生态环境学报 ›› 2023, Vol. 32 ›› Issue (5): 933-942.DOI: 10.16258/j.cnki.1674-5906.2023.05.011
杨凯1,2(), 杨靖睿1,2, 曹培培1,2, 吕春华1,2, 孙文娟1, 于凌飞1, 邓希3,*(
)
收稿日期:
2023-03-01
出版日期:
2023-05-18
发布日期:
2023-08-09
通讯作者:
*邓希(1993年生),女,博士,从事气候变化与粮食安全研究。E-mail: dengxi5@mail.sysu.edu.cn作者简介:
杨凯(1993年生),男,博士,从事气候变化与农业生态研究。E-mail: yangkai@ibcas.ac.cn
基金资助:
YANG Kai1,2(), YANG Jingrui1,2, CAO Peipei1,2, LÜ Chunhua1,2, SUN Wenjuan1, YU Lingfei1, DENG Xi3,*(
)
Received:
2023-03-01
Online:
2023-05-18
Published:
2023-08-09
摘要:
水稻是中国主要粮食作物,CO2浓度升高直接影响水稻的生产。但在CO2浓度升高条件下,水稻生长发育的动态特征及其模型模拟研究尚不足。为探究水稻株高、分蘖与SPAD(表征叶绿素相对含量)动态对CO2浓度升高的响应特征,在2017年与2018年,以常规粳稻“南粳9108”为试验材料,利用开顶式气室(OTC),设置背景大气CO2浓度与CO2浓度升高(+200 μmol·mol-1)两个处理,并采用Logistic方程、Logistic修正方程和多项式回归方程分别对三者的动态曲线进行定量描述。结果表明:CO2浓度升高对抽穗前的株高无影响,但当抽穗1周后的有效积温(GDD)大于720 ℃·d时,显著增加了最终株高,其增幅为7.1%(P<0.05)。因此,水稻生长的环境温度调控株高对CO2浓度升高的响应。株高可用大于10 ℃的GDD和CO2响应比建立的Logistic方程进行有效模拟(r2>0.953)。CO2浓度升高总体上提高了水稻的分蘖能力,并且以移栽后天数和CO2响应比为驱动变量,采用Logistic修正方程有效地模拟了茎蘖增长与消亡动态(r2>0.971)。CO2浓度升高仅增加了2017年抽穗后35 d旗叶与倒二叶的SPAD(P<0.05),但对其他时期或叶位SPAD无显著影响。因此,水稻SPAD对CO2升高的响应因叶位选择与测定时间而异。多项式回归模型能有效模拟抽穗后不同叶位SPAD动态(r2>0.960),其中抽穗后天数和CO2响应比是驱动变量。综上所述,CO2浓度升高对水稻株高、茎蘖与SPAD具有促进作用,其效应与外界因素有关。模型能较好地模拟水稻株高、茎蘖与SPAD对CO2浓度升高的动态响应。该研究可为未来CO2浓度升高条件下,水稻生长发育和产量形成的预测提供科学依据。
中图分类号:
杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942.
YANG Kai, YANG Jingrui, CAO Peipei, LÜ Chunhua, SUN Wenjuan, YU Lingfei, DENG Xi. Dynamic Response of Rice Plant Height, Tillering and SPAD under Elevated CO2 Concentration and Their Simulation[J]. Ecology and Environment, 2023, 32(5): 933-942.
生育时期 | 日期 | |
---|---|---|
2017 | 2018 | |
播种 | 2017-05-20 | 2018-05-20 |
移栽 | 2017-06-20 | 2018-06-20 |
拔节 | 2017-07-28 | 2018-07-26 |
抽穗 | 2017-08-23 | 2018-08-24 |
成熟 | 2017-10-30 | 2018-10-20 |
表1 水稻主要生育时期
Table 1 Rice calendars
生育时期 | 日期 | |
---|---|---|
2017 | 2018 | |
播种 | 2017-05-20 | 2018-05-20 |
移栽 | 2017-06-20 | 2018-06-20 |
拔节 | 2017-07-28 | 2018-07-26 |
抽穗 | 2017-08-23 | 2018-08-24 |
成熟 | 2017-10-30 | 2018-10-20 |
图1 2017年(a)与2018(b)年CO2浓度升高下株高随有效积温(GDD)的动态变化 每个点代表均值±标准误(n=4)。ns、*与 **分别表示同一GDD下CO2处理间无显著性差异、P<0.05与P<0.01水平上的显著性
Figure 1 Dynamics of plant height with growing degree day (GDD) under e[CO2] in 2017 (a) and 2018 (b)
图2 CO2浓度升高下株高相对变化量与抽穗1周后有效积温(GDD)的关系 虚线表示GDD=720 ℃·d的临界线。株高相对变化量=(He-Ha)/Ha
Figure 2 The relationship between relative change of plant height and growing degree day (GDD) of one week after heading under e[CO2]
年份 | H/cm | a1 | a2 | r2 | RMSE |
---|---|---|---|---|---|
2017 | 155.6 | 1.381 | -0.0020 | 0.970 | 2.96 |
2018 | 110.8 | 0.783 | -0.0035 | 0.953 | 3.52 |
表2 株高动态模型参数值
Table 2 Parameters of dynamic model of plant height
年份 | H/cm | a1 | a2 | r2 | RMSE |
---|---|---|---|---|---|
2017 | 155.6 | 1.381 | -0.0020 | 0.970 | 2.96 |
2018 | 110.8 | 0.783 | -0.0035 | 0.953 | 3.52 |
图3 株高(a)、分蘖(b)与SPAD(c)动态观测值与模拟值的比较 17与18分别表示2017年与2018年。L1、L2和L3分别表示旗叶、倒二叶与倒三叶
Figure 3 Comparison of observations and simulations in plant height (a), tiller number (b) and SPAD (c) dynamics
图4 CO2浓度升高下茎蘖数随移栽时间的动态变化 每个点代表均值±标准误(n=4)。ns、+和*分别表示无显著性差异、P<0.1和P<0.05水平上的显著性
Figure 4 Dynamics of tiller number with transplanting time under e[CO2]
t | T1/T2 | a1/b1 | a2/b2 | a3/b3 | r2 | RMSE |
---|---|---|---|---|---|---|
t≤35 (茎蘖增长) | 27.3 | -1.660 | 0.1856 | -0.0062 | 0.971 | 0.77 |
t>35 (茎蘖消亡) | 10.1 | 7.0716 | -0.1819 | 0.0009 | 0.996 | 0.65 |
表3 茎蘖消长动态模型参数值
Table 3 Parameters of dynamic model of tiller growth and extinction
t | T1/T2 | a1/b1 | a2/b2 | a3/b3 | r2 | RMSE |
---|---|---|---|---|---|---|
t≤35 (茎蘖增长) | 27.3 | -1.660 | 0.1856 | -0.0062 | 0.971 | 0.77 |
t>35 (茎蘖消亡) | 10.1 | 7.0716 | -0.1819 | 0.0009 | 0.996 | 0.65 |
图5 2017年(a)与2018年(b)CO2浓度升高下抽穗后SPAD的动态变化 每个点代表均值±标准误(n=4)。L1、L2和L3分别表示旗叶、倒二叶与倒三叶
Figure 5 Dynamics of SPAD with days after heading under e[CO2] in 2017 (a) and 2018 (b)
年 | 测定 日期 | CO2 处理 | L1 | L2 | L3 | P值 | ||
---|---|---|---|---|---|---|---|---|
CO2 | L | CO2×L | ||||||
2017 | 8月29日 | a[CO2] | 48.4a | 49.3a | 48.3a | ns | ns | ns |
e[CO2] | 49.9a | 49.6a | 48.3a | |||||
9月3日 | a[CO2] | 47.5a | 48.7a | 47.4a | ns | ns | ns | |
e[CO2] | 49.2a | 48.7a | 47.7a | |||||
9月8日 | a[CO2] | 49.2a | 49.4a | 48.2a | ns | * | ns | |
e[CO2] | 50.7a | 49.2a | 48.0a | |||||
9月13日 | a[CO2] | 48.3a | 48.8a | 47.7a | ns | * | ns | |
e[CO2] | 49.8a | 49.3a | 48.0a | |||||
9月18日 | a[CO2] | 46.6b | 47.3a | 45.9a | + | ** | ns | |
e[CO2] | 48.2a | 47.9a | 45.7a | |||||
9月23日 | a[CO2] | 47.3a | 47.7a | 44.8a | ns | ** | ns | |
e[CO2] | 47.7a | 47.3a | 43.8a | |||||
9月28日 | a[CO2] | 45.1b | 43.9b | 42.7a | ** | ** | ns | |
e[CO2] | 46.8a | 46.0a | 43.4a | |||||
10月3日 | a[CO2] | 43.8a | 43.5a | - | ** | ns | ns | |
e[CO2] | 45.7b | 44.5a | - | |||||
10月8日 | a[CO2] | 41.4a | 41.6a | - | ** | ns | ns | |
e[CO2] | 43.9b | 43.6a | - | |||||
10月13日 | a[CO2] | 38.8b | 38.2b | - | ** | ns | ns | |
e[CO2] | 43.1a | 42.1a | - | |||||
10月18日 | a[CO2] | 35.4b | 33.8b | - | ** | ns | ns | |
e[CO2] | 40.0a | 38.9a | - | |||||
2018 | 8月25日 | a[CO2] | 39.1a | 40.9a | 41.5a | + | ** | ns |
e[CO2] | 39.5a | 41.1a | 42.5a | |||||
8月30日 | a[CO2] | 40.8a | 41.3a | 42.0a | ns | + | ns | |
e[CO2] | 40.6a | 41.7a | 41.9a | |||||
9月5日 | a[CO2] | 38.9a | 39.6a | 39.5a | * | + | ns | |
e[CO2] | 39.5a | 40.7a | 40.8a | |||||
9月10日 | a[CO2] | 37.0a | 37.8a | 36.4a | ns | ns | ns | |
e[CO2] | 37.1a | 37.9a | 37.4a | |||||
9月15日 | a[CO2] | 36.2a | 36.1a | 34.6a | ns | + | ns | |
e[CO2] | 36.4a | 36.5a | 35.2a | |||||
9月22日 | a[CO2] | 33.3a | 32.8a | 30.9a | ns | * | ns | |
e[CO2] | 34.0a | 32.9a | 31.5a | |||||
9月29日 | a[CO2] | 23.5b | 21.2a | 20.2b | ** | ** | ns | |
e[CO2] | 28.0a | 23.8a | 24.7a | |||||
10月6日 | a[CO2] | 16.8a | 13.5a | 15.3a | ns | ** | ns | |
e[CO2] | 18.8a | 12.9a | 17.3a |
表4 不同测定日期下CO2浓度升高与叶位对SPAD影响
Table 4 Effects of e[CO2] and leaf position on SPAD at different measured time
年 | 测定 日期 | CO2 处理 | L1 | L2 | L3 | P值 | ||
---|---|---|---|---|---|---|---|---|
CO2 | L | CO2×L | ||||||
2017 | 8月29日 | a[CO2] | 48.4a | 49.3a | 48.3a | ns | ns | ns |
e[CO2] | 49.9a | 49.6a | 48.3a | |||||
9月3日 | a[CO2] | 47.5a | 48.7a | 47.4a | ns | ns | ns | |
e[CO2] | 49.2a | 48.7a | 47.7a | |||||
9月8日 | a[CO2] | 49.2a | 49.4a | 48.2a | ns | * | ns | |
e[CO2] | 50.7a | 49.2a | 48.0a | |||||
9月13日 | a[CO2] | 48.3a | 48.8a | 47.7a | ns | * | ns | |
e[CO2] | 49.8a | 49.3a | 48.0a | |||||
9月18日 | a[CO2] | 46.6b | 47.3a | 45.9a | + | ** | ns | |
e[CO2] | 48.2a | 47.9a | 45.7a | |||||
9月23日 | a[CO2] | 47.3a | 47.7a | 44.8a | ns | ** | ns | |
e[CO2] | 47.7a | 47.3a | 43.8a | |||||
9月28日 | a[CO2] | 45.1b | 43.9b | 42.7a | ** | ** | ns | |
e[CO2] | 46.8a | 46.0a | 43.4a | |||||
10月3日 | a[CO2] | 43.8a | 43.5a | - | ** | ns | ns | |
e[CO2] | 45.7b | 44.5a | - | |||||
10月8日 | a[CO2] | 41.4a | 41.6a | - | ** | ns | ns | |
e[CO2] | 43.9b | 43.6a | - | |||||
10月13日 | a[CO2] | 38.8b | 38.2b | - | ** | ns | ns | |
e[CO2] | 43.1a | 42.1a | - | |||||
10月18日 | a[CO2] | 35.4b | 33.8b | - | ** | ns | ns | |
e[CO2] | 40.0a | 38.9a | - | |||||
2018 | 8月25日 | a[CO2] | 39.1a | 40.9a | 41.5a | + | ** | ns |
e[CO2] | 39.5a | 41.1a | 42.5a | |||||
8月30日 | a[CO2] | 40.8a | 41.3a | 42.0a | ns | + | ns | |
e[CO2] | 40.6a | 41.7a | 41.9a | |||||
9月5日 | a[CO2] | 38.9a | 39.6a | 39.5a | * | + | ns | |
e[CO2] | 39.5a | 40.7a | 40.8a | |||||
9月10日 | a[CO2] | 37.0a | 37.8a | 36.4a | ns | ns | ns | |
e[CO2] | 37.1a | 37.9a | 37.4a | |||||
9月15日 | a[CO2] | 36.2a | 36.1a | 34.6a | ns | + | ns | |
e[CO2] | 36.4a | 36.5a | 35.2a | |||||
9月22日 | a[CO2] | 33.3a | 32.8a | 30.9a | ns | * | ns | |
e[CO2] | 34.0a | 32.9a | 31.5a | |||||
9月29日 | a[CO2] | 23.5b | 21.2a | 20.2b | ** | ** | ns | |
e[CO2] | 28.0a | 23.8a | 24.7a | |||||
10月6日 | a[CO2] | 16.8a | 13.5a | 15.3a | ns | ** | ns | |
e[CO2] | 18.8a | 12.9a | 17.3a |
年 | 叶位 | a1 | a2 | a3 | r2 | RMSE |
---|---|---|---|---|---|---|
2017 | 旗叶 | 46.95 | 0.2232 | -0.0078 | 0.983 | 0.55 |
倒二叶 | 48.01 | 0.2034 | -0.0081 | 0.980 | 0.69 | |
倒三叶 | 47.31 | 0.1712 | -0.0086 | 0.960 | 0.39 | |
2018 | 旗叶 | 39.47 | 0.2062 | -0.0179 | 0.982 | 1.10 |
倒二叶 | 39.84 | 0.2756 | -0.0217 | 0.985 | 1.18 | |
倒三叶 | 42.76 | -0.1398 | -0.0126 | 0.983 | 1.20 |
表5 SPAD动态模型参数值
Table 5 Parameters of SPAD dynamic model
年 | 叶位 | a1 | a2 | a3 | r2 | RMSE |
---|---|---|---|---|---|---|
2017 | 旗叶 | 46.95 | 0.2232 | -0.0078 | 0.983 | 0.55 |
倒二叶 | 48.01 | 0.2034 | -0.0081 | 0.980 | 0.69 | |
倒三叶 | 47.31 | 0.1712 | -0.0086 | 0.960 | 0.39 | |
2018 | 旗叶 | 39.47 | 0.2062 | -0.0179 | 0.982 | 1.10 |
倒二叶 | 39.84 | 0.2756 | -0.0217 | 0.985 | 1.18 | |
倒三叶 | 42.76 | -0.1398 | -0.0126 | 0.983 | 1.20 |
[1] |
AINSWORTH EA, LONG SP, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J]. New Phytologist, 165(2): 351-372.
DOI URL |
[2] |
BINDI M, HACOUR A, VANDERMEIREN K, et al., 2002. Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations[J]. European Journal of Agronomy, 17(4): 319-335.
DOI URL |
[3] |
GRANT R F, KIMBALL B A, BROOKS T J, et al., 2001. Modeling interactions among carbon dioxide, nitrogen, and climate on energy exchange of wheat in a free air carbon dioxide experiment[J]. Agronomy Journal, 93(3): 638-649.
DOI URL |
[4] |
HU S W, WANG Y X, YANG L X, 2021. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]. Science of the Total Environment, 764: 142797.
DOI URL |
[5] |
HU S W, WANG C, TONG K C, et al., 2022. Response of rice growth and leaf physiology to elevated CO2 concentrations: A meta-analysis of 20-year FACE studies[J]. Science of the Total Environment, 807(Part 3): 151017.
DOI URL |
[6] | IPCC, 2022. Climate change 2022: Impacts, adaptation, and vulnerability[C]/ PÖRTNER H-O, ROBERTS DC, TIGNOR M, POLOCZANSKA ES, MINTENBECK K, ALEGRÍA A, CRAIG M, LANGSDORF S, LÖSCHKE S, MÖLLER V, OKEM A, RAMA B (eds) Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge: Cambridge University Press. |
[7] |
KIM H Y, LIEFFERING M, KOBAYASHI K, et al., 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment[J]. Global Change Biology, 9(6): 826-837.
DOI URL |
[8] |
KOTI S, REDDY K R, KAKANI V, et al., 2007. Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development[J]. Environmental and Experimental Botany, 60(1): 1-10.
DOI URL |
[9] |
LECOEUR J, GUILIONI L, 1998. Rate of leaf production in response to soil water deficits in field pea[J]. Field Crops Research, 57(3): 319-328.
DOI URL |
[10] |
LIU H J, YANG L X, WANG Y L, et al., 2008. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions[J]. Field Crops Research, 108(1): 93-100.
DOI URL |
[11] |
LOBELL DB, SCHLENKER W, COSTA-ROBERTS J, 2011. Climate trends and global crop production since 1980[J]. Science, 333(6042): 616-620.
DOI PMID |
[12] |
LÜ C H, HUANG Y, SUN W J, et al., 2020. Response of rice yield and yield components to elevated CO2: A synthesis of updated data from FACE experiments[J]. European Journal of Agronomy, 112: 125961.
DOI URL |
[13] |
PENG S B, TANG Q Y, ZOU Y B, 2009. Current status and challenges of rice production in China[J]. Plant Production Science, 12(1): 3-8.
DOI URL |
[14] |
SAKAI H, YAGI K, KOBAYASHI K, et al., 2001. Rice carbon balance under elevated CO2[J]. New Phytologist, 150(2): 241-249.
DOI URL |
[15] |
SAKAI H, HASEGAWA T, KOBAYASHI K, 2006. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration[J]. New Phytologist, 170(2): 321-332.
DOI URL |
[16] |
SÁNCHEZ B, RASMUSSEN A, PORTER J R, 2014. Temperatures and the growth and development of maize and rice: a review[J]. Global Change Biology, 20(2): 408-417.
DOI PMID |
[17] |
TUBIELLO F N, AMTHOR J S, BOOTE K J, et al., 2007. Crop response to elevated CO2 and world food supply: a comment on “Food for Thought…” by Long et al., Science 312: 1918-1921, 2006[J]. European journal of agronomy, 26(3): 215-223.
DOI URL |
[18] |
TUBIELLO FN, EWERT F, 2002. Simulating the effects of elevated CO2 on crops: approaches and applications for climate change[J]. European Journal of Agronomy, 18(1-2): 57-74.
DOI URL |
[19] |
WU J J, KRONZUCKER HJ, SHI W M, 2018. Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice[J]. Functional Plant Biology, 45(7): 696-704.
DOI URL |
[20] |
YANG K, YANG J R, LÜ C H, et al., 2021. Reduced mesophyll conductance induces photosynthetic acclimation of japonica rice under elevated CO2[J]. Environmental and Experimental Botany, 190(7): 104590.
DOI URL |
[21] |
YANG L X, HUANG J Y, YANG H J, et al., 2006. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle[J]. Field Crops Research, 98(2-3): 141-150.
DOI URL |
[22] |
ZISKA L H, BUNCE J A, 2007. Predicting the impact of changing CO2 on crop yields: some thoughts on food[J]. New Phytologist, 175(4): 607-618.
DOI URL |
[23] |
ZISKA L H, NAMUCO O, MOYA T, et al., 1997. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature[J]. Agronomy Journal, 89(1): 45-53.
DOI URL |
[24] |
ZHU C W, ZHU J G, ZENG Q, et al., 2009. Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation[J]. Functional Plant Biology, 36(4): 291-299.
DOI URL |
[25] | 边立丽, 艾栋, 陈玉蓝, 等, 2022. 基于SPAD值的烤烟氮素营养诊断研究[J]. 中国土壤与肥料, 301(5):177-183. |
BIAN L L, AI D, CHEN Y L, et al., 2022. Study on nitrogen nutrition diagnosis of flue-cured tobacco based on SPAD value[J]. Soil and Fertilizer Sciences in China, 301(5): 177-183. | |
[26] |
陈杨, 徐孟泽, 王玉红, 等, 2022. 有效积温与不同供氮水平夏玉米干物质和氮素积累定量化研究[J]. 中国农业科学, 55(15): 2973-2987.
DOI |
CHEN Y, XU M Z, WANG Y H, et al., 2022. Quantitative study on effective accumulated temperature and dry matter and nitrogen accumulation of summer maize under different nitrogen supply levels[J]. Scientia Agricultura Sinica, 55(15): 2973-2987.
DOI |
|
[27] | 方精云, 朱江玲, 石岳, 2018. 生态系统对全球变暖的响应[J]. 科学通报, 63(2): 136-140. |
FANG J Y, ZHU J L, SHI Y, 2018. The responses of ecosystems to global warming[J]. Chinese Science Bulletin, 63(2): 136-140 | |
[28] | 高亮之, 李琳, 1992. 水稻气象生态[M]. 北京: 农业出版社. |
GAO L Z, LI L, 1992. Meteorological Ecology of Rice[M]. Beijing: Agriculture Press. | |
[29] | 黄建晔, 杨洪建, 董桂春, 等, 2002. 开放式空气CO2浓度增高对水稻产量形成的影响[J]. 应用生态学报, 13(10): 1210-1214. |
HUANG J H, YANG H J, DONG G C, et al., 2002. Effects of free-air CO2 enrichment (FACE) on yield formation in rice (Oryza sativa)[J]. Chinese Journal of Applied Ecology, 13(10): 1210-1214. | |
[30] | 黄耀, 2017. 粮食作物产量对气候变暖的响应[J]. 科学通报, 62(36): 4220-4227. |
HUANG Y, 2017. Response of grain crop yields to climate warming[J]. Chinese Science Bulletin, 62(36): 4220-4227. | |
[31] | 黄耀, 高亮之, 金之庆, 等, 1994. 水稻群体茎蘖动态的计算机模拟模型[J]. 生态学杂志, 13(4): 27-32, 26. |
HUANG Y, GAO L Z, JIN Z Q, et al., 1994. Simulation model of tillering dynamics of rice community[J]. Chinese Journal of Ecology, 13(4):27-32, 26. | |
[32] | 蒋跃林, 张庆国, 岳伟, 等, 2005. 大气CO2浓度升高对大豆生长和产量的影响[J]. 中国农学通报, 21(6): 355-357. |
JIANG Y L, ZHANG Q G, YUE W, et al., 2005. Effects of elevated atmospheric CO2 concentration on growth and yield of soybean[J]. Chinese Agricultural Science Bulletin, 21(6):355-357. | |
[33] | 赖上坤, 2011. 水稻生长和产量对大气CO2浓度升高响应的基因型差异-FACE研究[D]. 扬州: 扬州大学. |
LAI S K, 2011. Genotypic differences in the responses of rice growth and grain yield to elevated CO2 concentration-a FACE study[D]. Yangzhou: Yangzhou University. | |
[34] | 刘晓萌, 于凌飞, 黄耀, 等, 2018. CO2浓度升高下粳稻叶片光合作用对光强变化的响应[J]. 生态学杂志, 37(4): 1051-1057. |
LIU X M, YU L F, HUANG Y, et al., 2018. Responses of photosynthesis in leaves of Japonica rice to light intensity at elevated CO2 concentration[J]. Chinese Journal of Ecology, 37(4): 1051-1057. | |
[35] | 苏李君, 刘云鹤, 王全九, 2020. 基于有效积温的中国水稻生长模型的构建[J]. 农业工程学报, 36(1):162-174. |
SU L J, LIU Y H, WANG Q J, 2020. Rice growth model in China based on growing degree days[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(1): 162-174. | |
[36] | 孙成明, 庄恒扬, 杨连新, 等, 2006a. 开放式空气CO2浓度增高对水稻茎蘖动态影响的模拟研究[J]. 农业环境科学学报, 25(5): 1122-1126. |
SUN M C, ZHUANG H Y, YANG L X, et al., 2006a. Simulation study on effects of Free-air CO2 Enrichment (FACE) on tiller dynamic of rice[J]. Journal of Agro-environment science, 25(5): 1122-1126. | |
[37] | 孙成明, 庄恒扬, 杨连新, 等, 2006b. FACE水稻茎蘖动态模型[J]. 应用生态学报, 17(8): 1448-1452. |
SUN C M, ZHUANG H Y, YANG L X, et al., 2006b. Dynamic model of rice tiller in FACE[J]. Chinese Journal of Applied Ecology, 17(8): 1448-1452. | |
[38] | 王萌萌, 杨沈斌, 江晓东, 等, 2016. 光温要素对水稻群体茎蘖增长动态影响的分析及模拟[J]. 作物学报, 42(1): 82-92. |
WANG M M, YANG S B, JIANG X D, et al., 2016. Analysis and simulation of impact of light and temperature on rice tillering[J]. Acta Agronomica Sinica, 42(1): 82-92.
DOI URL |
|
[39] | 王声锋, 段爱旺, 徐建新, 2010. 冬小麦株高和叶面积指数变化动态分析及模拟模型[J]. 灌溉排水学报, 29(4): 97-100. |
WANG S F, DUAN A W, XU J X, 2010. Dynamic changes and simulation model of plant height and leaf area index of winter wheat[J]. Journal of Irrigation and Drainage, 29(4): 97-100. | |
[40] | 谢辉, 2005. CO2浓度增加对水稻生长发育及产量形成的影响[D]. 南京: 南京农业大学. |
XIE H, 2005. Effects of high CO2 concentration on growth and yield formation in rice (Oryza Sativa L.)[D]. Nanjing: Nanjing Agricultural University. | |
[41] | 谢立勇, 孙雪, 赵洪亮, 等, 2015. FACE条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究[J]. 中国生态农业学报, 23(4): 425-431. |
XIE L Y, SUN X, ZHAO H L, et al., 2015. Responses of flag-leaf photosynthetic pigments at late growth stage and rice yield components to elevated CO2 under FACE system[J]. Chinese Journal of Eco-Agriculture, 23(4): 425-431. | |
[42] | 严定春, 周爱莲, 2008. 水稻叶龄和株高变化动态的模型研究[J]. 中国种业, 165(12): 58-59. |
YAN D C, ZHOU A L, 2008. Model study on dynamic change of leaf age and plant height in rice[J]. China Seed Industry, 165(12):58-59. | |
[43] | 杨连新, 李世峰, 王余龙, 等, 2007. 开放式空气二氧化碳浓度增高对小麦产量形成的影响[J]. 应用生态学报, 18(1): 75-80. |
YANG L X, LI S F, WANG Y L, et al., 2007. Effects of free-air CO2 enrichment (FACE) on yield formation of wheat[J]. Chinese Journal of Applied Ecology, 18(1):75-80. | |
[44] | 杨沈斌, 陈德, 王萌萌, 等, 2016. ORYZA2000模型与水稻群体茎蘖动态模型的耦合[J]. 中国农业气象, 37(4): 422-430. |
YANG S B, CHEN D, WANG M M, et al., 2016. Coupling the dynamic tillering model to rice growth model ORYZA2000 to simulate rice tillering[J]. Chinese Journal of Agrometeorology, 37(4): 422-430. | |
[45] | 赵考诚, 叶迎, 马军, 等, 2021. 水稻花后叶片SPAD值动态模型与特征分析[J]. 江苏农业科学, 49(16): 74-80. |
ZHAO K C, YE Y, MA J, et al., 2021. Dynamic model and characteristic analysis of SPAD value of rice leaves after anthesis[J]. Jiangsu Agricultural Sciences, 49(16): 74-80. | |
[46] | 周宁, 2020. 开放式空气中CO2浓度和温度升高对粳稻生长和光合的影响[D]. 扬州: 扬州大学. |
ZHOU N, 2020. Effect of elevated CO2 and temperature on Japonica rice growth, development and photosynthetic[D]. Yangzhou: Yangzhou University. | |
[47] |
周宁, 景立权, 王云霞, 等, 2017. 开放式空气中CO2浓度和温度增高对水稻叶片叶绿素含量和SPAD值的动态影响[J]. 中国水稻科学, 31(5): 524-532.
DOI |
ZHOU N, JING L Q, WANG Y X, et al., 2017. Effects of elevated atmospheric CO2 and temperature on dynamics of leaf chlorophyll contents and SPAD value of rice in open-air field Conditions[J]. Chinese Journal of Rice Science, 31(5):524-532. |
[1] | 黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122. |
[2] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[3] | 冯永霞, 尚鹤, 曹吉鑫, 倪秀雅, 陈展. CO2升高和施氮互作对木荷幼苗生理特性的影响[J]. 生态环境学报, 2022, 31(9): 1773-1782. |
[4] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[5] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[6] | 徐梅华, 顾明华, 王骋臻, 雷静, 韦燕燕, 沈方科. 锰对土壤砷形态转化及水稻吸收砷的影响[J]. 生态环境学报, 2022, 31(4): 802-813. |
[7] | 石含之, 江棋, 刘帆, 文典, 黄永东, 邓腾灏博, 王旭, 徐爱平, 李富荣, 吴志超, 李梅霞, 彭锦芬, 杜瑞英. 水稻根茬还田对土壤及稻米中镉累积的影响[J]. 生态环境学报, 2022, 31(2): 363-369. |
[8] | 上官宇先, 尹宏亮, 徐懿, 钟红梅, 何明江, 秦鱼生, 郭松, 喻华. 不同钝化剂对水稻小麦籽粒镉吸收的影响[J]. 生态环境学报, 2022, 31(2): 370-379. |
[9] | 张亚平, 陈慧敏, 吴志宇, 汤佳, 谢章彰, 刘芳华. 低量水铁矿促进稻田梭菌Clostridium sp. BY-1产氢效率[J]. 生态环境学报, 2022, 31(12): 2341-2349. |
[10] | 路旭平, 李芳兰, 石亚飞, 张娟伟, 杨文伟, 罗成科, 田蕾, 李培富. 不同水稻品种幼苗响应碱胁迫的生理差异及胁迫等级构建[J]. 生态环境学报, 2021, 30(8): 1757-1768. |
[11] | 黄成, 吴月颖, 吉恒宽, 陈丽铭, 李倍莹, 符传良, 李建宏, 吴蔚东, 吴治澎. 海南典型水稻土厌氧铁还原特征对DOM分子特性的响应[J]. 生态环境学报, 2021, 30(5): 957-967. |
[12] | 朱勇勇, 宋秉羲, 杨王敏, 张宇鹏, 高志红, 陈晓远. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响[J]. 生态环境学报, 2021, 30(11): 2150-2156. |
[13] | 丛鑫, 李瑶, 王宇, 郑力. 生物炭基针铁矿复合材料对水中莠去津吸附特性研究[J]. 生态环境学报, 2021, 30(10): 2067-2075. |
[14] | 张宇鹏, 谭笑潇, 陈晓远, 梁嘉慧, 马崇坚, 郭勇军, 周坚兵. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响[J]. 生态环境学报, 2020, 29(2): 388-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||