Ecology and Environment ›› 2023, Vol. 32 ›› Issue (9): 1700-1708.DOI: 10.16258/j.cnki.1674-5906.2023.09.017
• Research Articles • Previous Articles Next Articles
SHI Run1,2(), LI Fayun1,2,*(
), ZHOU Chunliang1,3, WANG Wei1,3, ZHOU Yanqiu1,2
Received:
2023-05-26
Online:
2023-09-18
Published:
2023-12-11
石润1,2(), 李法云1,2,*(
), 周纯亮1,3, 王玮1,3, 周艳秋1,2
通讯作者:
*李法云。E-mail: 作者简介:
石润(1996年生),女,硕士研究生,主要研究方向为土壤改良与修复。E-mail: shirunfi@163.com
基金资助:
CLC Number:
SHI Run, LI Fayun, ZHOU Chunliang, WANG Wei, ZHOU Yanqiu. The Effect of Using Impatiens Balsam Seed Coat as a Carrier for Immobilized Microorganisms to Remediate Petroleum Hydrocarbon-contaminated Soil[J]. Ecology and Environment, 2023, 32(9): 1700-1708.
石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.09.017
实验组 | 处理方式 | 石油烃主要降解方式 |
---|---|---|
CK T1 T2 T3 T4 T5 | 种子和微生物均不添加 添加游离微生物 凤仙花 (裸种) 凤仙花 (包衣种子) 凤仙花 (包衣种子)+游离微生物 凤仙花种子包衣载体固定化微生物 | 自然挥发和降解 生物降解 植物降解 种衣剂-植物降解 植物降解-生物降解 固定化微生物-植物降解 |
Table 1 Different processing group settings
实验组 | 处理方式 | 石油烃主要降解方式 |
---|---|---|
CK T1 T2 T3 T4 T5 | 种子和微生物均不添加 添加游离微生物 凤仙花 (裸种) 凤仙花 (包衣种子) 凤仙花 (包衣种子)+游离微生物 凤仙花种子包衣载体固定化微生物 | 自然挥发和降解 生物降解 植物降解 种衣剂-植物降解 植物降解-生物降解 固定化微生物-植物降解 |
处理 | 发芽率/% | 叶长/cm | 叶宽/cm | 茎长/cm | 根长/cm | 生物量/(10−1 g) |
---|---|---|---|---|---|---|
T2 T3 T4 T5 | 85.0±5.77b 92.5±5.00ab 95.0±5.77a 97.5±5.00a | 1.40±0.16b 1.52±0.20b 1.68±0.03b 1.97±0.12a | 1.37±0.09b 1.38±0.14b 1.49±0.10ab 1.68±0.04a | 7.43±0.32a 6.84±1.59a 6.31±1.13a 7.63±0.67a | 7.61±3.60a 10.9±3.03a 11.9±4.18a 11.9±1.61a | 1.83±0.09b 2.37±0.59ab 2.41±0.08ab 2.66±0.23a |
Table 2 The growth of Impatiens
处理 | 发芽率/% | 叶长/cm | 叶宽/cm | 茎长/cm | 根长/cm | 生物量/(10−1 g) |
---|---|---|---|---|---|---|
T2 T3 T4 T5 | 85.0±5.77b 92.5±5.00ab 95.0±5.77a 97.5±5.00a | 1.40±0.16b 1.52±0.20b 1.68±0.03b 1.97±0.12a | 1.37±0.09b 1.38±0.14b 1.49±0.10ab 1.68±0.04a | 7.43±0.32a 6.84±1.59a 6.31±1.13a 7.63±0.67a | 7.61±3.60a 10.9±3.03a 11.9±4.18a 11.9±1.61a | 1.83±0.09b 2.37±0.59ab 2.41±0.08ab 2.66±0.23a |
处理 | Ace | Chao1 | Coverage | Shannon | Simpson |
---|---|---|---|---|---|
CK T1 T2 T3 T4 T5 | 2351.519 2407.069 2176.538 2290.326 2257.312 2170.499 | 2282.758 2341.375 2119.879 2222.017 2213.333 2115.002 | 0.982 0.983 0.986 0.983 0.984 0.986 | 5.776 6.021 5.986 5.901 5.937 6.060 | 0.0106 0.0080 0.0081 0.0088 0.0088 0.0069 |
Table 3 Table of microbial diversity indices for different treatments
处理 | Ace | Chao1 | Coverage | Shannon | Simpson |
---|---|---|---|---|---|
CK T1 T2 T3 T4 T5 | 2351.519 2407.069 2176.538 2290.326 2257.312 2170.499 | 2282.758 2341.375 2119.879 2222.017 2213.333 2115.002 | 0.982 0.983 0.986 0.983 0.984 0.986 | 5.776 6.021 5.986 5.901 5.937 6.060 | 0.0106 0.0080 0.0081 0.0088 0.0088 0.0069 |
[1] |
AGARWAL T, KHILLARE P S, SHRIDHAR V, et al., 2009. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 163(2-3): 1033-1039.
DOI PMID |
[2] | AJONA M, VASANTHI P, 2021. Bio-remediation of crude oil contaminated soil using recombinant native microbial strain[J]. Environmental Technology & Innovation, 23(11): 101635. |
[3] |
ASIABADI F I, MIRBAGHERI S A, NAJAFI P, et al., 2018. Concentrations of petroleum hydrocarbons at different depths of soil following phytoremediation[J]. Environmental Engineering and Management Journal, 17(9): 2129-2135.
DOI URL |
[4] |
ATLAS R M, STOECKEL D M, FAITH S A, et al., 2015. Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the deepwater horizon well blowout[J]. Environmental Science & Technology, 49(14): 8356-8366.
DOI URL |
[5] |
CAI Z, ZHOU Q X, PENG S W, et al., 2010. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance[J]. Journal of Hazardous Materials, 183(1): 731-737.
DOI URL |
[6] |
ESCALANTE-ESPINOSA E, GALLEGOS-MARTÍNEZ M E, FAVELA-TORRES E, et al., 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus lam. inoculated with a microbial consortium in a model system[J]. Chemosphere, 59(3): 405-413.
DOI URL |
[7] | HENTATI O, LACHHAB R, MARIEM A, et al., 2013. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays[J]. Environmental Monitoring & Assessment, 185(4): 2989-2998. |
[8] |
HOU J Y, WANG Q L, LIU W X, et al., 2021. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil[J]. Science of The Total Environment, 792: 148411.
DOI URL |
[9] |
HUSSAIN F, HUSSAIN I, KHAN A H A, et al., 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 153: 80-88.
DOI URL |
[10] |
HUSSAIN F, KHAN A H A, HUSSAIN I, et al., 2022. Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum[J]. Environmental Science and Pollution Research, 29(6): 9097-9109.
DOI |
[11] |
KUZINA E, MUKHAMATDYAROVA S, SHARIPOVA Y, et al., 2022. Influence of bacteria of the genus pseudomonas on leguminous plants and their joint application for bioremediation of oil contaminated soils[J]. Plants, 11(23): 3396.
DOI URL |
[12] |
LEE Y Y, SEO Y, HA M, et al., 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea)[J]. Environmental Research, 194: 110606.
DOI URL |
[13] |
LI J, MA N, HAO B Y, et al., 2023. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil[J]. International Journal of Phytoremediation, 25(6): 706-716.
DOI URL |
[14] |
LI Q Q, LI J B, JIANG L F, et al., 2021. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials, 403: 123895.
DOI URL |
[15] |
LI X K, LI J L, QU C T, et al., 2021. Bioremediation of clay with high oil content and biological response after restoration[J]. Scientific Reports, 11(1): 1-14.
DOI |
[16] |
LUO H, WANG H, KONG L Z, et al., 2019. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 377: 341-348.
DOI PMID |
[17] |
MEIDUTE S, DEMOLING F, BÅÅTH E, 2008. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources[J]. Soil Biology and Biochemistry, 40(9): 2334-2343.
DOI URL |
[18] |
NZILA A, MUSA M M, 2021. Current knowledge and future challenges on bacterial degradation of the highly complex petroleum products asphaltenes and resins[J]. Frontiers in Environmental Science, 9: 779644.
DOI URL |
[19] | OSSAI I C, AHMED A, HASSAN A, et al., 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review[J]. Environmental Technology & Innovation, 17: 100526. |
[20] |
PANCHENKO L, MURATOVA A, DUBROVSKAYA E, et al., 2023. Natural and technical phytoremediation of oil-contaminated soil[J]. Life, 13(1): 177.
DOI URL |
[21] |
RAFIQUE H M, KHAN M Y, ASGHAR H N, et al., 2023. Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil[J]. International Journal of Phytoremediation, 25(6): 717-727.
DOI URL |
[22] |
RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al., 2015. Ecological implications of motor oil pollution: Earthworm survival and soil health[J]. Soil Biology and Biochemistry, 85: 72-81.
DOI URL |
[23] |
ROMANTSCHUK M, SARAND I, PETÄNEN T, et al., 2000. Means to improve the effect of in situ bioremediation of contaminated soil: An overview of novel approaches[J]. Environmental Pollution, 107(2): 179-185.
PMID |
[24] |
RON E Z, ROSENBERG E, 2014. Enhanced bioremediation of oil spills in the sea[J]. Current Opinion in Biotechnology, 27: 191-194.
DOI PMID |
[25] | SHAHI A, INCE B, AYDIN S, et al., 2017. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: A mini-review[J]. Applied Microbiology & Biotechnology, 101(11): 4341-4348. |
[26] |
SHEN Y Y, JI Y, WANG W K, et al., 2023. Temporal effect of phytoremediation on the bacterial community in petroleum-contaminated soil[J]. Human and Ecological Risk Assessment, 29(2): 427-448.
DOI URL |
[27] |
YUAN L M, WU Y Q, FAN Q H, et al., 2023. Remediating petroleum hydrocarbons in highly saline-alkali soils using three native plant species[J]. Journal of Environmental Management, 339: 117928.
DOI URL |
[28] |
黄河, 张超兰, 周永信, 等, 2019. 芘污染土壤的根瘤菌-植物修复效应研究[J]. 生态环境学报, 28(7): 1466-1472.
DOI |
HUANG H, ZHANG C L, ZHOU Y X, et al., 2019. Effect of rhizobium-plant remediation on pyrene contaminated soil[J]. Ecology and Environmental Sciences, 28(7): 1466-1472. | |
[29] | 霍乾伟, 李天元, 张闻, 等, 2022. 微生物修复石油污染土壤影响因素分析[J]. 现代化工, 42(S2): 83-87, 93. |
HUO Q W, LI T Y, ZHANG W, et al., 2022. Analysis on influencing factors for remediation of oil contaminated soil by microbe[J]. Modern Chemical Industry, 42(S2): 83-87, 93. | |
[30] | 李广贺, 张旭, 卢晓霞, 2002. 土壤残油生物降解性与微生物活性[J]. 地球科学, 27(2): 181-185. |
LI G H, ZHANG X, LU X X, 2002. Biodegradation of residual petrochemicals and microbial activities in polluted soil[J]. Earth Science, 27(2): 181-185. | |
[31] | 蔺昕, 李培军, 孙铁珩, 等, 2005. 石油污染土壤的生物修复与土壤酶活性关系[J]. 生态学杂志, 24(10): 1226-1229. |
LIN X, LI P J, SUN T H, et al., 2005. Bioremediation of petroleum-contaminated soil and its relationship with soil enzyme activities[J]. Chinese Journal of Ecology, 24(10): 1226-1229. | |
[32] | 刘五星, 骆永明, 滕应, 等, 2007. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 39(2): 247-251. |
LIU W X, LUO Y M, TENG Y, et al., 2007. A survey of petroleum contamination in several chinese oilfield soils[J]. Soils, 39(2): 247-251. | |
[33] | 石丽芳, 2019. 生物炭固定化微生物对石油烃污染土壤的生物修复研究[D]. 抚顺: 辽宁石油化工大学. |
SHI L F, 2019. Bioremediation of petroleum hydrocarbon contaminated soil by biochar immobilized microorganisms[D]. Fushun: Liaoning Petrochemical University. | |
[34] | 石丽芳, 吝美霞, 李法云, 等, 2021. 生物炭固定化微生物对石油烃污染土壤酶活性与修复效果的影响[J]. 应用技术学报, 21(4): 382-388. |
SHI L F, LIN M X, LI F Y, et al., 2021. Effects of biochar immobilized microorganisms on the enzyme activity and remediation of petroleum hydrocarbon in contaminated soil[J]. Journal of Technology, 21(4): 382-388. | |
[35] | 孙剑平, 孙晶超, 孙梨宗, 等, 2023. 氧化石墨烯强化铜绿假单胞菌降解污染土壤多环芳烃的效果及其机制研究[J]. 环境污染与防治, 45(4): 433-442. |
SUN J P, SUN J C, SUN L Z, et al., 2023. Effect of GO on enhancing the degradation of PAHs by Pseudomonas aeruginosa incontaminated soil and its mechanism[J]. Environmental Pollution & Control, 45(4): 433-442. | |
[36] | 王华金, 朱能武, 杨崇, 等, 2013. 石油污染土壤生物修复对土壤酶活性的影响[J]. 农业环境科学学报, 32(6): 1178-1184. |
WANG H J, ZHU N W, YANG C, et al., 2013. Effect of soil enzyme activities during bioremediation of crude oil-contaminated soil[J]. Journal of Agro-Environment Science, 32(6): 1178-1184. | |
[37] | 王艳杰, 2017. 生物炭固定化微生物与植物联合修复石油烃污染土壤的机理及效应研究[D]. 长沙: 湖南农业大学 |
WANG Y J, 2017. Mechanism and effect of bioremediation of petroleum contaminated soil by combining biochar immobilized microorganisms with plant[D]. Changsha: Hunan Agricultural University | |
[38] | 姚伦芳, 滕应, 刘方, 等, 2014. 多环芳烃污染土壤的微生物-紫花苜蓿联合修复效应[J]. 生态环境学报, 23(5): 890-896. |
YAO L F, TENG Y, LI F, et al., 2014. Influence of Trichoderma reesei and Rhizobium meliloti on Phytoremediation of PAH-contaminated Soil by Alfalfa[J]. Ecology and Environmental Sciences, 23(5): 890-896. | |
[39] | 张琛, 2019. 种子引发与丸粒化对油菜萌发及生长发育的影响[D]. 武汉: 华中农业大学. |
ZHANG C, 2019. Effects of seed priming and pelletization on seed germination and plant growth and development of rapeseed[D]. Wuhan: Huazhong Agricultural University. | |
[40] | 张金秋, 王帅杰, 王露, 等, 2022. 紫花苜蓿-铜绿假单胞菌联合修复石油污染土壤[J]. 石油学报 (石油加工), 38(6): 1399-1405. |
ZHANG J Q, WANG S J, WANG L, et al., 2022. Remediation of petroleum contaminated soil by alfalfa and Pseudomonas aeruginosa[J]. Acta Petrolei Sinica (Petroleum Processing Section), 38(6): 1399-1405. | |
[41] | 张晓庆, 徐丽, 齐悦, 等, 2018. 紫松果菊对多环芳烃重污染土壤修复效能[J]. 生态学杂志, 37(2): 492-497. |
ZHANG X Q, XU L, QI Y, et al., 2018. Remediation efficiency of Echinacea purpurea for heavy PAHs contaminated soils[J]. Chinese Journal of Ecology, 37(2): 492-497. | |
[42] | 张焱华, 吴敏, 何鹏, 等, 2007. 土壤酶活性与土壤肥力关系的研究进展[J]. 安徽农业科学, 35(34): 11139-11142. |
ZHANG Y H, WU M, HE P, et al., 2007. Research advance of the relationship between soil enzyme activity and soil fertility[J]. Journal of Anhui Agricultural Sciences, 35(34): 11139-11142. | |
[43] | 赵琦慧, 李法云, 吝美霞, 等, 2022. 油菜种子联合降解菌对多环芳烃污染土壤的修复[J]. 环境污染与防治, 44(9): 1138-1141. |
ZHAO Q H, LI F Y, LIN M X, et al., 2022. Remediation of polycyclic aromatic hydrocarbons contaminated soil by rape seed combined with degrading bacteria[J]. Environmental Pollution & Control, 44(9): 1138-1141. | |
[44] |
郑学昊, 孙丽娜, 王晓旭, 等, 2017. 植物-微生物联合修复PAHs污染土壤的调控措施对比研究[J]. 生态环境学报, 26(2): 323-327.
DOI |
ZHANG X H, SUN L N, WANG X X, et al., 2017. Compared with different regulation on phytoremediation-microorganism combined remediation PAHs contaminated soil[J]. Ecology and Environmental Sciences, 26(2): 323-327. | |
[45] | 朱文英, 唐景春, 2014. 小麦秸秆生物炭对石油烃污染土壤的修复作用[J]. 农业资源与环境学报, 31(3): 259-264. |
ZHU W Y, TANG J C, 2014. Remediation of wheat-straw-biochar on petroleum-polluted soil[J]. Journal of Agricultural Resources and Environment, 31(3): 259-264. |
[1] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[2] | LIANG Yitong, LI Zemin, WU Yulun, QIU Guanglei, WU Haizhen, WEI Chaohai. Effects of Nitrite on Nitrogen Removal Efficiency and Microbial Community in Anammox-based Coupled System [J]. Ecology and Environment, 2023, 32(7): 1275-1284. |
[3] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[4] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[5] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[6] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[7] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[8] | MEI Chuang, CAI Kunzheng, LI Zishan, XU Meili, HUANG Fei. Effects of Rice-straw Biochar on the Transformation of Cadmium Fractions and Microbial Community in Paddy Soils [J]. Ecology and Environment, 2022, 31(2): 380-390. |
[9] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[10] | HAO Lihong, LIU Guiqing, ZHANG Shichen, MIAO Yuping. Spatial Distribution Characteristics of Typical Organic Pollutants in Urban Petrol Station [J]. Ecology and Environment, 2021, 30(11): 2175-2184. |
[11] | GE Yinglan, SUN Ting. Soil Microbial Community Structure and Diversity of Potato in Rhizosphere and Non-rhizosphere Soil [J]. Ecology and Environment, 2020, 29(1): 141-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn