生态环境学报 ›› 2023, Vol. 32 ›› Issue (6): 1115-1122.DOI: 10.16258/j.cnki.1674-5906.2023.06.013
黄英梅1,2,3(), 钟松雄3,#(
), 朱忆雯3, 王向琴3, 李芳柏3,*(
)
收稿日期:
2023-03-16
出版日期:
2023-06-18
发布日期:
2023-09-01
通讯作者:
*李芳柏(1968年生),男,研究员,博士,研究方向为红壤铁循环与农田重(类)金属污染防治。E-mail: cefbli@soil.gd.cn作者简介:
黄英梅(1994年生),女,博士研究生,研究方向为土壤-水稻体系汞的迁移转运机制及修复。E-mail: huangyingmei3691@gmail.com基金资助:
HUANG Yingmei1,2,3(), ZHONG Songxiong3,#(
), ZHU Yiwen3, WANG Xiangqin3, LI Fangbai3,*(
)
Received:
2023-03-16
Online:
2023-06-18
Published:
2023-09-01
摘要:
重金属元素汞,尤其甲基汞,极易从土壤中转运到水稻植株中,并通过食物链对人类健康构成严重威胁。单质硫被广泛用于降低水稻籽粒中甲基汞的累积,然而其对水稻生长性状的影响、对甲基汞的吸收和转运的调控机制尚不明确。采用水稻盆栽试验,设置了对照组(汞污染土采自贵州省铜仁市万山汞矿,总汞质量分数为40.3 mg·kg-1)和单质硫修复组(添加量为100 mg·kg-1),比较了两组土壤和硫代硫酸铵提取态甲基汞水平、土壤理化性质(包括氧化还原电位、酸碱度、溶解性有机碳、硫酸根)、土壤汞转化基因(dsrA和dsrB)丰度,以及水稻的生长状况、叶片叶绿素水平、不同组织甲基汞的质量分数和分配。结果表明,单质硫处理显著促进水稻的生长,提高叶片叶绿素的合成(增加了27.4%);增加了水稻根和茎中甲基汞的累积,降低了根、茎和叶到籽粒的转运,最终降低了水稻籽粒中甲基汞的累积和质量分数(减少了14.7%)。同时,单质硫显著提高了土壤中硫酸根的水平(增加了124%),刺激了硫酸盐还原菌活性,其可能在参与汞甲基化过程的同时参与了厌氧环境下甲基汞的降解,从而显著降低了土壤甲基汞的水平(减少了11.6%)。水稻籽粒和整株水稻中的甲基汞质量分数与土壤硫代硫酸铵提取态甲基汞质量分数呈显著正相关(P<0.01),而土壤溶解性有机碳和硫酸根的质量分数与土壤硫代硫酸铵提取态甲基汞质量分数呈显著负相关(P<0.01)。该研究证明了单质硫在土壤-水稻体系中抵御重金属胁迫的重要作用,为制定降低汞污染以及实现稻米减毒脱毒的措施提供了理论基础和现实依据。
中图分类号:
黄英梅, 钟松雄, 朱忆雯, 王向琴, 李芳柏. 单质硫抑制水稻植株甲基汞累积的效应与机制[J]. 生态环境学报, 2023, 32(6): 1115-1122.
HUANG Yingmei, ZHONG Songxiong, ZHU Yiwen, WANG Xiangqin, LI Fangbai. Effects and Mechanism of Element Sulfur Inhibiting Methylmercury Accumulation in Rice Plants[J]. Ecology and Environment, 2023, 32(6): 1115-1122.
功能基因 | 引物名称 | 引物序列(5′-3′) | 扩增程序 |
---|---|---|---|
dsrA | DSR1F | ACSCACTGGAAGCACG | 95 ℃ 40 s; 94 ℃ 60 s, 56 ℃ 40 s, 72 ℃ 2 min, 40 cycles; 72 ℃ 4 min |
DSR1R | GTGTAGCAGTTACCGCA | ||
dsrB | DSRp2060F | CAACATCGTYCAYACCCAGGG | 95 ℃ 30 s; 95 ℃ 5 s, 55 ℃ 34 s, 72 ℃ 34 s, 40 cycles; 72 ℃ 4 min |
DSR4R | GTGTAGCAGTTACCGCA |
表1 实时荧光定量PCR所用引物序列与扩增条件
Table 1 Lists of primer pairs and thermal cycling parameters for qRT-PCR
功能基因 | 引物名称 | 引物序列(5′-3′) | 扩增程序 |
---|---|---|---|
dsrA | DSR1F | ACSCACTGGAAGCACG | 95 ℃ 40 s; 94 ℃ 60 s, 56 ℃ 40 s, 72 ℃ 2 min, 40 cycles; 72 ℃ 4 min |
DSR1R | GTGTAGCAGTTACCGCA | ||
dsrB | DSRp2060F | CAACATCGTYCAYACCCAGGG | 95 ℃ 30 s; 95 ℃ 5 s, 55 ℃ 34 s, 72 ℃ 34 s, 40 cycles; 72 ℃ 4 min |
DSR4R | GTGTAGCAGTTACCGCA |
图2 对照和单质硫(100 mg·kg-1)处理组土壤理化性质和功能基因拷贝数的检测 (a)氧化还原电位;(b)酸碱度;(c)溶解性有机碳质量分数;(d)硫酸根质量分数;(e)功能基因(dsrA和dsrB)拷贝数
Figure 2 Determination of physicochemical properties and functional gene copies of soils in control and S(0) (100 mg·kg-1) treatments
图3 对照和单质硫(100 mg·kg-1)处理组水稻生长指标的检测 (a)水稻株高;(b)水稻不同组织的生物量(干质量);(c)水稻叶片相对叶绿素含量(SPAD值)
Figure 3 Determination of rice growth parameters in control and S(0) (100 mg·kg-1) treatments
图4 对照和单质硫(100 mg·kg-1)处理组水稻不同组织的甲基汞质量分数和分配及甲基汞的生物富集因子 (a)水稻不同组织中甲基汞的质量分数;(b)水稻不同组织中甲基汞质量的比例;(c)甲基汞的生物富集因子
Figure 4 The contents and distribution of MeHg in different tissues of rice plants and bioaccumulation factors of MeHg in control and S(0) (100 mg·kg-1) treatments
处理 | 茎-根 | 叶-根 | 籽粒-根 | 叶-茎 | 籽粒-茎 | 籽粒-叶 |
---|---|---|---|---|---|---|
对照组 | 2.83 | 0.696 | 19.8 | 0.246 | 7.00 | 28.5 |
单质硫 | 2.28 | 0.548 | 14.5 | 0.240 | 6.36 | 26.4 |
表2 对照和单质硫(100 mg·kg-1)处理组水稻植株甲基汞的转运系数
Table 2 The translocation factor of MeHg of rice plants in control and S(0) (100 mg·kg-1) treatments
处理 | 茎-根 | 叶-根 | 籽粒-根 | 叶-茎 | 籽粒-茎 | 籽粒-叶 |
---|---|---|---|---|---|---|
对照组 | 2.83 | 0.696 | 19.8 | 0.246 | 7.00 | 28.5 |
单质硫 | 2.28 | 0.548 | 14.5 | 0.240 | 6.36 | 26.4 |
图5 水稻甲基汞质量分数和土壤理化指标与土壤(NH4)2S2O3提取态甲基汞质量分数之间的相关性分析 (a)籽粒甲基汞质量分数,(b)整株水稻甲基汞质量分数,(c)土壤DOC质量分数,(d)土壤SO42-质量分数与土壤(NH4)2S2O3提取态甲基汞质量分数的相关性分析
Figure 5 Correlations analysis between MeHg contents in rice plants and physicochemical properties in soils and MeHg contents in (NH4)2S2O3 extract
[1] |
BUSCAROLI A, 2017. An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review)[J]. Ecological Indicators, 82: 367-380.
DOI URL |
[2] |
CHEN D D, LIU T X, LI X M, et al., 2018. Biological and chemical processes of microbially mediated nitrate-reducing Fe(II) oxidation by Pseudogulbenkiania sp. strain 2002[J]. Chemical Geology, 476(4): 59-69.
DOI URL |
[3] | DRANGUET P, LE FAUCHEUR S, COSIO C, et al., 2017. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms[J]. Environmental Science: Processes & Impacts, 19(1): 38-49. |
[4] |
FENG X B, LI P, QIU G L, et al., 2008b. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou province, China[J]. Environmental Science & Technology, 42(1): 326-332.
DOI URL |
[5] |
FENG X B, QIU G L, 2008a. Mercury pollution in Guizhou, southwestern China-An overview[J]. Science of The Total Environment, 400(1-3): 227-237.
DOI URL |
[6] |
GAO H, WANG C, CHEN J, et al., 2022. Enhancement effects of decabromodiphenyl ether on microbial sulfate reduction in eutrophic lake sediments: A study on sulfate-reducing bacteria using dsrA and dsrB amplicon sequencing[J]. Science of The Total Environment, 843: 157073.
DOI URL |
[7] |
GILMOUR C C, PODAR M, BULLOCK A L, et al., 2013. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 47: 11810-11820.
DOI URL |
[8] |
HORVAT M, NOLDE N, FAJON V, et al., 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China[J]. Science of The Total Environment, 304(1-3): 231-256.
DOI PMID |
[9] |
HU Z Y, ZHU Y G, LI M, et al., 2007. Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings[J]. Environmental Pollution, 147(2): 387-393.
DOI URL |
[10] |
HUANG Y M, YI J C, LI X M, et al., 2024. Transcriptomics and physiological analyses reveal that sulfur alleviates mercury toxicity in rice (Oryza sativa L.)[J]. Journal of Environmental Sciences, 135: 10-25.
DOI URL |
[11] | KRONBERG R-M, SCHAEFER J K, BJÖRN E, et al., 2018. Mechanisms of methyl mercury net degradation in alder swamps: the role of methanogens and abiotic processes[J]. Environmental Science & Technology Letters, 5(4): 220-225. |
[12] |
LI Y Y, WANG Y J, ZHANG Q J, et al., 2019. Elemental sulfur amendment enhance methylmercury accumulation in rice (Oryza sativa L.) grown in Hg mining polluted soil[J]. Journal of Hazardous Materials, 379: 120701.
DOI URL |
[13] |
LI Y Y, ZHAO J T, GUO J X, et al., 2017. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils[J]. Chemosphere, 182: 293-300.
DOI URL |
[14] |
LIU M D, ZHANG Q R, CHENG M H, et al., 2019. Rice life cycle-based global mercury biotransport and human methylmercury exposure[J]. Nature Communications, 10(1): 5164.
DOI PMID |
[15] |
LIU Y R, YU R Q, ZHENG Y M, et al., 2014. Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient[J]. Applied and Environmental Microbiology, 80(9): 2874-2879.
DOI URL |
[16] |
LIU Z X, XU Z Y, XU L F, et al., 2022. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals[J]. Carbon Research, 1(1): 8.
DOI |
[17] |
LUNDE C, ZYGADLO A, SIMONSEN H T, et al., 2008. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways[J]. Physiologia Plantarum, 134(3): 508-521.
DOI URL |
[18] |
MAN Y, WANG B, WANG J X, et al., 2021. Use of biochar to reduce mercury accumulation in Oryza sativa L.: A trial for sustainable management of historically polluted farmlands[J]. Environment International, 153: 106527.
DOI URL |
[19] |
MATTIELLO E M, DA SILVA R C, DEGRYSE F, et al., 2017. Sulfur and zinc availability from co-granulated Zn-enriched elemental sulfur fertilizers[J]. Journal of Agricultural and Food Chemistry, 65(6): 1108-1115.
DOI PMID |
[20] |
NAJAFI S, RAZAVI S M, KHOSHKAM M, et al., 2020. Effects of green synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical factors of Lettuce (Lactuca sativa)[J]. Physiology Molecular Biology of Plants, 26: 1055-1066.
DOI |
[21] |
NATASHA, SHAHID M, KHALID S, et al., 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment[J]. Science of The Total Environment, 711: 134749.
DOI URL |
[22] |
ONTIVEROS-VALENCIA A, ZIV-EL M, ZHAO H P, et al., 2012. Interactions between nitrate-reducing and sulfate-reducing bacteria coexisting in a hydrogen-fed biofilm[J]. Environmental Science & Technology, 46(20): 11289-11298.
DOI URL |
[23] |
OREMLAND RONALD S, CULBERTSON CHARLES W, WINFREY MICHAEL R, 1991. Methylmercury decomposition in sediments and bacterial cultures: Involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 57(1): 130-137.
DOI PMID |
[24] |
PANDEY S K, BHATTACHARYA T, CHAKRABORTY S, 2016. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India[J]. International Journal of Phytoremediation, 18(1): 87-93.
DOI PMID |
[25] |
PARKS JERRY M, JOHS A, PODAR M, et al., 2013. The genetic basis for bacterial mercury methylation[J]. Science, 339(6125): 1332-1335.
DOI PMID |
[26] |
QIU G L, FENG X B, LI P, et al., 2008. Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China[J]. Journal of Agricultural and Food Chemistry, 56(7): 2465-2468.
DOI URL |
[27] |
ROTHENBERG S E, ANDERS M, AJAMI N J, et al., 2016. Water management impacts rice methylmercury and the soil microbiome[J]. Science of The Total Environment, 572: 608-617.
DOI URL |
[28] |
SHU R, WANG Y, ZHONG H, 2016. Biochar amendment reduced methylmercury accumulation in rice plants[J]. Journal of Hazardous Materials, 313: 1-8.
DOI PMID |
[29] | SINGH S P, SCHWAN A L, 2011. 4.20-Sulfur metabolism in plants and related biotechnologies[M]. Comprehensive Biotechnology (Second Edition). Burlington: Academic Press: 257-271. |
[30] |
STRICKMAN R J, MITCHELL C P J, 2017. Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: An enriched isotope tracer study[J]. Science of The Total Environment, 574: 1415-1423.
DOI URL |
[31] |
TANG Z Y, FAN F L, DENG S P, et al., 2020. Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury-A critical review[J]. Ecotoxicology and Environmental Safety, 202: 110950.
DOI URL |
[32] | USEPA, 1998. Method 1630, Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS[S]. Washington, DC: US Environmental Protection Agency. |
[33] |
WANG G X, HU Z Y, LI S Y, et al., 2020. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging[J]. Chemosphere, 240: 124846.
DOI URL |
[34] |
WANG J X, FENG X B, ANDERSON C W, et al., 2012. Remediation of mercury contaminated sites-A review[J]. Journal of Hazardous Material, 221-222: 1-18.
DOI URL |
[35] |
YUAN H Y, LIU Q Q, GUO Z, et al., 2021. Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L[J]. Journal of Cleaner Production, 318(1): 128589.
DOI URL |
[36] |
ZHANG H, FENG X B, LARSSEN T, et al., 2010. In inland China, rice, rather than fish, is the major pathway for methylmercury exposure[J]. Environmental Health Perspectives, 118(9): 1183-1188.
DOI PMID |
[37] |
ZHANG Y F, WANG X Q, YANG Y, et al., 2023. Retention and transformation of exogenous Hg in acidic paddy soil under alternating anoxic and oxic conditions: Kinetic and mechanistic insights[J]. Environmental Pollution, 323: 121335.
DOI URL |
[38] |
ZHAO C C, DEGRYSE F, GUPTA V, et al., 2015b. Elemental sulfur oxidation in Australian cropping soils[J]. Soil Science Society of America Journal, 79(1): 89-96.
DOI URL |
[39] |
ZHAO F J, MA Y B, ZHU Y G, et al., 2015a. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759.
DOI URL |
[40] |
ZHAO L, MENG B, FENG X, 2020. Mercury methylation in rice paddy and accumulation in rice plant: A review[J]. Ecotoxicology and Environmental Safety, 195: 110462.
DOI URL |
[41] |
ZHOU X Q, HAO Y Y, GU B H, et al., 2020. Microbial communities associated with methylmercury degradation in paddy soils[J]. Environmental Science & Technology, 54(13): 7952-7960.
DOI URL |
[42] |
ZHU D W, ZHONG H, ZENG Q L, et al., 2015. Prediction of methylmercury accumulation in rice grains by chemical extraction methods[J]. Environmental Pollution, 199: 1-9.
DOI URL |
[1] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[2] | 杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942. |
[3] | 寇祝, 卿纯, 袁昌果, 李平. 西藏东北部热泉水中硫氧化菌的多样性及分布特征[J]. 生态环境学报, 2023, 32(5): 989-1000. |
[4] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[5] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[6] | 王钊, 张曼胤, 胡宇坤, 刘魏魏, 张苗苗. 盐度对典型滨海湿地沉积物汞甲基化的影响[J]. 生态环境学报, 2022, 31(9): 1876-1884. |
[7] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[8] | 董乐恒, 王旭刚, 陈曼佳, 王子豪, 孙丽蓉, 石兆勇, 吴琪琪. 光照和避光条件下石灰性水稻土Fe氧化还原与Cu活性关系研究[J]. 生态环境学报, 2022, 31(7): 1448-1455. |
[9] | 李嘉义, 孙蔚旻, 孙晓旭, 孔天乐, 李宝琴, 刘振鸿, 高品. 尾矿硫氧化微生物的分离鉴定与功能验证[J]. 生态环境学报, 2022, 31(4): 785-792. |
[10] | 徐梅华, 顾明华, 王骋臻, 雷静, 韦燕燕, 沈方科. 锰对土壤砷形态转化及水稻吸收砷的影响[J]. 生态环境学报, 2022, 31(4): 802-813. |
[11] | 石含之, 江棋, 刘帆, 文典, 黄永东, 邓腾灏博, 王旭, 徐爱平, 李富荣, 吴志超, 李梅霞, 彭锦芬, 杜瑞英. 水稻根茬还田对土壤及稻米中镉累积的影响[J]. 生态环境学报, 2022, 31(2): 363-369. |
[12] | 上官宇先, 尹宏亮, 徐懿, 钟红梅, 何明江, 秦鱼生, 郭松, 喻华. 不同钝化剂对水稻小麦籽粒镉吸收的影响[J]. 生态环境学报, 2022, 31(2): 370-379. |
[13] | 张亚平, 陈慧敏, 吴志宇, 汤佳, 谢章彰, 刘芳华. 低量水铁矿促进稻田梭菌Clostridium sp. BY-1产氢效率[J]. 生态环境学报, 2022, 31(12): 2341-2349. |
[14] | 路旭平, 李芳兰, 石亚飞, 张娟伟, 杨文伟, 罗成科, 田蕾, 李培富. 不同水稻品种幼苗响应碱胁迫的生理差异及胁迫等级构建[J]. 生态环境学报, 2021, 30(8): 1757-1768. |
[15] | 张苏明, 张建强, 周凯, 陈志良. 铁基改性椰壳生物炭对砷的吸附效果及机制研究[J]. 生态环境学报, 2021, 30(7): 1503-1512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||