生态环境学报 ›› 2025, Vol. 34 ›› Issue (12): 1890-1899.DOI: 10.16258/j.cnki.1674-5906.2025.12.006
官金顺1(
), 蒋新宇2,*(
), 程炯2, 陈三雄1,*(
), 余世钦3
收稿日期:2025-03-12
出版日期:2025-12-18
发布日期:2025-12-10
通讯作者:
*E-mail:Chensanxiong@zhku.edu.cn;xyjiang@soil.gd.cn
作者简介:官金顺(1997年生),男,硕士研究生,研究方向为植被恢复与地力维持。E-mail: 1902389795@qq.com
基金资助:
GUAN Jinshun1(
), JIANG Xinyu2,*(
), CHENG Jiong2, CHEN Sanxiong1,*(
), YU Shiqin3
Received:2025-03-12
Online:2025-12-18
Published:2025-12-10
摘要: 稀土尾矿砂土壤贫瘠、碳氮匮乏,严重制约生态修复。通过添加活性、灭活微藻探究其对土壤碳氮固持及团聚体结构的改良效应。选用小球藻(Chlorella pyrenoidosa)、固氮鱼腥藻(Anabaena azotica),设置活性、灭活及对照3组试验,每周添加20 mL藻液,共持续105 d,分别于第15、45、105天测定土表叶绿素含量,于第105天测定土壤碳氮、团聚体指标。结果表明,1)与对照相比,活性微藻使总有机碳(SOC)和总氮(TN)含量分别提高151%和512%,灭活处理组分别提升171%和385%,活性组TN显著高于灭活组26.2%,灭活组SOC较活性组高7.80%。2)活性处理组SOC和TN分别净增1.476、0.564 g·kg−1,占总量32.4%、79.0%;灭活处理则分别为1.832、0.415 g·kg−1,占比37.3%、73.5%。3)灭活处理粗颗粒态有机碳(CPOC)较对照增加111%,活性处理组细颗粒态(FPOC)和矿物结合态有机碳(MAOC)分别显著提升124%和153%。两处理组颗粒态总氮分别较对照提高533%和396%。4)第105天时活性与灭活处理表土叶绿素含量分别较初始增长142%和106%。5)微藻添加显著降低粉黏粒比例,活性与灭活处理使团聚体平均质量直径(MWD)分别增加10.3%和18.3%,活性组几何平均直径(GMD)提升10.8%。活性和灭活微藻通过光合固碳与生物固氮协同提升碳氮固持效率,促进团聚体形成、研究结果可为尾矿砂生态修复提供新途径。
中图分类号:
官金顺, 蒋新宇, 程炯, 陈三雄, 余世钦. 藻液添加提升稀土尾矿砂土壤碳氮固持能力[J]. 生态环境学报, 2025, 34(12): 1890-1899.
GUAN Jinshun, JIANG Xinyu, CHENG Jiong, CHEN Sanxiong, YU Shiqin. Study on the Enhancement of Carbon and Nitrogen Retention in Rare Earth Tailings Soil by Microalgae[J]. Ecology and Environmental Sciences, 2025, 34(12): 1890-1899.
| w(全氮)/ (g·kg−1) | w(溶解性有机碳)/ (mg·kg−1) | w(总有机碳)/ (g·kg−1) | 土壤 pH | 土壤容重/ (g·cm−3) | 砂粒占比/% | 粉粒占比/% | 黏粒占比/% |
|---|---|---|---|---|---|---|---|
| 0.050 | 42.600 | 1.530 | 4.920 | 1.530 | 58.1 | 41.5 | 0.402 |
表1 供试尾矿砂土壤背景值
Table 1 Background values of the tailings sand soil for testing
| w(全氮)/ (g·kg−1) | w(溶解性有机碳)/ (mg·kg−1) | w(总有机碳)/ (g·kg−1) | 土壤 pH | 土壤容重/ (g·cm−3) | 砂粒占比/% | 粉粒占比/% | 黏粒占比/% |
|---|---|---|---|---|---|---|---|
| 0.050 | 42.600 | 1.530 | 4.920 | 1.530 | 58.1 | 41.5 | 0.402 |
图1 藻液添加对尾矿砂土壤总有机碳(a)、总氮(b)质量分数的影响 样品重复数n=3;小写字母代表同一土层不同处理间的显著性差异分析,不同字母说明存在显著性差异(p<0.05)
Figure 1 Impacts of algal solution amendment on total organic carbon (a) and total nitrogen (b) contents in tailings sand soil
| 检测指标 | 处理 | 背景值/ (g·kg−1) | 藻液施加量/ (g·kg−1) | 净增加量/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 1.530 | 1.556 | 1.476b |
| 灭活微藻 | 1.530 | 1.556 | 1.832a | |
| 对照试验 | 1.530 | 0 | 0.285c | |
| 总氮 | 活性微藻 | 0.050 | 0.100 | 0.564a |
| 灭活微藻 | 0.050 | 0.100 | 0.415b | |
| 对照试验 | 0.050 | 0 | 0.068c |
表2 土壤有机碳(a)与总氮(b)的净增加量分析
Table 2 Analysis of net increase in soil organic carbon (a) and total nitrogen (b)
| 检测指标 | 处理 | 背景值/ (g·kg−1) | 藻液施加量/ (g·kg−1) | 净增加量/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 1.530 | 1.556 | 1.476b |
| 灭活微藻 | 1.530 | 1.556 | 1.832a | |
| 对照试验 | 1.530 | 0 | 0.285c | |
| 总氮 | 活性微藻 | 0.050 | 0.100 | 0.564a |
| 灭活微藻 | 0.050 | 0.100 | 0.415b | |
| 对照试验 | 0.050 | 0 | 0.068c |
| 检测指标 | 处理 | 粗颗粒态 质量分数/ (g·kg−1) | 细颗粒态 质量分数/ (g·kg−1) | 矿物结合态 质量分数/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 2.080b | 1.177a | 1.633a |
| 灭活微藻 | 2.470a | 0.977a | 1.507a | |
| 对照试验 | 1.090c | 0.450b | 0.647b | |
| 总氮 | 活性微藻 | 0.350a | 0.157a | 0.247a |
| 灭活微藻 | 0.260b | 0.137a | 0.197b | |
| 对照试验 | 0.053c | 0.027b | 0.063c |
表3 微藻添加对尾矿砂土壤碳氮组分的影响
Table 3 Variations in carbon and nitrogen fractions of tailings sand soil under microalgae amendment
| 检测指标 | 处理 | 粗颗粒态 质量分数/ (g·kg−1) | 细颗粒态 质量分数/ (g·kg−1) | 矿物结合态 质量分数/ (g·kg−1) |
|---|---|---|---|---|
| 有机碳 | 活性微藻 | 2.080b | 1.177a | 1.633a |
| 灭活微藻 | 2.470a | 0.977a | 1.507a | |
| 对照试验 | 1.090c | 0.450b | 0.647b | |
| 总氮 | 活性微藻 | 0.350a | 0.157a | 0.247a |
| 灭活微藻 | 0.260b | 0.137a | 0.197b | |
| 对照试验 | 0.053c | 0.027b | 0.063c |
图2 土培过程表土叶绿素含量的变化 样品重复数n=3;小写字母代表同一土层不同处理间的显著性差异分析,不同字母说明存在显著性差异(p<0.05)
Figure 2 Changes in chlorophyll content in the surface soil during soil culture process
图3 藻液添加对尾矿砂土壤不同粒级团聚体(a-d)及团聚体质量(e-f)的影响 样品重复数n=3;小写字母为不同处理间的显著性分析,不同字母代表彼此间存在显著性差异p<0.05
Figure 3 Effects of algal solution addition on soil aggregates of different particle sizes (a?d) and aggregate quality (e?f) in tailings sand
图4 尾矿砂各土壤指标之间的相关性分析 SOC为总有机碳,TN为总氮,CPOC为粗颗粒态有机碳,FPOC为细颗粒态有机碳,MAOC为矿物结合态有机碳,CPTN为粗颗粒态总氮,FPTN为细颗粒态总氮,MATN为矿物结合态总氮,CHLa为土表叶绿素含量,AG1-4分别为大团聚体、小团聚体、微团聚体、粉黏粒质量;*p<0.05
Figure 4 Correlation analysis among various physicochemical indicators of tailings sand
图5 有机碳、总氮、矿物结合态有机碳占比及团聚体差异分析与效应量 样品重复数n=3;小写字母为不同处理间的显著性分析,不同字母代表彼此间存在显著性差异p<0.05
Figure 5 Difference analysis and effect sizes of SOC, TN, MAOC, and aggregates
| [1] |
ABINANDAN S, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al., 2019. Soil microalgae and cyanobacteria: The biotechnological potential in the maintenance of soil fertility and health[J]. Critical Reviews in Biotechnology, 39(8): 981-998.
DOI PMID |
| [2] | BRUSSAARD L, KOOISTRA M J, 1993. Soil Structure/soil Biota Interrelationships[M]. Amsterdam: Elsevier: 449-457. |
| [3] |
BOWKER M A, MAESTRE F T, ELDRIDGE D, et al., 2014. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology[J]. Biodiversity and Conservation, 23: 1619-1637.
DOI URL |
| [4] |
COTRUFO F M, SOONG L J, HORTON J A, et al., 2019. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 8: 776-779.
DOI |
| [5] |
ELLIOTT E, 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 50(3): 627-633.
DOI URL |
| [6] |
FIERER N, SCHIMEL J P, HOLDEN P A, 2003. Influence of drying-rewetting frequency on soil bacterial community structure[J]. Microbial Ecology, 45: 63-71.
DOI PMID |
| [7] |
HU Y L, DENG Q, KÄTTERER T, et al., 2024. Depth-dependent responses of soil organic carbon under nitrogen deposition[J]. Global Change Biology, 30(3): e17247.
DOI URL |
| [8] |
JASSEY V E, WALCKER R, KARDOL P, et al., 2022. Contribution of soil algae to the global carbon cycle[J]. New Phytologist, 234(1): 64-76.
DOI PMID |
| [9] |
KLEBER M, SOLLINS P, SUTTON R, et al., 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 85(1): 9-24.
DOI URL |
| [10] |
LAN S B, WU L, YANG H J, et al., 2017. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus[J]. Bioresource Technology, 238: 602-608.
DOI PMID |
| [11] |
LAVALLEE J M, SOONG J L, COTRUFO M F, 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms[J]. Global Change Biology, 26(1): 261-273.
DOI URL |
| [12] |
LUCAS M, SCHLÜTER S, VOGEL H J, et al., 2019. Soil structure formation along an agricultural chronosequence[J]. Geoderma, 350: 61-72.
DOI |
| [13] |
ROBERTSON G P, KLINGENSMITH K M, KLUG M J, et al., 1997. Soil resources, microbial activity, and primary production acrossan agricultural ecosystem[J]. Ecological Applications, 7(1): 158-170.
DOI URL |
| [14] |
SHANTHAKUMAR S, ABINANDAN S, VENKATESWARLU K, et al., 2021. Algalization of acid soils with acid-tolerant strains: Improvement in pH, carbon content, exopolysaccharides, indole acetic acid and dehydrogenase activity[J]. Land Degradation & Development, 32(11): 3157-3166.
DOI URL |
| [15] |
SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 79(1): 7-31.
DOI URL |
| [16] |
SYERS J K, SPRINGETT J A, 1984. Earthworms and soil fertility[J]. Plant and Soil, 76(1): 93-104.
DOI URL |
| [17] | TAN W F, XU Y, SHI Z H, et al., 2023. The formation process and stabilization mechanism of soil aggregates driven by binding materials[J]. Acta Pedologica Sinica, 60(5): 1297-1308. |
| [18] |
XIONG K, JIANK X Y, HUANG S Q, et al., 2024. Variations in iron-bound organic carbon in soils along an altitude gradient and influencing factors in a subtropical mountain ecosystem of southern China[J]. Journal of Soils and Sediments, 24(9): 3180-3194.
DOI |
| [19] |
YU M X, WANG Y P, DENG Q, et al., 2024. Soil acidification enhanced soil carbon sequestration through increased mineral protection[J]. Plant and Soil, 503(1-2): 529-544.
DOI |
| [20] |
ZHOU Y, CUI X C, WU B B, et al., 2024. Microalgal extracellular polymeric substances (EPS) and their roles in cultivation, biomass harvesting, and bioproducts extraction[J]. Bioresource Technology, 406: 131054.
DOI URL |
| [21] |
ZANG H D, MEHMOOD I, KUZYAKOV Y, et al., 2024. Not all soil carbon is created equal: Labile and stable pools under nitrogen input[J]. Global Change Biology, 30(7): e17405.
DOI URL |
| [22] | 陈宗定, 许春雪, 安子怡, 等, 2019. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 38(2): 233-244. |
| CHEN Z D, XU C X, AN Z Y, et al., 2019. Research progress on soil carbon occurrence forms and analytical methods[J]. Rock and Mineral Analysis, 38(2): 233-244. | |
| [23] | 陈同, 赵远, 彭成荣, 等, 2024. 单细胞水平解析土壤固氮鱼腥藻的碳氮固存过程研究进展[J]. 微生物学报, 64(6): 1721-1734. |
| CHEN T, ZHAO Y, PENG C R, et al., 2024. Research progress on carbon and nitrogen sequestration processes in soil nitrogen-fixing Anabaena at the single-cell level[J]. Acta Microbiologica Sinica, 64(6): 1721-1734. | |
| [24] | 邓帅, 李双俊, 宋春风, 等, 2018. 微藻光合固碳效能研究: 进展、挑战和解决路径[J]. 化工进展, 37(3): 928-937. |
| DENG S, LI S J, SONG C F, et al., 2018. Research on microalgal photosynthetic carbon fixation efficiency: Progress, challenges, and solutions[J]. Chemical Industry and Engineering Progress, 37(3): 928-937. | |
| [25] |
郭强, 韩子琛, 夏允, 等, 2024. 土壤微生物固碳机理及其影响因素研究进展[J]. 植物生态学报, 48(11): 1406-1421.
DOI |
|
GUO Q, HAN Z C, XIA Y, et al., 2024. Research progress on the mechanism of soil microbial carbon fixation and its influencing factors[J]. Chinese Journal of Plant Ecology, 48(11): 1406-1421.
DOI URL |
|
| [26] | 国家林业局, 1999. 森林土壤颗粒组成(机械组成)的测定: LY/T 1225—1999[S]. 北京: 中国标准出版社. |
| State Forestry Administration, 1999. Determination of forest soil particle-size composition (mechanical composition): LY/T 1225—1999[S]. Beijing: China Standards Press. | |
| [27] | 黄尚书, 方巍, 高磊, 等, 2023. 植物修复模式对离子型稀土堆浸尾矿土壤入渗特性的影响[J]. 湖南农业科学, 553(4): 55-60. |
| HUANG S S, FANG W, GAO L, et al., 2023. Effects of phytoremediation models on soil infiltration characteristics of ionic rare earth heap leaching tailings[J]. Hunan Agricultural Sciences, 553(4): 55-60. | |
| [28] | 李清毅, 张国民, 王新烨, 等, 2024. 微藻在蓝碳中的作用机制及影响因素[J]. 安徽农业科学, 52(3): 71-76. |
| LI QY, ZHANG G M, WANG X H, et al., 2024. Mechanism and influencing factors of microalgae in blue carbon[J]. Anhui Agricultural Sciences, 52(3): 71-76. | |
| [29] | 李莎莎, 汪礼明, 熊子良, 等, 2024. 粤北左坑离子吸附型稀土矿床含矿岩体地球化学特征与稀土元素迁移-富集机理[J]. 大地构造与成矿学, 48(2): 259-273. |
| LI S S, WANG L M, XIONG Z L, et al., 2024. Geochemical characteristics of ore-bearing rocks and migration-enrichment mechanism of rare earth elements in the Zuokeng ion-adsorption type rare earth deposit, northern Guangdong[J]. Geotectonica et Metallogenia, 48(2): 259-273. | |
| [30] | 李忠意, 2012. 重庆涪陵榨菜种植区土壤酸化特征及其改良研究[D]. 重庆: 西南大学. |
| LI Z Y, 2012. Characteristics of soil acidification and its improvement in the Fuling mustard planting area of Chongqing[D]. Chongqing: Southwest University. | |
| [31] | 李欢, 王艳玲, 殷丹, 等, 2022. 水稻秸秆/根系添加对稻田红壤发生层颗粒态及矿物结合态有机碳的影响[J]. 土壤通报, 53(2): 384-391. |
| LI H, WANG Y L, YIN D, et al., 2022. Effects of rice straw and root addition on particulate and mineral-associated organic carbon in the horizons of paddy red soil[J]. Chinese Journal of Soil Science, 53(2): 384-391. | |
| [32] |
李景, 吴会军, 武雪萍, 等, 2021. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 54(2): 334-344.
DOI |
| LI J, WU H J, WU X P, et al., 2021. Long-term no-tillage and subsoiling increased particulate organic carbon and total nitrogen contents in soil aggregates[J]. Scientia Agricultura Sinica, 54(2): 334-344. | |
| [33] | 刘丹, 2023. 微藻对土壤中地衣芽孢杆菌和玉米黑粉菌的影响[D]. 吉林: 北华大学. |
| LIU D, 2023. Effects of microalgae on Bacillus licheniformis and Ustilago maydis in soil[D]. Jilin: Beihua University. | |
| [34] | 倪妍, 黄子玥, 文婕妤, 2023. 微藻生物固碳技术研究概述[J]. 生物学教学, 48(12): 2-5. |
| NI Y, HUANG Z Y, WEN J Y, 2023. Overview of research on microalgae-based biological carbon fixation technology[J]. Biology Teaching, 48(12): 2-5. | |
| [35] | 苏兴雷, 渠晨晨, 康杰, 等, 2024. 微生物驱动土壤矿物结合态有机碳的形成[J]. 科学通报, 69(22): 3327-3338. |
| SU X L QU C C, KANG J, et al., 2024. Microbial-driven formation of mineral-associated organic carbon in soil[J]. Chinese Science Bulletin, 69(22): 3327-3338. | |
| [36] |
宋文婕, 梁誉正, 陶贞, 等, 2023. 微生物介导的土壤有机碳动态研究进展[J]. 地球科学进展, 38(12): 1213-1223.
DOI |
| SONG W J, LIANG Y Z, TAO Z, et al., 2023. Advances in microbial-mediated dynamics of soil organic carbon[J]. Advances in Earth Science, 38(12): 1213-1223. | |
| [37] | 孙贝雯, 公玮, 李月芬, 等, 2023. 塑料污染对农田土壤团聚体稳定性的影响[J]. 农业环境科学学报, 42(5): 1051-1060. |
| SUN B W, GONG W, LI Y F, et al., 2023. Effects of plastic pollution on the stability of farmland soil aggregates[J]. Journal of Agro-Environment Science, 42(5): 1051-1060. | |
| [38] | 唐东山, 卿人韦, 傅华龙, 等, 2003. 利用土壤微藻改良贫瘠土壤的研究[J]. 四川大学学报(自然科学版), 40(2): 352-355. |
| TANG D S, QING R W, FU H L, et al., 2003. Study on the improvement of barren soil using soil microalgae[J]. Journal of Sichuan University (Natural Science Edition), 40(2): 352-355. | |
| [39] | 温春辉, 2017. 离子型稀土矿区土壤中稀土元素对氮化物影响与作用研究[D]. 赣州: 江西理工大学. |
| WEN C H, 2017. Study on the effects and mechanisms of rare earth elements on nitrogen compounds in soils of ionic rare earth mining areas[D]. Ganzhou: Jiangxi University of Science and Technology. | |
| [40] | 张薇, 马金国, 王明国, 2024. 连续堆肥施用对土壤反硝化及固氮微生物的影响[J]. 宁夏农林科技, 65(12): 61-65. |
| ZHANG W, MA J G, WANG M G, 2024. Effects of continuous compost application on soil denitrification and nitrogen-fixing microorganisms[J]. Ningxia Agricultural and Forestry Science and Technology, 65(12): 61-65. | |
| [41] |
张靖洁, 刘珅坤, 唐涛, 等, 2020. 微藻源生物刺激剂的制备及在设施农业中的应用[J]. 生物技术通报, 36(4): 164-174.
DOI |
| ZHANG J J, LIU S K, TANG T, et al., 2020. Preparation of microalgae-derived biostimulants and their application in facility agriculture[J]. Biotechnology Bulletin, 36(4): 164-174. | |
| [42] | 张新平, 2021. 土壤改良和植物对赣南某离子型稀土尾矿联合修复研究[D]. 南昌: 江西农业大学. |
| ZHANG X P, 2021. Study on the combined remediation of soil improvement and plants on ionic rare earth tailings in southern Jiangxi[D]. Nanchang: Jiangxi Agricultural University. | |
| [43] | 中华人民共和国农业部, 2007. 土壤pH的测定: NY/T 1377—2007[S]. 北京: 中国标准出版社. |
| Ministry of Agriculture of the People’s Republic of China, 2007. Determination of soil pH: NY/T 1377—2007[S]. Beijing: China Standards Press. | |
| [44] | 周彩云, 张嵚, 赵小敏, 等, 2019. 赣南某原地浸析稀土尾矿复垦前后土壤质量变化[J]. 农业资源与环境学报, 36(1): 89-95. |
| ZHOU C Y, ZHANG Q, ZHAO X M, et al., 2019. Changes in soil quality before and after reclamation of in-situ leaching rare earth tailings in southern Jiangxi[J]. Journal of Agricultural Resources and Environment, 36(1): 89-95. | |
| [45] | 钟慧祺, 韩佩, 芦骞, 等, 2022. 小球藻液体肥料对3种植物生长促进作用的探究[J]. 生物学杂志, 39(3): 66-71. |
| ZHONG H Q, HAN P, LU Q, et al., 2022. Exploration of the promoting effects of Chlorella liquid fertilizer on the growth of three plant species[J]. Journal of Biology, 39(3): 66-71. |
| [1] | 欧阳群文, 郭小平, 郝嘉航, 郭宇. 基于种子库视角的北京市高速路边坡喷播植被演替特征研究[J]. 生态环境学报, 2025, 34(6): 941-949. |
| [2] | 王龙飞, 张皎皎, 王子怡, 陈玉东, 李轶. 生物膜技术在河湖生态修复中的创新与实践[J]. 生态环境学报, 2025, 34(4): 653-664. |
| [3] | 孔小云, 张永坤, 李润杰, 李颖, 林成清, 马占明, 辛继林, 杨晓璇, 党怡乐, 赵家艺, 冯玲正, 周燕. 湟水河流域耕地土壤团聚体有机碳空间变异特征及其驱动因素分析[J]. 生态环境学报, 2025, 34(11): 1715-1727. |
| [4] | 许铭宇, 俞龙生. 农林废弃有机材料对离子型稀土矿尾砂的土壤改良效应[J]. 生态环境学报, 2025, 34(1): 126-134. |
| [5] | 叶俊宏, 刘珍环, 刘子瑜. 珠江三角洲城市群国土空间生态修复分区情景模拟[J]. 生态环境学报, 2025, 34(1): 4-12. |
| [6] | 方吉, 吴啸, 宫清华, 韦泽棉, 王颖佳. 南方滨海农业县国土空间生态修复规划策略——以广东省徐闻县为例[J]. 生态环境学报, 2024, 33(7): 1019-1026. |
| [7] | 孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678. |
| [8] | 马志伟, 张丛志, 赵占辉, 吴其聪, 赵金花, 陈卓, 李敬王, 张楠, 薛雅, 王娅茹, 陆芸萱, 张佳宝. 基于木本泥炭的土壤健康培育研究进展[J]. 生态环境学报, 2024, 33(12): 1964-1977. |
| [9] | 高熙梣, 孔涛, 李华孙, 李多美, 张加良. 古龙酸母液、木霉菌与活性污泥配施对矸石山黑麦草生理特性及土壤微生物性质的影响[J]. 生态环境学报, 2023, 32(9): 1709-1718. |
| [10] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
| [11] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
| [12] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
| [13] | 古琛, 贾志清, 杜波波, 何凌仙子, 李清雪. 中国退化草地生态修复措施综述与展望[J]. 生态环境学报, 2022, 31(7): 1465-1475. |
| [14] | 刘祥宏, 尹勤瑞, 辛建宝, 刘伟, 许秀泉, 黄占斌, 安如意. 生态植被自然修复及其人工促进技术研究进展与展望[J]. 生态环境学报, 2022, 31(7): 1476-1488. |
| [15] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||