Ecology and Environment ›› 2024, Vol. 33 ›› Issue (11): 1792-1802.DOI: 10.16258/j.cnki.1674-5906.2024.11.013
• Research Article [Environmental Science] • Previous Articles Next Articles
LI Zikang1(), YIN Xiaojie1,*(
), LIU Yifei1, TANG Jimin1, WANG Yan2
Received:
2024-06-14
Online:
2024-11-18
Published:
2024-12-06
Contact:
YIN Xiaojie
李子康1(), 殷晓洁1,*(
), 刘一飞1, 唐继敏1, 王妍2
通讯作者:
殷晓洁
作者简介:
李子康(2000年生),男,硕士研究生,主要从事石漠化地区生态环境治理研究。E-mail: 2430577330@qq.com
基金资助:
CLC Number:
LI Zikang, YIN Xiaojie, LIU Yifei, TANG Jimin, WANG Yan. Spatio-temporal Evolution and Ecological Sensitivity Evaluation of Rocky Desertification in Typical Karst Mountainous Areas of Southeast Yunnan Province[J]. Ecology and Environment, 2024, 33(11): 1792-1802.
李子康, 殷晓洁, 刘一飞, 唐继敏, 王妍. 滇东南典型喀斯特山区石漠化时空演变及生态敏感性评价[J]. 生态环境学报, 2024, 33(11): 1792-1802.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.11.013
石漠化等级 | 植被覆盖度/% | 基岩裸露率/% | 坡度/(°) |
---|---|---|---|
无石漠化 | >80 | <10 | <5 |
潜在石漠化 | 60-80 | 10-30 | 5-8 |
轻度石漠化 | 40-60 | 30-50 | 8-10 |
中度石漠化 | 20-40 | 50-70 | 10-20 |
重度石漠化 | 10-20 | 70-90 | 20-30 |
极重度石漠化 | <10 | >90 | >30 |
Table 1 Classification criteria of rocky desertification
石漠化等级 | 植被覆盖度/% | 基岩裸露率/% | 坡度/(°) |
---|---|---|---|
无石漠化 | >80 | <10 | <5 |
潜在石漠化 | 60-80 | 10-30 | 5-8 |
轻度石漠化 | 40-60 | 30-50 | 8-10 |
中度石漠化 | 20-40 | 50-70 | 10-20 |
重度石漠化 | 10-20 | 70-90 | 20-30 |
极重度石漠化 | <10 | >90 | >30 |
敏感性等级 | 石漠化 | 水土流失 | 生境质量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
石漠化等级 | 高程/ m | 坡度/ (°) | 植被覆盖度 | 降雨侵蚀力/ (MJ·mm·hm-2·h-1·a-1) | 土壤可蚀性/ (t·h·MJ-1·mm-1) | 土地利用 (董晓媛等, | 距道路距离/ m | |||
非敏感 | 无、潜在石漠化 | 674-1080 | 0-13 | >0.8 | <473 | <0.026 | 水域 | >2000 | ||
轻度敏感 | 轻度石漠化 | 1080-1248 | 13-22 | 0.7-0.8 | 473-503 | 0.026-0.030 | 林地 | 1000-2000 | ||
中度敏感 | 中度石漠化 | 1248-1389 | 22-31 | 0.6-0.7 | 503-533 | 0.030-0.033 | 草地 | 500-1000 | ||
重度敏感 | 重度石漠化 | 1389-1521 | 31-41 | 0.4-0.6 | 533-573 | 0.033-0.034 | 耕地 | 200-500 | ||
极重度敏感 | 极重度石漠化 | 1521-1931 | 41-76 | <0.4 | >573 | >0.034 | 建设用地、未利用地 | <200 |
Table 2 Ecological sensitivity evaluation index system
敏感性等级 | 石漠化 | 水土流失 | 生境质量 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
石漠化等级 | 高程/ m | 坡度/ (°) | 植被覆盖度 | 降雨侵蚀力/ (MJ·mm·hm-2·h-1·a-1) | 土壤可蚀性/ (t·h·MJ-1·mm-1) | 土地利用 (董晓媛等, | 距道路距离/ m | |||
非敏感 | 无、潜在石漠化 | 674-1080 | 0-13 | >0.8 | <473 | <0.026 | 水域 | >2000 | ||
轻度敏感 | 轻度石漠化 | 1080-1248 | 13-22 | 0.7-0.8 | 473-503 | 0.026-0.030 | 林地 | 1000-2000 | ||
中度敏感 | 中度石漠化 | 1248-1389 | 22-31 | 0.6-0.7 | 503-533 | 0.030-0.033 | 草地 | 500-1000 | ||
重度敏感 | 重度石漠化 | 1389-1521 | 31-41 | 0.4-0.6 | 533-573 | 0.033-0.034 | 耕地 | 200-500 | ||
极重度敏感 | 极重度石漠化 | 1521-1931 | 41-76 | <0.4 | >573 | >0.034 | 建设用地、未利用地 | <200 |
权重类别 | 石漠化等级 | 高程 | 坡度 | 植被覆盖度 | 降雨侵蚀力 | 土壤可蚀性 | 土地利用 | 据道路距离 |
---|---|---|---|---|---|---|---|---|
waj | 0.207 | 0.081 | 0.064 | 0.220 | 0.098 | 0.111 | 0.166 | 0.053 |
wbj | 0.264 | 0.030 | 0.060 | 0.318 | 0.044 | 0.081 | 0.106 | 0.097 |
0.231 | 0.060 | 0.062 | 0.261 | 0.076 | 0.098 | 0.141 | 0.071 |
Table 3 Weights of evaluation indicators
权重类别 | 石漠化等级 | 高程 | 坡度 | 植被覆盖度 | 降雨侵蚀力 | 土壤可蚀性 | 土地利用 | 据道路距离 |
---|---|---|---|---|---|---|---|---|
waj | 0.207 | 0.081 | 0.064 | 0.220 | 0.098 | 0.111 | 0.166 | 0.053 |
wbj | 0.264 | 0.030 | 0.060 | 0.318 | 0.044 | 0.081 | 0.106 | 0.097 |
0.231 | 0.060 | 0.062 | 0.261 | 0.076 | 0.098 | 0.141 | 0.071 |
2000年 | 2020年 | 总计 | |||||
---|---|---|---|---|---|---|---|
无石漠化 | 潜在石漠化 | 轻度石漠化 | 中度石漠化 | 重度石漠化 | 极重度石漠化 | ||
无石漠化 | 415.890 | 62.084 | 23.239 | 14.398 | 2.230 | 0.384 | 518.225 |
潜在石漠化 | 244.415 | 142.969 | 39.791 | 24.608 | 4.020 | 0.410 | 456.215 |
轻度石漠化 | 94.968 | 103.571 | 55.251 | 29.544 | 4.993 | 0.435 | 288.762 |
中度石漠化 | 31.868 | 62.640 | 42.597 | 43.662 | 4.827 | 0.400 | 185.993 |
重度石漠化 | 5.847 | 13.626 | 13.064 | 7.142 | 5.309 | 0.260 | 45.248 |
极重度石漠化 | 0.510 | 1.481 | 2.263 | 1.430 | 0.454 | 0.344 | 6.482 |
总计 | 793.499 | 386.371 | 176.205 | 120.784 | 21.833 | 2.233 | 1500.925 |
Table 4 Area transfer matrix of rocky desertification in Xichou County from 2000 to 2020 km2
2000年 | 2020年 | 总计 | |||||
---|---|---|---|---|---|---|---|
无石漠化 | 潜在石漠化 | 轻度石漠化 | 中度石漠化 | 重度石漠化 | 极重度石漠化 | ||
无石漠化 | 415.890 | 62.084 | 23.239 | 14.398 | 2.230 | 0.384 | 518.225 |
潜在石漠化 | 244.415 | 142.969 | 39.791 | 24.608 | 4.020 | 0.410 | 456.215 |
轻度石漠化 | 94.968 | 103.571 | 55.251 | 29.544 | 4.993 | 0.435 | 288.762 |
中度石漠化 | 31.868 | 62.640 | 42.597 | 43.662 | 4.827 | 0.400 | 185.993 |
重度石漠化 | 5.847 | 13.626 | 13.064 | 7.142 | 5.309 | 0.260 | 45.248 |
极重度石漠化 | 0.510 | 1.481 | 2.263 | 1.430 | 0.454 | 0.344 | 6.482 |
总计 | 793.499 | 386.371 | 176.205 | 120.784 | 21.833 | 2.233 | 1500.925 |
[1] | ERMIDA S L, SOARES P, MANTAS V, et al., 2020. Google earth engine open-source code for land surface temperature estimation from the landsat series[J]. Remote Sensing, 12(9): 1471. |
[2] | HUANG H B, CHEN Y L, CLINTON N, et al., 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine[J]. Remote Sensing of Environment, 202: 166-176. |
[3] | LIAO W H, JIANG W G, 2020. Evaluation of the spatiotemporal variations in the eco-environmental quality in China based on the remote sensing ecological index[J]. Remote Sensing, 12(15): 2462. |
[4] | WANG Y D, LI Z W, ZENG C, et al., 2020. An urban water extraction method combining deep learning and Google Earth engine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 769-782. |
[5] | XIONG J, THENKABAIL P S, GUMMA M K, et al., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing[J]. Isprs Journal of Photogrammetry & Remote Sensing, 126: 225-244. |
[6] | YUAN D X, 1997. Rock desertification in the subtropical karst of south China[J]. Zeitschrift fur Geomorphologie, 108: 81-90. |
[7] | 陈棋, 张超, 田湘云, 等, 2022. 基于GEE的曲靖石漠化时空演变过程分析[J]. 西南林业大学学报(自然科学), 42(5): 1-10. |
CHEN Q, ZHANG C, TIAN X Y, et al., 2022. Spatial and temporal evolution of rocky desertification in Qujing based on GEE[J]. Journal of Southwest Forestry University (Natural Science), 42(5): 1-10. | |
[8] | 崔斌凯, 2023. 基于熵值法和层次分析法的平凉市生态敏感性与恢复力分析[D]. 兰州: 兰州大学. |
CUI B K, 2023. Ecological sensitivity and resilience analysis of Pingliang City based on entropy method and analytic Hierarchy process[D]. Lanzhou: Lanzhou University. | |
[9] | 段蓉, 李廷勇, 2022. 云南省石漠化现状及环境问题[J]. 资源节约与环保 (7): 36-40. |
DUAN R, LI T Y, 2022. Rocky desertification status and environmental problems in Yunnan Province[J]. Resource Conservation and Environmental Protection (7): 36-40. | |
[10] |
董晓媛, 胥德泽, 施小斌, 等, 2024. 黄河流域甘肃段生态敏感性评价研究——以广河县为例[J]. 干旱区地理, 47(4): 599-611.
DOI |
DONG X Y, XU D Z, SHI X B, et al., 2024. Ecological sensitivity assessment of the Gansu section of the Yellow River Basin: A case study of Guanghe County[J]. Arid Land Geography, 47(4): 599-611. | |
[11] | 高家勇, 李瑞, 杨坪坪, 等, 2022. 贵州省土壤可蚀性K值空间分布特征及主要影响因子[J]. 水土保持研究, 29(5): 77-84. |
GAO J Y, LI R, YANG P P, et al., 2022. Spatial distribution characteristics and main influencing factors of soil erodibility K value in Guizhou Province[J]. Research on Soil and Water Conservation, 29(5): 77-84. | |
[12] | 管青春, 郝晋珉, 王宏亮, 等, 2018. 经济转型视角下矿产资源城市生态敏感性评价[J]. 农业工程学报, 34(21): 253-262. |
GUAN Q C, HAO J M, WANG H L, et al., 2018. Ecological sensitivity evaluation of mineral resource cities from the perspective of economic transformation[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(21): 253-262. | |
[13] | 何苏玲, 邹凤琼, 王金亮, 2021. 基于AHP和MSE赋权法的龙南县生态敏感性评价[J]. 生态学杂志, 40(9): 2927-2935. |
HE S L, ZOU F Q, WANG J L, 2021. Ecological sensitivity assessment of Longnan County based on AHP and MSE weighting methods[J]. Chinese Journal of Ecology, 40(9): 2927-2935. | |
[14] | 李阳兵, 白晓永, 邱兴春, 等, 2006. 喀斯特石漠化与土地利用相关性研究[J]. 资源科学, 28(2): 67-73. |
LI Y B, BAI X Y, QIU X C, et al., 2006. Study on the correlation between karst rocky desertification and land use[J]. Resource Science, 28(2): 67-73. | |
[15] | 毛丽君, 李明诗, 2023. GEE环境下联合Sentinel主被动遥感数据的国家公园土地覆盖分类[J]. 武汉大学学报(信息科学版), 48(5): 756-764. |
MAO L J, LI M S, 2023. Land cover classification of national parks based on joint Sentinel active and passive remote sensing data in GEE environment[J]. Journal of Wuhan University (Information Science), 48(5): 756-764. | |
[16] | 蒙雯洋, 饶良懿, 2024. 砒砂岩覆土区典型小流域土壤可蚀性K值空间变异特征[J]. 水土保持研究, 31(3): 10-19. |
MENG W Y, RAO L Y, 2024. Spatial variation characteristics of soil erodibility K value in a typical small watershed in Pasha sandstone soil cover area[J]. Research on Soil and Water Conservation, 31(3): 10-19. | |
[17] | 欧阳志云, 王效科, 苗鸿, 2000. 中国生态环境敏感性及其区域差异规律研究[J]. 生态学报, 20(1): 9-12. |
OUYANG Z Y, WANG X K, MIAO H, 2000. Study on eco-environmental sensitivity and its regional differences in China[J]. Acta Ecologica Sinica, 20(1): 9-12. | |
[18] |
宋沛林, 解吉波, 杨腾飞, 等, 2023. 基于生态敏感性的区域环境时空变化及其驱动因素探究——以定安县为例[J]. 测绘通报 (7): 18-24.
DOI |
SONG P L, XIE J B, YANG T F, et al., 2023. Spatial and temporal change of regional environment and its driving factors based on ecological sensitivity: A case study of Ding’an County[J]. Bulletin of Surveying and Mapping (7): 18-24. | |
[19] | 王世杰, 2002. 喀斯特石漠化概念演绎及其科学内涵的探讨[J]. 中国岩溶, 21(2): 31-35. |
WANG S J, 2002. Discussion on concept deduction and scientific connotation of karst rocky desertification[J]. Karst in China, 21(2): 31-35. | |
[20] | 吴秀芹, 蔡运龙, 2006. 我国亚热带喀斯特生态环境演变研究进展[J]. 自然科学进展, 16(3): 267-272. |
WU X Q, CAI Y L, 2006. Research progress on ecological environment evolution of subtropical karst in China[J]. Progress in Natural Sciences, 16(3): 267-272. | |
[21] | 魏柏浩, 阿里木江·卡斯木, 如克亚·热合曼, 等, 2023. 天山北坡城市群生态承载力演变与生态敏感性分析[J]. 生态学报, 43(4): 1399-1411. |
WEI B H, ALI M J, RU K Y, et al., 2023. Evolution of ecological carrying capacity and ecological sensitivity of urban agglomerations on the north slope of Tianshan Mountains[J]. Acta Ecologica Sinica, 43(4): 1399-1411. | |
[22] | 徐红枫, 王妍, 苏倩, 等, 2022. 基于Google Earth Engine的云南省典型岩溶地区30年石漠化演变与驱动因子分析[J]. 干旱区资源与环境, 36(5): 94-101. |
XU H F, WANG Y, SU Q, et al., 2022. Evolution and driving factors of rock desertification in typical karst areas of Yunnan Province in the past 30 years based on Google Earth Engine[J]. Arid Zone Resources and Environment, 36(5): 94-101. | |
[23] | 熊平生, 袁道先, 谢世友, 2010. 我国南方岩溶山区石漠化基本问题研究进展[J]. 中国岩溶, 29(4): 355-362. |
XIONG P S, YUAN D X, XIE S Y, 2010. Research progress on the basic problems of rocky desertification in karst mountain areas in southern China[J]. Karst in China, 29(4): 355-362. | |
[24] |
杨艺苑, 杨存建, 2022. 基于GIS的东川区生态环境敏感性分析[J]. 测绘通报 (3): 7-12.
DOI |
YANG Y Y, YANG C J, 2022. Ecological environment sensitivity analysis of Dongchuan District based on GIS[J]. Bulletin of Surveying and Mapping (3): 7-12. | |
[25] | 张文峰, 2021. 西畴征服石漠再造绿洲[N]. 云南日报, 2021-10-15(004). |
ZHANG W F, 2021. Xichou conquered stone desert and rebuilt oasis[N]. Yunnan Daily, 2021-10-15(004). | |
[26] | 周斯怡, 殷晓洁, 汤瑞权, 等, 2022. 长江上游典型石漠化地区生态环境质量评价[J]. 浙江农林大学学报, 39(4): 783-791. |
ZHOU S Y, YIN X J, TANG R Q, et al., 2022. Evaluation on ecological environment quality of typical rocky desertification areas in the upper reaches of Yangtze River[J]. Journal of Zhejiang A & F University, 39(4): 783-791. | |
[27] | 邹丛荣, 2017. 沂蒙山区沂源县土壤可蚀性因子 (K) 研究[D]. 南京: 南京林业大学. |
ZOU C R, 2017. Study on soil erodibility factor (K) in Yiyuan County, Yimeng Mountain areap[D]. Nanjing: Nanjing Forestry University. |
[1] | LI Jianfu, HUANG Zhilin, HE Chengzhong, JIANG Xin, SONG Lin, LIU Jiaxin, CHEN Liding. Spatial Distribution and Key Factors Affecting Soil Organic Carbon Within the Karst Fault Basin in Eastern Yunnan, China [J]. Ecology and Environment, 2024, 33(9): 1339-1352. |
[2] | XIANG Nan, WANG Mingxu, ZHANG Hongfeng, LIAO Baogan. Research on Zoning of Ecological Conservation Importance and Its Spatio-temporal Differentiation of Habitat Status Over a Long Time Sequence: A Case Study in Guangdong Province [J]. Ecology and Environment, 2024, 33(6): 958-968. |
[3] | LU Ankang, ZHAO Guanhua, WANG Hui, ZHOU Lijian, TANG Shengqun, PENG Zhilong. Application and Research Development of Radioisotope 14C Dating in Karst Groundwater [J]. Ecology and Environment, 2024, 33(3): 487-498. |
[4] | LIANG Yan, LIU Jiaqi, XIAO Fan, PAN Minping, WEI Kaiwen, ZHANG Chuwen, DUAN Min. Effects of Nitrogen Deposition Forms on Sources of Soil Available Phosphorus in Karst Forest of Southwest China [J]. Ecology and Environment, 2024, 33(2): 192-201. |
[5] | LI Qiang, TANG Qing, WU Rui. Influence of Antibiotic Addition on Priming Effect of Soil Organic Matter from Different Successional Stages in Karst Ecosystems [J]. Ecology and Environment, 2024, 33(11): 1717-1726. |
[6] | LI Rui, WANG Shaojun, LAN Mengjie, LUO Shuang, XIA Jiahui, YANG Shengqiu, XIE Lingling, XIAO Bo, GUO Xiaofei, WANG Zhengjun, GUO Zhipeng. Response of Soil Carbon Mineral Rate in Rocky Desertification to Arbuscular Mycorrhizal Fungi Inoculation [J]. Ecology and Environment, 2024, 33(10): 1506-1515. |
[7] | CHEN Yan, YANG Hui, NING Jing, ZHU Degen, WU Xia, HUANG Fen, MA Yang, CHEN Wei, Mitja PRELOVŠEK, Nataša RAVBAR. Plant Water Use Sources and Efficiency During Vegetation Restoration in Typical Karst Area Under Severe Drought Conditions [J]. Ecology and Environment, 2024, 33(10): 1534-1543. |
[8] | WU Yunpeng, LI Yanmei, HU Yuanze, WANG Yan, CHE Guangxin, LIU Fangjun. The Impact of Different Photovoltaic Array Treatments on the Physicochemical Properties, Bacterial Community Composition, and Diversity of Soils in Rocky Desertification Areas of Central Yunnan [J]. Ecology and Environment, 2024, 33(10): 1570-1579. |
[9] | LI Huimei, LI Rongjie, YAN Xusheng, WU Feifei, GAO Zebing, TAN Yongzhong. The Ecological Function Zoning of Qinghai Lake Basin Based on Ecological Risk Assessment [J]. Ecology and Environment, 2023, 32(7): 1185-1195. |
[10] | XU Zijin, ZHANG Xuesong, CHEN Mingman. Analysis of Spatiotemporal Evolution Characteristics of Ecosystem Services in Mountainous Karst Areas: A Case Study of Guizhou Province, China [J]. Ecology and Environment, 2023, 32(7): 1196-1206. |
[11] | ZHANG Pingjiang, DANG Guofeng. Construction of Ecological Security Pattern of Tao River Basin Based on MCR Model and ant Colony Algorithm [J]. Ecology and Environment, 2023, 32(3): 481-491. |
[12] | DU Jiaoyan, CAI Guojun, ZHANG Hongyu, LI Anding. Response of Plant Leaf C, N, P Stoichiometry Characteristics to Climatic Environment and Soil Nutrients in Karst Areas of Guizhou [J]. Ecology and Environment, 2023, 32(12): 2154-2165. |
[13] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[14] | YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages [J]. Ecology and Environment, 2022, 31(6): 1160-1168. |
[15] | FU Yuhong, ZHANG Daijie, XIANG Jiao, ZHOU Yan, HUANG Zongsheng, YU Lifei. Topological Structure of Plant Roots of Different Underground Habitat Profiles in Karst Areas [J]. Ecology and Environment, 2022, 31(5): 865-874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn