIYESANMI A F, OLOLADE I A, 2021. Qualitative and quantitative assessment of hydrocarbons in soil profiles of auto-mechanic workshop: A case study of Akure city, Nigeria[J]. Polycyclic Aromatic Compounds, 41(1): 1-14. |
[2] | AMEN N, EQANI S A M A S, BILAL K, et al., 2022. Molecularly tracing of children exposure pathways to environmental organic pollutants and the autism spectrum disorder risk[J]. Environmental Pollution, 315: 120381. |
[3] | KASOZI G N, ZIMMERMAN A R, NKEDI-KIZZA P, et al., 2010. Catechol and humic acid sorption onto a range of laboratory-produced black Carbons (biochars)[J]. Environmental Science & Technology, 44(16): 6189-6195. |
[4] | LI J N, ZHANG Y, WANG F H, et al., 2021. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation[J]. Science of The Total Environment, 768: 144521. |
[5] | LI R, WANG B, NIU A P, et al., 2022. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review[J]. The Science of the total environment, 837: 155563. |
[6] | LIN M X, LI F Y, LI X T, et al., 2023. Biochar-clay, biochar-microorganism and biochar-enzyme composites for environmental remediation: A review[J]. Environmental Chemistry Letters, 21(3): 1837-1862. |
[7] | LIN M X, LI F Y, WANG W, et al., 2022. Interfacial chemical behaviors and petroleum hydrocarbon removal performances of the biochar-mineral composites prepared by one-step pyrolysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 655: 130217. |
[8] | OBIRI-NYARKO F, GRAJALES-MESA S J, MALINA G, 2014. An overview of permeable reactive barriers for in situ sustainable groundwater remediation[J]. Chemosphere, 111: 243-59. |
[9] | OUYANG X F, YIN H, YU X L, et al., 2021. Enhanced bioremediation of 2,3′,4,4′,5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar[J]. Science of The Total Environment, 788: 147774. |
[10] |
BUTLER S, O’DWYER J, 2018. Stability criteria for complex microbial communities[J]. Nature communications, 9: 2970.
DOI PMID |
[11] | WU H, YANG M X, TSUI T, et al., 2020. Comparative evaluation on the utilization of applied electrical potential in a conductive granule packed biotrickling filter for continuous abatement of xylene: performance, limitation, and microbial community[J]. Journal of Environmental Management, 274: 111145. |
[12] | XU X Y, ZHOU H, CHEN X, et al., 2019. Biodegradation potential of polycyclic aromatic hydrocarbons by immobilized Klebsiella sp. in soil washing effluent[J]. Chemosphere, 223(5): 140-147. |
[13] |
XU Y H, LU M, 2010. Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments[J]. Journal of Hazardous Materials, 183(1-3): 395-401.
DOI PMID |
[14] |
ZHANG C F, ZHANG D D, XIAO Z X, et al., 2015. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol[J]. Chemosphere, 131: 110-116.
DOI PMID |
[15] | ZHANG Y, LIU S, NIU L L, et al., 2023. Sustained and efficient remediation of biochar immobilized with Sphingobium abikonenseon phenanthrene-copper co-contaminated soil and microbial preferences of the bacteria colonized in biochar[J]. Biochar, 5(1): 43. |
[16] | 崔长征, 沈萍, 张甲耀, 2012. 铜绿假单胞菌的高含量双鼠李糖脂在生物修复中的应用: 中国, CN201010230691.6[P]. 2012-02-01. [2024-09-10]. https://s6.aconvert.com/convert/p3r68-cdx67/a5qpz-3ahsr.html. |
CUI C Z, SHEN P, ZHANG J Y, 2012. Application of high content of bisrhamnolipide from Pseudomonas aeruginosa in bioremediation: China, CN201010230691.6[P]. 2012-02-01. [2024-09-10]. https://s6.aconvert.com/convert/p3r68-cdx67/a5qpz-3ahsr.html. | |
[17] |
程文远, 李法云, 吕建华, 等, 2022. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 31(4): 824-834.
DOI |
CHENG W Y, LI F Y, LÜ J H, et al., 2022. Sorption characteristics of polycyclic aromatic hydrocarbons phenanthrene on sunflower straw biochar modified with alkali[J]. Ecology and Environmental Sciences, 31(4): 824-834 | |
[18] | 李冰, 陈林, 庞丹波, 等, 2024. 基于文献计量分析近11年土壤有机碳的研究进展[J]. 中国农业大学学报, 29(4): 138-151. |
LI B, CHEN L, PANG D B, et al., 2024. Research progress of soil organic carbon in recent 11 years based on bibliometric analysis[J]. Journal of China Agricultural University, 29(4): 138-151. | |
[19] | 李文章, 李法云, 胡亚茹, 等, 2024. 生物炭基改性材料修复土壤氯代烃污染研究进展[J]. 应用化工, 53(5): 1180-1185. |
LI W Z, LI F Y, HU Y R, et al., 2024. Research progress on remediation of soil chlorinated hydrocarbon pollution by modified biochar-based materials[J]. Applied Chemical Industry, 53(5): 1180-1185. | |
[20] | 刘维涛, 李剑涛, 郑泽其, 等, 2021. 微生物固定化技术修复石油烃污染土壤[J]. 应用技术学报, 21(4): 339-347. |
LIU W T, LI J T, ZHENG Z Q, et al., 2021. Microbial immobilization technology for bioremediation of petroleum hydrocarbon contaminated soil[J]. Journal of Technology, 21(4): 339-347. | |
[21] | 任宏洋, 马伶俐, 王兵, 等, 2017. 生物炭基固定化菌剂对石油类污染物的高效降解[J]. 环境工程学报, 11(11): 6177-6183. |
REN H Y, MA L L, WANG B, et al., 2017. Efficient degradation of petroleum pollutant by immobilized bacteria based on biochar material[J]. Chinese Journal of Environmental Engineering, 11(11): 6177-6183. | |
[22] | 吴才武, 夏建新, 段峥嵘, 2015. 土壤有机质测定方法述评与展望[J]. 土壤, 47(3): 453-460. |
WU C W, XIA J X, DUAN Z R, 2015. Review on detection methods of soil organic matter (SOM)[J]. Soils, 47(3): 453-460. | |
[23] | 闫夏彤, 2022. 不同水解菌对长焰煤降解特征研究[D]. 焦作: 河南理工大学. |
YAN X T, 2022. Characterization of the action of different hydrolytic bacteria on long-flame coal[D]. Jiaozuo: Henan Polytechnic University. | |
[24] | 余锦涛, 2022. 氯代烃污染场地的微生物功能群特性及其降解潜力[D]. 武汉: 中国地质大学. |
YU J T, 2022. Community characteristics and degradation potential of the microbes in chlorinated hydrocarbons contaminated sites[D]. Wuhan: China University of Geosciences. | |
[25] | 张涵, 张秀霞, 尚琼琼, 等, 2016. 秸秆载体腐解对微生物修复石油污染的影响[J]. 石油学报(石油加工), 32(4): 767-772. |
ZHANG H, ZHANG X X, SHANG Q Q, et al., 2016. Effect of straw carrier decomposition on remediation of petroleum contaminated soil by microorganism[J]. Acta Petrolei Sinica (Petroleum Processing Section), 32(4): 767-772. | |
[26] | 张浩, 邢志林, 汪军, 等, 2020. 异养同化降解氯代烃的研究现状、微生物代谢特性及展望[J]. 生物工程学报, 36(6): 1083-1100. |
ZHANG H, XING Z L, WANG J, et al., 2020. Advances in microbial degradation of chlorinated hydrocarbons[J]. Chinese Journal of Biotechnology, 36(6): 1083-1100. | |
[27] | 张梦飞, 2021. BS-12两性修饰不同磁性黏土矿物对苯酚和Cd2+的吸附研究[D]. 咸阳: 西北农林科技大学. |
ZHANG M F, 2021. Adsorption of phenol and Cd2+ on different magnetic clay minerals modified with amphoteric surfactant BS-12[D]. Xianyang: Northwest A & F University. | |
[28] |
张太平, 肖嘉慧, 胡凤洁, 2021. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 30(5): 1084-1093.
DOI |
ZHANG T P, XIAO J H, HU F J, 2021. Research progress in the removal of contaminants from water by immobilized microorganisms combined with biochar[J]. Ecology and Environmental Sciences, 30(5): 1084-1093. | |
[29] | 郑曦萌, 2023. 生物炭固定化微生物技术对镉污染土壤的稳定化效果及其影响因素研究[D]. 西安: 西安理工大学. |
ZHENG X M, 2023. Research on the stabilization effect and influencing factors of biochar immobilized microorganisms on cadmium contaminated soil[D]. Xi’an: Xi’an University of Technology. | |
[30] | 朱琦, 2014. 饮用水处理过程中溴酸盐的生成特性及优化控制研究[D]. 哈尔滨: 哈尔滨工业大学. |
ZHU Q, 2014. Bromate Formation Characteristics and Optimal Control in Drinking Water Treatment Process[D]. Harbin: Harbin Institute of Technology. |
[1] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environment, 2024, 33(8): 1279-1288. |
[2] | CHEN Wenzhe, HUANG Qiuxiang, MENG Fande, GAO Jinyan, LI Min, ZHANG Enjun, YUAN Guodong. Impacts of Oxalic and Tartaric Acids on Arsenic Desorption from a Paddy Soil [J]. Ecology and Environment, 2024, 33(8): 1298-1305. |
[3] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environment, 2024, 33(4): 617-625. |
[4] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environment, 2024, 33(3): 439-449. |
[5] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environment, 2024, 33(2): 261-271. |
[6] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environment, 2024, 33(2): 282-290. |
[7] | LIU Sujie, LIU Chuanping, FANG Liping, CHEN Guanhong, LI Fangbai. Arsenic Methylation Process and the Associated Microbial Mechanisms in Paddy Soil Butyrate-degrading Methanogenic Communities [J]. Ecology and Environment, 2024, 33(10): 1580-1589. |
[8] | MA Yuan, TIAN Lulu, LÜ Jie, LIU Pei, ZHANG Xu, LI Eryang, ZHANG Qinghang. Soil Microbial Communities and Influencing Factors of Picea schrenkiana Forest on the Northern Slope of Tianshan Mountains [J]. Ecology and Environment, 2024, 33(1): 1-11. |
[9] | SHI Run, LI Fayun, ZHOU Chunliang, WANG Wei, ZHOU Yanqiu. The Effect of Using Impatiens Balsam Seed Coat as a Carrier for Immobilized Microorganisms to Remediate Petroleum Hydrocarbon-contaminated Soil [J]. Ecology and Environment, 2023, 32(9): 1700-1708. |
[10] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environment, 2023, 32(4): 678-686. |
[11] | LI Zhuoxuan, PENG Ziran, HE Wenhui, WEI Ruilu, GAO Linxi. Response Surface Optimization and Adsorption Mechanism of Sheep Manure Charcoal on Nitrogen and Phosphorus Adsorption Conditions [J]. Ecology and Environment, 2023, 32(12): 2216-2227. |
[12] | SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas [J]. Ecology and Environment, 2023, 32(11): 1942-1951. |
[13] | ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts [J]. Ecology and Environment, 2023, 32(11): 2019-2029. |
[14] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environment, 2023, 32(10): 1854-1860. |
[15] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn