生态环境学报 ›› 2025, Vol. 34 ›› Issue (12): 1900-1908.DOI: 10.16258/j.cnki.1674-5906.2025.12.007
王春梅1(
), 姜炳棋2, 胡俊2, 陈代文1, 黄丽华1, 程湾湾1
收稿日期:2025-04-08
出版日期:2025-12-18
发布日期:2025-12-10
作者简介:王春梅(1977年生),女,高级工程师,硕士,研究方向为辐射监测与防护。E-mail: 442396265@qq.com
基金资助:
WANG Chunmei1(
), JIANG Bingqi2, HU Jun2, CHEN Daiwen1, HUANG Lihua1, CHENG Wanwan1
Received:2025-04-08
Online:2025-12-18
Published:2025-12-10
摘要: 以宁德核电厂周边气溶胶中总α、总β为研究对象,探讨核电厂周边大气环境总放射性的时空分布特征、周期性规律以及与各种影响因子的关联性,揭示数据的周期性规律和耦合机制,对完善核电厂大气环境风险预警体系具有重要应用价值。研究利用小波变换对宁德核电厂周边的大气监测数据进行分析,并运用小波相干谱研究了总α、总β放射性活度浓度与气象因子(降水、湿度)及可吸入颗粒物因子(PM2.5、PM10)的相关性。结果表明:1)宁德核电厂周边气溶胶中总α活度浓度监测结果较国内其他核电稍偏高,但依然处于正常环境水平范围之内;2)气溶胶总α、总β活度浓度均存在18个月左右的主周期与40个月左右的次周期,同时国外同类型的核电厂气溶胶总α、总β活度浓度周期性并不明显;3)气溶胶总α与总β间活度浓度时间序列具有较强的同步性,存在正相关关系,尤其在中、高时频尺度上这种关系较明显。而总α、总β与降水、湿度呈现负相关性,共轭周期主要分布在中、低尺度上。总α、总β与PM2.5、PM10两个因子相关性不强,尤其在低尺度上未见任何相关性,但局部总α、总β约比PM2.5、PM10提前1/8-1/4周期。
中图分类号:
王春梅, 姜炳棋, 胡俊, 陈代文, 黄丽华, 程湾湾. 核电厂周边大气环境总放射性多尺度变化及影响因素[J]. 生态环境学报, 2025, 34(12): 1900-1908.
WANG Chunmei, JIANG Bingqi, HU Jun, CHEN Daiwen, HUANG Lihua, CHENG Wanwan. Multi-scale Variations and Influencing Factors of Total Radioactivity in Atmospheric Environment Around Nuclear Power Plants[J]. Ecology and Environmental Sciences, 2025, 34(12): 1900-1908.
图1 监督性监测点位及2014-2024年牛郞岗站风向风频玫瑰图
Figure 1 Supervised monitoring points and wind direction and frequency chart of Niulanggang station from 2014 to 2024
| 点位名称 | 样本数 | 总α的活度浓度A/(mBq·m−3) | 总β的活度浓度A/(mBq·m−3) | |||||
|---|---|---|---|---|---|---|---|---|
| 测定值 | 平均值 | RSD/% | 测定值 | 平均值 | RSD/% | |||
| 渔井 | 132 | 0.009-0.300 | 0.094 | 61 | 0.088-2.400 | 0.889 | 58 | |
| 小筼筜 | 128 | 0.011-0.300 | 0.091 | 63 | 0.130-2.300 | 0.877 | 48 | |
| 牛郎岗 | 127 | 0.012-0.230 | 0.083 | 62 | 0.150-2.100 | 0.809 | 51 | |
| 福州对照点 | 108 | 0.022-0.540 | 0.157 | 74 | 0.057-2.900 | 1.001 | 62 | |
表1 2014-2024年宁德核电厂各监测点位气溶胶中总α总β活度浓度监测结果统计
Table 1 Statistics on the monitoring results of total α and total β activity concentration in aerosols at each monitoring point of Ningde Nuclear Power Plant from 2014 to 2024
| 点位名称 | 样本数 | 总α的活度浓度A/(mBq·m−3) | 总β的活度浓度A/(mBq·m−3) | |||||
|---|---|---|---|---|---|---|---|---|
| 测定值 | 平均值 | RSD/% | 测定值 | 平均值 | RSD/% | |||
| 渔井 | 132 | 0.009-0.300 | 0.094 | 61 | 0.088-2.400 | 0.889 | 58 | |
| 小筼筜 | 128 | 0.011-0.300 | 0.091 | 63 | 0.130-2.300 | 0.877 | 48 | |
| 牛郎岗 | 127 | 0.012-0.230 | 0.083 | 62 | 0.150-2.100 | 0.809 | 51 | |
| 福州对照点 | 108 | 0.022-0.540 | 0.157 | 74 | 0.057-2.900 | 1.001 | 62 | |
| 核电厂(采样时间) | 装机容量/MWe | 总α范围/(mBq·m−3) | 总α均值/(mBq·m−3) | 总α/单位装机容量/(mBq·m−3·kMWe−1) |
|---|---|---|---|---|
| 福清核电厂(2015-2024) | 5917 | 0.006-0.240 | 0.072 | 0.012 |
| 宁德核电厂(2014-2024) | 4356 | 0.083-0.094 | 0.090 | 0.021 |
| 秦山核电厂(2001-2011) | 6564 | 0.02-0.72 | 0.13 | 0.02 |
| 阳江核电厂(2014-2016) | 6516 | 0.01-0.35 | 0.07 | 0.01 |
表2 国内核电厂气溶胶中总α监测数据统计
Table 2 Statistics of total α monitoring data in aerosol of domestic nuclear power plants
| 核电厂(采样时间) | 装机容量/MWe | 总α范围/(mBq·m−3) | 总α均值/(mBq·m−3) | 总α/单位装机容量/(mBq·m−3·kMWe−1) |
|---|---|---|---|---|
| 福清核电厂(2015-2024) | 5917 | 0.006-0.240 | 0.072 | 0.012 |
| 宁德核电厂(2014-2024) | 4356 | 0.083-0.094 | 0.090 | 0.021 |
| 秦山核电厂(2001-2011) | 6564 | 0.02-0.72 | 0.13 | 0.02 |
| 阳江核电厂(2014-2016) | 6516 | 0.01-0.35 | 0.07 | 0.01 |
图2 宁德核电厂总α、总β和土尔其角核电厂总β活度浓度时间序列小波实部等值线图与小波方差图
Figure 2 Contour map of wavelet real part and wavelet variance map of total α, total β of Ningde nuclear power plant and total β activity concentration time series of Turkey Point nuclear power plant
图3 2014年1月-2024年6月宁德核电厂周围活度浓度时间序列小波相干谱
Figure 3 Wavelet coherence spectrum of total α and total β activity concentration time series in aerosol around Ningde nuclear power plant from January 2014 to June 2024
图4 2014年1月-2024年6月宁德核电厂周边气溶胶中总α、总β活度浓度时间序列与降水、湿度时间序列小波相干谱
Figure 4 Wavelet coherence spectrum of total α and total β activity concentration time series and precipitation and humidity time series in aerosol around Ningde NPP from January 2014 to June 2024
图5 2015年1月-2024年12月宁德核电厂周边气溶胶中总α、总β活度浓度时间序列与可吸入颗粒物时间序列小波相干谱
Figure 5 Wavelet coherence spectrum of total α, total β activity concentration time series and respirable particulate matter time series in aerosol around Ningde nuclear power plant from January 2015 to December 2024
| [1] |
FATTAH M A, MORSHED S R, KAFY A A, et al., 2023. Wavelet coherence analysis of PM2.5 variability in response to meteorological changes in South Asian cities[J]. Atmospheric Pollution Research, 14(5): 101737.
DOI URL |
| [2] | IAEA,2016. Nuclear Power Plant Outage Optimization Strategy(IAEA-TECDOC-1806) [EB/OL], (2016) [2025-3-19]. https://www-pub.iaea.org/MTCD/Publications/PDF/TE1806web.pdf. |
| [3] | LI S, LIU N J, TANG L F, et al., 2021. Mutation test and multiple-wavelet coherence of PM2.5 concentration in Guiyang, China[J]. Air Quality, Atmosphere & Health, 14: 955-966. |
| [4] |
STOY P C, KATUL G G, SIQUEIRA M B, et al., 2005. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: A wavelet analysis[J]. Tree Physiology, 25(7): 887-902.
PMID |
| [5] | U.S. NRC, 2023. AP1000 Design Control Document[EB/OL], (2023-6-11) [2025-3-19]. https://www.nrc.gov/docs/ML1117/ML11171A349.pdf. |
| [6] | U.S. NRC, 2024. Radioactive Effluent and Environmental Reports for Turkey Point 3 & 4 [EB/OL], (2024-6-4) [2025-3-4]. https://www.nrc.gov/reactors/operating/ops-experience/tritium/plant-specific-reports/tp3-4.html. |
| [7] | 陈竹舟, 李学群, 沙连茂, 1991. 环境放射性监测与评价[M]. 太原: 中国辐射防护研究院: 39-40. |
| CHEN Z Z, LI X Q, SHA L M, 1991. Environmental radioactivity monitoring and evaluation[M]. Taiyuan: China Institute for Radiation Protection: 39-40. | |
| [8] | 韩力慧, 兰童, 程水源, 等, 2024. 唐山市大气颗粒物和O3多尺度变化及影响因素[J]. 中国环境科学, 44(3): 1185-1194. |
| HAN L H, LAN T, CHENG S Y, et al., 2024. The variations and influencing factors of atmospheric particulate matter and O3 at multiple scales in Tangshan[J]. China Environmental Science, 44(3): 1185-1194. | |
| [9] | 李芳, 陆继根, 沙连茂, 等, 2007. 固体中总α、总β放射性监测方法研究[J]. 辐射防护, 27(4): 228-232. |
| LI F, LU J G, SHA L M, et al., 2007. Study on measuring method of gross α and gross β in solid materials[J]. Radiation Protection, 27(4): 228-232. | |
| [10] |
李明, 邓宇莹, 葛晨昊, 等, 2020. 1961-2017年黄土高原气象干旱特征及其与大尺度气候因子的联系[J]. 生态环境学报, 29(11): 2231-2239.
DOI |
| LI M, DENG Y Y, GE C H, et al., 2020. Characteristics of meteorological drought across the Loess Plateau and their linkages with large-scale climatic factors during 1961-2017[J]. Ecology and Environmental Sciences, 29(11): 2231-2239. | |
| [11] | 李文强, 2022. 基于小波变换的水文时间序列分析[J]. 地下水, 48(6): 60-65. |
| LI W Q, 2022. Analysis of hydrological time series based on wavelet transform[J]. Ground Water, 48(6): 60-65. | |
| [12] | 林明贵, 2022. 宁德核电厂周围环境空气中14C的监测与评价[J]. 辐射防护, 42(5): 418-424. |
| LIN M G, 2022. The monitoring and assessment of atmospheric 14C specific activities around Ningde NPP[J]. Radiation protection, 42(5): 418-424. | |
| [13] |
刘鸿诗, 胡晓燕, 陈彬, 等, 2013. 秦山核电基地外围环境放射性水平20年监测结果[J]. 原子能科学技术, 47(10): 1906-1915.
DOI |
| LIU H S, HU X Y, CHEN B, et al., 2013. Monitoring results of radioactivity level in external environment around Qinshan NPP base during past twenty years[J]. Atomic Energy Science and Technology, 47(10): 1906-1915. | |
| [14] | 刘书田, 夏益华, 1997. 环境污染监测实用手册[M]. 北京: 原子能出版社: 40-44. |
| LIU S T, XIA Y H, 1997. Practical manual for environmental pollution monitoring[M]. Beijing: Atomic Energy Press: 40-44. | |
| [15] | 王春梅, 2024. 福清核电厂周边气溶胶中总β放射性水平分析与ARIMA模型构建优化[J]. 环境监控与预警, 16(4): 47-52. |
| WANG C M, 2024. Analysis on gross β radioactivity level in the aerosol around Fuqing Nuclear Power Plant and Optimization of ARIMA model construction[J]. Environmental Monitoring and Forewarning, 16(4): 47-52. | |
| [16] | 汪庆, 韩俊铎, 孙岩, 等, 2025. 邯郸市NO2浓度时空特征及潜在源分析[J]. 环境化学, 44(1): 234-242. |
| WANG Q, HAN J D, SUN Y, et al., 2025. Spatial-temporal characteristics and source apportionment of NO2 in Handan[J]. Environmental Chemistry, 44(1): 234-242. | |
| [17] | 王树国, 柴建设, 常猛, 等, 2016. 我国核安全独立监管面临的问题及政策建议[J]. 现代管理, 6(5): 155-160. |
|
WANG S G, CHAI J S, CHANG M, et al., 2016. Problems and policy suggestions on China’s nuclear security independent supervision[J]. Modern Management, 6(5): 155-160.
DOI URL |
|
| [18] | 王文圣, 丁晶, 向红莲, 2002. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 13(4): 515-520. |
| WANG W S, DING J, XIANG H L, 2002. Application and prospect of wavelet analysis in hydrology[J]. Water Science Progress, 13(4): 515-520. | |
| [19] | 文盖雄, 何庆驹, 李敏, 等, 2023. 电离辐射对人体的危害及其防护研讨[J]. 核标准计量与质量, 160(3): 55-58. |
| WEN G X, HE Q J, LI M, et al., 2023. Study on the harm of ionizing radiation to human body and its protection[J]. Nuclear Standard Metrology and Quality, 160(3): 55-58. | |
| [20] |
翁雷霆, 王鹏, 肖荣波, 等, 2025. 2000-2022年珠三角城市群PM2.5与O3时空分布特征及其影响因素[J]. 生态环境学报, 34(2): 268-278.
DOI |
| WENG L T, WANG P, XIAO R B, et al., 2025. Spatial-temporal distribution characteristics of PM2.5 and O3 in the Pearl River Delta urban agglomeration and corresponding influence factors[J]. Ecology and Environmental Sciences, 34(2): 268-278. | |
| [21] | 徐卸古, 甄蓓, 杨晓明, 等, 2012. 日本福岛核电站核事故应急处置的经验和教训[J]. 军事医学, 36(12): 889-892. |
| XU X G, ZHEN B, YANG X M, et al., 2012. Experience and lessons learned from emergency disposal of Fukushima nuclear power station accident[J]. Military Medical Sciences, 36(12): 889-892. | |
| [22] | 徐亦凡, 董增川, 倪晓宽, 等, 2024. 石羊河上游径流量与气象要素关联性分析[J]. 科学技术与工程, 24(13): 5278-5285. |
| XU Y F, DONG Z C, NI X K, et al., 2024. Correlation analysis between runoff and meteorological elements in the upper reaches of Shiyang River[J]. Science and Technology and Engineering, 24(13): 5278-5285. | |
| [23] | 徐赞超, 穆述鑫, 耿星莉, 等, 2024. 基于小波变换的湖南省PM2.5污染特征分析[J]. 环境科学与技术, 47(3): 80-92. |
| XU Z C, MU S X, GENG X L, et al., 2024. Analysis of PM2.5 pollution characteristics in Hunan Province based on wavelet transform[J]. Environmental Science & Technology, 47(3): 80-92. | |
| [24] | 姚衡, 周靖承, 杨俊, 等, 2023. 基于小波变换的武汉市PM2.5、PM10与臭氧污染特征[J]. 中国环境科学, 43(1): 107-114. |
| YAO H, ZHOU J C, YANG J, et al., 2023. Studies on characteristics of PM2.5, PM10 and ozone pollution in Wuhan based on wavelet transform[J]. China Environmental Science, 43(1): 107-114. | |
| [25] | 张睿, 曾春芬, 龙秋波, 等, 2024. 1960-2022年洞庭湖流域多尺度径流量演变特征分析[J]. 水资源与水工程学报, 35(4): 38-46. |
| ZHANG R, ZENG C F, LONG Q B, et al., 2024. Multi-time scale runoff variations in Dongting Lake Basin during 1960-2022[J]. Journal of Water Resources & Water Engineering, 35(4): 38-46. | |
| [26] | 赵力, 李冬梅, 周鹏, 等, 2021. 昌江核电站运营前附近海域总β放射性水平[J]. 海洋环境科学, 40(4): 521-526. |
| ZHAO L, LI D M, ZHOU P, et al., 2021. Gross beta radioactivity in the sea area near Changjiang nuclear power plant before operation[J]. Marine Environmental Science, 40(4): 521-526. | |
| [27] | 甄丽颖, 张家俊, 2017. 阳江核电厂外围环境气溶胶总α、总β放射性水平[J]. 核技术, 40(8): 41-45. |
| ZHEN L Y, ZHANG J J, 2017. Total α and total β radioactivity level in atmospheric aerosol around Yangjiang nuclear power plant[J]. Nuclear Techniques, 40(8): 41-45. | |
| [28] | 中华人民共和国环境保护部, 2017a. 水质总α放射性的测定厚源法: HJ 898—2017[S]. 北京: 中国环境出版社: 1-14. |
| Ministry of Environmental Protection, 2017a. Water quality----Determination of gross alpha activity----Thick source method: HJ 899—2017[S]. Beijing: China Environment Press: 1-14. | |
| [29] | 中华人民共和国环境保护部, 2017b. 水质总β放射性的测定厚源法: HJ 899—2017[S]. 北京: 中国环境出版社: 1-14. |
| Ministry of Environmental Protection, 2017b. Water quality----Determination of gross beta activity----Thick source method: HJ 899—2017[S]. Beijing: China Environment Press: 1-14. | |
| [30] |
庄丽, 孙浩容, 刘晓露, 等, 2025. 由福岛放射性废水排海引发对放射性污染安全监管机制的探讨[J]. 生态环境学报, 34(8): 1212-1218.
DOI |
| ZHUANG L, SUM H R, LIU X R, et al., 2025. Discussion on the monitoring mechanism of radioactive pollution triggered by the discharge of radioactive wastewater from Fukushima[J]. Ecology and Environmental Sciences, 34(8): 1212-1218. |
| [1] | 祁珣, 冯鑫鑫, 陈颖军, 冯艳丽, 陈田, 李军, 张干. 轻型汽油卡车尾气颗粒物中氨和有机胺的排放特征及影响因素[J]. 生态环境学报, 2025, 34(7): 997-1006. |
| [2] | 郝晓燕, 董超, 薛阳, 韩丽萍. 能源禀赋优势区能源供给与生态安全共生效应及影响因素[J]. 生态环境学报, 2025, 34(6): 974-985. |
| [3] | 陈洁茹, 叶长盛, 魏嶶, 蔡鑫, 汪礼丽. 环鄱阳湖城市群县域“三生空间”耦合协调性及影响因素分析[J]. 生态环境学报, 2025, 34(5): 807-818. |
| [4] | 郭铭彬, 龚建周, 王丽娟, 王时宽. 2019-2023年粤港澳大湾区NO2浓度变化的自然主控因子解析[J]. 生态环境学报, 2025, 34(4): 534-547. |
| [5] | 陈思宇, 孙丽娟, 苏枞枞, 于兴娜. 太原市春夏季VOCs组成特征及其对二次有机气溶胶和臭氧的贡献[J]. 生态环境学报, 2025, 34(4): 548-555. |
| [6] | 赵乐鋆, 王诗瑶, 赵子渝, 洪星, 李夫星, 吴佳仪, 华婧妤. 2008-2022年华北平原七省市AOD时空变化特征及主要影响因素分析[J]. 生态环境学报, 2025, 34(2): 256-267. |
| [7] | 翁雷霆, 王鹏, 肖荣波, 白晋晶, 钟俊宏. 2000-2022年珠三角城市群PM2.5与O3时空分布特征及其影响因素[J]. 生态环境学报, 2025, 34(2): 268-278. |
| [8] | 夏依宁, 刘鹏翱, 何柯润, 田朝晖, 曾丽婷, 侯珂伦. 基于土地利用的长株潭都市圈碳储量时空格局与情景模拟[J]. 生态环境学报, 2025, 34(11): 1661-1674. |
| [9] | 孔小云, 张永坤, 李润杰, 李颖, 林成清, 马占明, 辛继林, 杨晓璇, 党怡乐, 赵家艺, 冯玲正, 周燕. 湟水河流域耕地土壤团聚体有机碳空间变异特征及其驱动因素分析[J]. 生态环境学报, 2025, 34(11): 1715-1727. |
| [10] | 陈婷婷, 蔡仪威, 孙彤, 李桂英, 安太成. 挥发性有机硫化物胁迫下生物气溶胶中细菌的响应机制研究[J]. 生态环境学报, 2025, 34(10): 1588-1597. |
| [11] | 尤琪, 杨艺, 张寅清, 祝凌燕. 纳米银颗粒在水环境中的化学转化及影响因素[J]. 生态环境学报, 2025, 34(1): 156-166. |
| [12] | 汪洋, 李帆, 严笑, 梅言, 李培, 黄林, 赵俊杰. 山地高密度城市空间形态对冬季气溶胶格局的约束力探测——重庆中心城区案例研究[J]. 生态环境学报, 2025, 34(1): 56-66. |
| [13] | 王薇, 夏宇轩. 基于遥感技术和机器学习的城市街区PM2.5空间分布特征研究——以合肥市滨湖新区为例[J]. 生态环境学报, 2024, 33(9): 1426-1437. |
| [14] | 王薇, 伍君奇. 公共建筑入口形式对室内气溶胶扩散的影响研究[J]. 生态环境学报, 2024, 33(8): 1227-1235. |
| [15] | 卢睿霖, 曹芳, 林煜棋, 吴长流, 章炎麟. 南京大气颗粒物化学组分的粒径分布和来源解析[J]. 生态环境学报, 2024, 33(7): 1079-1088. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||