生态环境学报 ›› 2022, Vol. 31 ›› Issue (7): 1465-1475.DOI: 10.16258/j.cnki.1674-5906.2022.07.020
古琛1,2(), 贾志清2,4,5,*(
), 杜波波3, 何凌仙子4,5, 李清雪4,5
收稿日期:
2021-12-27
出版日期:
2022-07-18
发布日期:
2022-08-31
通讯作者:
*贾志清(1968年生),女,研究员,博士,主要从事荒漠化防治和草地生态修复研究。E-mail: jiazq@caf.ac.cn作者简介:
古琛(1988年生),男,讲师,博士,主要从事草地生态学和生态系统修复研究。E-mail: guchen0706@sina.com
基金资助:
GU Chen1,2(), JIA Zhiqing2,4,5,*(
), DU Bobo3, HE Lingxianzi4,5, LI Qingxue4,5
Received:
2021-12-27
Online:
2022-07-18
Published:
2022-08-31
摘要:
草地是面积最大的陆地生态系统,具有极其重要的生产和生态功能,但长期的过度利用和气候变化导致草地生态系统在全球范围内出现不同程度的退化。退化草地的自然恢复需要相当长的时间,人为的修复措施是加快草地恢复必不可少的手段。中国草地生态修复的研究已经进行了几十年,但一直以来对生态功能的重视程度不够,导致先退化—后治理—再退化—再治理的现象普遍,草地退化状况仍未得到全面改善。近年来,在强调生态优先、绿色发展的大背景下,中国对草地保护和生态修复的重视程度不断提高,退化草地生态修复是中国当前亟待解决的重大难题和艰巨任务。通过综述草地生态修复的研究进展以及主要的技术和政策措施,分析了国内外草地生态修复主要技术措施(免耕补播、合理放牧、人工草地建植、围栏封育、耕翻和施肥)的恢复效果、限制因素和存在的不足,旨在为退化草地生态修复提供理论参考。论文在以上分析的基础上提出中国草地生态系统修复未来的研究方向和发展建议:(1)建立健全现代草牧业体系和管理模式,从根本上解决草畜矛盾,是解决草地退化和生态修复问题的根本途径;(2)完善草地退化分类分级体系,进一步为生态修复提供理论依据;(3)加强乡土种质资源和土壤微生物的挖掘利用,为生态修复提供物质保障;(4)突破毒草化草地恢复的理论与技术瓶颈;(5)建立分区—分类—分级的生态修复理论技术体系和评价体系。草地生态修复是一项复杂的跨学科的系统工程,加强多领域协作是解决问题的关键。
中图分类号:
古琛, 贾志清, 杜波波, 何凌仙子, 李清雪. 中国退化草地生态修复措施综述与展望[J]. 生态环境学报, 2022, 31(7): 1465-1475.
GU Chen, JIA Zhiqing, DU Bobo, HE Lingxianzi, LI Qingxue. Reviews and Prospects of Ecological Restoration Measures for Degraded Grasslands of China[J]. Ecology and Environment, 2022, 31(7): 1465-1475.
图1 草地免耕补播 a. 内蒙古呼伦贝尔草甸草原;b. 加拿大Swift Current矮草草原
Figure 1 No-tillage sowing in grasslands a and b represent meadow steppe in Hulunbeir, China and short prairie in Swift Current, Canada, respectively
图2 不同放牧强度的内蒙古荒漠草原 a. 不放牧;b. 轻度放牧,载畜率为0.15 sheep unit∙hm-2·month-1;c. 中度放牧,载畜率为0.30 sheep unit∙hm-2∙month-1;d. 重度放牧,载畜率为0.45 sheep unit·hm-2·month-1
Figure 2 Desert steppe with different grazing intensity in Inner Mongolia a. Stands for non-grazing; b. Stands for light grazing with the 0.15 sheep unit∙hm-2∙month-1 stocking rate; c. Stands for moderate grazing with the 0.30 sheep unit∙hm-2∙month-1; d. Stands for heavy grazing with the 0.45 sheep unit∙hm-2∙month-1
图3 加拿大人工草地 a和b分别是加拿大Lethbridge灌溉条件下红豆草与紫花苜蓿、红豆草与无芒雀麦混播的人工草地;c和d分别是加拿大Swift Current旱作条件下红豆草与紫花苜蓿、红豆草与冰草混播的人工草地
Figure 3 Pastures in Canada a and b represent sainfoin - alfalfa mixture and sainfoin-brome mixture with irrigation in Lethbridge; c and d represent sainfoin-alfalfa mixture and sainfoin-wheatgrass mixture in rainfed Swift Current
图5 内蒙古草甸草原施肥与未施肥比较 中间暗绿色的条带为施肥处理,两侧黄绿色是未施肥的对照
Figure 5 Fertilizing vs. no-fertilizing in meadow steppe of Inner Mongolia Dark green in the middle stands for fertilizing, yellow green in two sides stands for no-fertilizing
[1] |
BAOYIN T, LI F Y, 2009. Can shallow plowing and harrowing facilitate restoration of Leymus chinensis grassland? Results from a 24-year monitoring program[J]. Rangeland Ecology & Management, 62(4): 314-320.
DOI URL |
[2] |
BECK J J, HERNANDEZ D L, PASARI J R, et al., 2015. Grazing maintains native plant diversity and promotes community stability in an annual grassland[J]. Ecological Applications, 25(5): 1259-1270.
DOI URL |
[3] |
BRADSHAW A D, 1983. The reconstruction of ecosystems. Presidential address to the British Ecological Society, December 1982 [J]. Journal of Applied Ecology, 20(1): 1-17.
DOI URL |
[4] |
BRISKE D D, SAYRE N F, HUNTSINGER L, et al., 2011. Origin, persistence, and resolution of the rotational grazing debate: Integrating human dimensions into rangeland research[J]. Rangeland Ecology & Management, 64(4): 325-334.
DOI URL |
[5] |
BUISSON E, LE STRADIC S, SILVEIRA F A O, et al., 2019. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands[J]. Biological Reviews, 94(2): 590-609.
DOI URL |
[6] |
BYRNES R C, EASTBURN D J, TATE K W, et al., 2018. A global meta-analysis of grazing impacts on soil health indicators[J]. Journal of Environmental Quality, 47(4): 758-765.
DOI URL |
[7] |
CHAMIZO S, MUGNAI G, ROSSI F, et al., 2018. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration[J]. Frontiers in Environmental Science, DOI: 10.3389/fenvs.2018.00049.
DOI |
[8] |
CHEN W Q, HUANG D, LIU N, et al., 2015. Improved grazing management may increase soil carbon sequestration in temperate steppe[J]. Scientific Reports, DOI: 10.1038/srep10892.
DOI |
[9] |
CHENG J M, JING G H, WEI L, et al., 2016. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China[J]. Ecological Engineering, 97: 170-178.
DOI URL |
[10] |
CIPRIOTTI P A, AGUIAR M R, 2012. Direct and indirect effects of grazing constrain shrub encroachment in semi-arid Patagonian steppes[J]. Applied Vegetation Science, 15(1): 35-47.
DOI URL |
[11] |
DELAVAUX C S, SMITH-RAMESH L M, KUEBBING S E, 2017. Beyond nutrients: A meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils[J]. Ecology, 98(8): 2111-2119.
DOI URL |
[12] |
DIAMOND J, 1985. Ecology: How and why eroded ecosystems should be restored[J]. Nature, 313(6004): 629-630.
DOI URL |
[13] |
DIXON K W, 2009. Pollination and restoration[J]. Science, 325(5940): 571-573.
DOI URL |
[14] | DONG L, MARTINSEN V, WU Y, et al., 2020. Effect of grazing exclusion and rotational grazing on labile soil organic carbon in north China[J]. European Journal of Soil Science, 159(1): 372-384. |
[15] |
FENG R Z, LONG R J, SHANG Z H, et al., 2010. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China[J]. Plant and Soil, 327(1-2): 403-411.
DOI URL |
[16] |
FERREIRA P M A, ANDRADE B O, PODGAISKI L R, et al., 2020. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities[J]. PLoS One, 15(1): e0227706.
DOI URL |
[17] |
FRANK D A, KUNS M M, GUIDO D R, 2002. Consumer control of grassland plant production[J]. Ecology, 83(3): 602-606.
DOI URL |
[18] |
GU C, IWAASA A D, ZHAO M L, et al., 2019. Purple prairie clover seed viability and germinability after passing through the digestive tracts of yearling steers[J]. Canadian Journal of Plant Science, 99(5): 734-739.
DOI URL |
[19] |
HARPOLE W S, SULLIVAN L L, LIND E M, et al., 2016. Addition of multiple limiting resources reduces grassland diversity[J]. Nature, 537(7618): 93-96.
DOI URL |
[20] |
HARRIS J, 2009. Soil microbial communities and restoration ecology: Facilitators or followers?[J]. Science, 325(5940): 573-574.
DOI URL |
[21] |
HUMBERT J Y, DWYER J M, ANDREY A, et al., 2016. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: A systematic review[J]. Global Change Biology, 22(1): 110-120.
DOI URL |
[22] |
ISBELL F, TILMAN D, POLASKY S, et al., 2013. Low biodiversity state persists two decades after cessation of nutrient enrichment[J]. Ecology Letters, 16(4): 454-460.
DOI URL |
[23] |
JACKSON S T, HOBBS R J, 2009. Ecological restoration in the light of ecological history[J]. Science, 325(5940): 567-569.
DOI URL |
[24] |
JACOBO E J, RODRíGUEZ A M, BARTOLONI N, et al., 2006. Rotational grazing effects on rangeland vegetation at a farm scale[J]. Rangeland Ecology & Management, 59(3): 249-257.
DOI URL |
[25] |
JAURENA M, LEZAMA F, SALVO L, et al., 2016. The dilemma of improving native grasslands by overseeding legumes: Production intensification or diversity conservation[J]. Rangeland Ecology & Management, 69(1): 35-42.
DOI URL |
[26] |
JING Z B, CHENG J M, SU J S, et al., 2014. Changes in plant community composition and soil properties under 3-decade grazing exclusion in semiarid grassland[J]. Ecological Engineering, 64: 171-178.
DOI URL |
[27] |
JONES H P, JONES P C, BARBIER E B, et al., 2018. Restoration and repair of Earth’s damaged ecosystems[J]. Proceedings of the Royal Society B: Biological Science, DOI: 10.1098/rspb.2017.2577.
DOI |
[28] |
KARDOL P, WARDLE D A, 2010. How understanding aboveground-belowground linkages can assist restoration ecology[J]. Trends in Ecology and Evolution, 25(11): 670-679.
DOI URL |
[29] |
KEMP D R, HAN G D, HOU X Y, et al., 2013. Innovative grassland management systems for environmental and livelihood benefits[J]. Proceedings of the National Academy of Sciences, 110(21): 8369-8374.
DOI URL |
[30] |
KING E G, HOBBS R J, 2006. Identifying linkages among conceptual models of ecosystem degradation and restoration: Towards an integrative framework[J]. Restoration Ecology, 14(3): 369-378.
DOI URL |
[31] |
KLIRONOMOS J, ZOBEL M, TIBBETT M, et al., 2011. Forces that structure plant communities: Quantifying the importance of the mycorrhizal symbiosis[J]. New Phytologist, 189(2): 366-370.
DOI URL |
[32] |
KOZIOL L, BEVER J D, NUÑEZ M, 2017. The missing link in grassland restoration: Arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession[J]. Journal of Applied Ecology, 54(5): 1301-1309.
DOI URL |
[33] |
LAWRENCE R, WHALLEY R D B, REID N, et al., 2019. Short-duration rotational grazing leads to improvements in landscape functionality and increased perennial herbaceous plant cover[J]. Agriculture, Ecosystems & Environment, 281: 134-144.
DOI URL |
[34] |
LÀZARO A, TSCHEULIN T, DEVALEZ J, et al., 2016. Moderation is best: Effects of grazing intensity on plant-flower visitor networks in Mediterranean communities[J]. Ecological Applications, 26(3): 796-807.
DOI URL |
[35] | LI Y Y, DONG S K, WEN L, et al., 2013. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau[J]. Journal of Environmental Management 128: 393-399. |
[36] |
LU F, HU H F, SUN W J, et al., 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010 [J]. Proceedings of the National Academy of Sciences, 115(16): 4039-4044.
DOI URL |
[37] |
MALTZ M R, TRESEDER K K, 2015. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: A meta-analysis[J]. Restoration Ecology, 23(5): 625-634.
DOI URL |
[38] |
MARTIN D M, 2017. Ecological restoration should be redefined for the twenty-first century[J]. Restoration Ecology, 25(5): 668-673.
DOI URL |
[39] |
MARTIN L M, WILSEY B J, 2006. Assessing grassland restoration success: Relative roles of seed additions and native ungulate activities[J]. Journal of Applied Ecology, 43(6): 1098-1109.
DOI URL |
[40] |
MCNAUGHTON S J, 1979. Grazing as an optimization process: Grass-ungulate relationships in the Serengeti[J]. The American Naturalist, 113(5): 691-703.
DOI URL |
[41] |
MIDOLO G, ALKEMADE R, SCHIPPER A M, et al., 2019. Impacts of nitrogen addition on plant species richness and abundance: A global meta-analysis[J]. Global Ecology and Biogeography, 28(3-4): 398-413.
DOI URL |
[42] |
NEUENKAMP L, PROBER S M, PRICE J N, et al., 2019. Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time[J]. Fungal Ecology, 40: 140-149.
DOI URL |
[43] |
NEWMARK W D, JENKINS C N, PIMM S L, et al., 2017. Targeted habitat restoration can reduce extinction rates in fragmented forests[J]. Proceedings of the National Academy of Sciences, 114(36): 9635-9640.
DOI URL |
[44] |
PAPANASTASIS V P, BAUTISTA S, CHOUVARDAS D, et al., 2017. Comparative assessment of goods and services provided by grazing regulation and reforestation in degraded Mediterranean rangelands[J]. Land Degradation & Development, 28(4): 1178-1187.
DOI URL |
[45] |
SEABLOOM E W, BORER E T, TILMAN D, 2020. Grassland ecosystem recovery after soil disturbance depends on nutrient supply rate[J]. Ecology Letters, 23(12): 1756-1765.
DOI URL |
[46] |
SONG M H, YU F H, 2015. Reduced compensatory effects explain the nitrogen-mediated reduction in stability of an alpine meadow on the Tibetan Plateau[J]. New Phytologist, 207(1): 70-77.
DOI URL |
[47] |
STUBLE K L, FICK S E, YOUNG T P, et al., 2017. Every restoration is unique: Testing year effects and site effects as drivers of initial restoration trajectories[J]. Journal of Applied Ecology, 54(4): 1051-1057.
DOI URL |
[48] |
WANG L, GAN Y, WIESMEIER M, et al., 2018b. Grazing exclusion-an effective approach for naturally restoring degraded grasslands in Northern China[J]. Land Degradation & Development, 29(12): 4439-4456.
DOI URL |
[49] |
WANG Y X, SUN Y, WANG Z F, et al., 2018a. Grazing management options for restoration of alpine grasslands on the Qinghai-Tibet Plateau[J]. Ecosphere 9: e02515.
DOI URL |
[50] |
WATTS-WILLIAMS S J, CAVAGNARO T R, TYERMAN S D, 2019. Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions[J]. Plant Cell and Environment, 42(1): 285-294.
DOI URL |
[51] |
WU G L, LIU Z H, ZHANG L, et al., 2010. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland[J]. Plant and Soil, 333(1-2): 469-479.
DOI URL |
[52] |
WUBS E R, VAN DER PUTTEN W H, BOSCH M, et al., 2016. Soil inoculation steers restoration of terrestrial ecosystems[J]. Nature Plants, DOI: 10.1038/nplants.2016.107.
DOI |
[53] |
XIONG D P, SHI P L, ZHANG X Z, et al., 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-a meta-analysis[J]. Ecological Engineering, 94: 647-655.
DOI URL |
[54] |
YAO X X, WU J P, GONG X Y, et al., 2019. Effects of long term fencing on biomass, coverage, density, biodiversity and nutritional values of vegetation community in an alpine meadow of the Qinghai-Tibet Plateau[J]. Ecological Engineering, 130: 80-93.
DOI URL |
[55] |
ZHAN T Y, ZHANG Z C, SUN J, et al., 2020. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems[J]. Applied Soil Ecology, DOI: 10.1016/j.apsoil. 2019.103438.
DOI |
[56] |
ZHANG C, LIU G B, SONG Z L, et al., 2018. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochemistry, 124: 47-58.
DOI URL |
[57] |
ZHAO M L, GAO X L, WANG J, et al., 2013. A review of the most economically important poisonous plants to the livestock industry on temperate grasslands of China[J]. Journal Applied Toxicology, 33(1): 9-17.
DOI URL |
[58] |
白永飞, 黄建辉, 郑淑霞, 等, 2014. 草地和荒漠生态系统服务功能的形成与调控机制[J]. 植物生态学报, 38(2): 93-102.
DOI |
BAI Y F, HUANG J H, ZHENG S X, et al., 2014. Drivers and regulating mechanisms of grassland and desert ecosystem services[J]. Chinese Journal of Plant Ecology, 38(2): 93-102.
DOI URL |
|
[59] | 白永飞, 赵玉金, 王扬, 等, 2020. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设[J]. 中国科学院院刊, 35(6): 675-689. |
BAI Y F, ZHAO Y J, WANG Y, et al., 2020. Assessment of ecosystem services and ecological regionalization of grasslands support establishment of ecological security barriers in northern China[J]. Bulletin of Chinese Academy of Sciences, 35(6): 675-689. | |
[60] | 崔雪, 潘瑶, 王亚楠, 等, 2020. 退化草地瑞香狼毒对小尺度群落组成及土壤理化性质的影响[J]. 生态学杂志, 39(8): 2581-2592. |
CUI X, PAN Y, WANG Y N, et al., 2020. Effects of Stellera chamaejasme on small-scale community composition and soil physical and chemical properties in degraded grassland[J]. Chinese Journal of Ecology, 39(8): 2581-2592. | |
[61] | 方精云, 白永飞, 李凌浩, 等, 2016a. 我国草原牧区可持续发展的科学基础与实践[J]. 科学通报, 61(2): 155-164. |
FANG J Y, BAI Y F, LI L H, et al., 2016. Scientific basis and practical ways for sustainable development of China’s pasture regions[J]. Chinese Science Bulletin, 61(2): 155-164. | |
[62] | 方精云, 潘庆民, 高树琴, 等, 2016b. “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复[J]. 草业科学, 33(10): 1913-1916. |
FANG J Y, PAN Q M, GAO S Q, et al., 2016b. “Small vs. Large Area” Principle: Protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture[J]. Pratacultural Science, 33(10): 1913-1016. | |
[63] | 高凯, 朱铁霞, 韩国栋, 2013. 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响[J]. 草业学报, 22(6): 39-45. |
GAO K, ZHU T X, HAN G D, 2013. Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland[J]. Acta Prataculturae Sinica, 22(6): 39-45. | |
[64] | 古琛, 杜宇凡, 乌力吉, 等, 2015. 载畜率对荒漠草原群落及植物功能群生物量的影响[J]. 生态环境学报, 24(12): 1962-1968. |
GU C, DU Y F, WU L J, et al., 2015. Effects of stocking rates on the biomass of desert steppe community and plant functional group[J]. Ecology and Environmental Sciences, 24(12): 1962-1968. | |
[65] | 古琛, 赵天启, 王亚婷, 等, 2017. 短花针茅生长和繁殖策略对载畜率的响应[J]. 生态环境学报, 26(1): 36-42. |
GU C, ZHAO T Q, WANG Y T, et al., 2017. The response of growth and reproduction for Stipa breviflora to different stocking rates[J]. Ecology and Environmental Sciences, 26(1): 36-42. | |
[66] | 贺金生, 刘志鹏, 姚拓, 等, 2020. 青藏高原退化草地恢复的制约因子及修复技术[J]. 科技导报, 38(17): 66-80. |
HE J S, LIU Z P, YAO T, et al., 2020. Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau[J]. Science & Technology Review, 38(17): 66-80. | |
[67] | 黄梅, 尚占环, 2019. 青藏高原毒草型退化草地治理技术研究进展[J]. 草地学报, 27(5): 1107-1116. |
HUANG M, SHANG Z H, 2019. Research progress on poisonous weeds treatment technology in Qinghai-Tibet Plateau[J]. Acta Agrestia Sinica, 27(5): 1107-1116. | |
[68] | 贾慎修, 贾志海, 史德宽, 1989. 补播是改良退化草地的有效途径[J]. 草业科学, 6(6): 8-10. |
JIA S X, JIA Z H, SHI D K, 1989. Reseeding is an effective way to improve degraded grassland[J]. Pratacultural Science, 6(6): 8-10. | |
[69] | 蒋胜竞, 冯天骄, 刘国华, 等, 2020. 草地生态修复技术应用的文献计量分析[J]. 草业科学, 37(4): 685-702. |
JIANG S J, FENG T J, LIU G H, et al., 2020. A bibliometric analysis of the application of grassland ecological restoration technology[J]. Pratacultural Science, 37(4): 685-702. | |
[70] | 李凌浩, 路鹏, 顾雪莹, 等, 2016. 人工草地建设原理与生产范式[J]. 科学通报, 61(2): 193-200. |
LI L H, LU P, GU X Y, et al., 2016. Principles and paradigms for developing artificial pastures[J]. Chinese Science Bulletin, 61(2): 193-200. | |
[71] | 李新一, 周晓丽, 尹晓飞, 等, 2019. 我国草牧业发展的成效经验与问题对策[J]. 中国草地学报, 41(6): 1-6. |
LI X Y, ZHOU X L, YIN X F, et al., 2019. Effects, experiences, problems and strategies in grass-based livestock industry[J]. Chinese Journal of Grassland, 41(6): 1-6. | |
[72] | 李以康, 杜岩功, 张正芝, 等, 2017. 种子补播恢复退化草地研究进展[J]. 草地学报, 25(6): 1171-1177. |
LI Y K, DU Y G, ZHANG Z Z, et al., 2017. Research progresses on seed reseeding to recover the degraded grassland[J]. Acta Agrestia Sinica, 25(6): 1171-1177. | |
[73] | 刘洪来, 鲁为华, 陈超, 2011. 草地退化演替过程及诊断研究进展[J]. 草地学报, 19(5): 865-871. |
LIU H L, LU W H, CHEN C, 2011. Research progress of grassland degraded succession and diagnosis[J]. Acta Agrestia Sinica, 19(5): 865-871. | |
[74] | 刘延斌, 张典业, 张永超, 等, 2016. 不同管理措施下高寒退化草地恢复效果评估[J]. 农业工程学报, 32(24): 268-275. |
LIU Y B, ZHANG D Y, ZHANG Y C, et al., 2016. Evaluation of restoration effect in degraded alpine meadow under different regulation measures[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(24): 268-275. | |
[75] | 毛培胜, 侯龙鱼, 王明亚, 2016. 中国北方牧草种子生产的限制因素和关键技术[J]. 科学通报, 61(2): 250-260. |
MAO P S, HOU L Y, WANG M Y, 2016. Limited factors and key technologies of forage seed production in the northern of China[J]. Chinese Science Bulletin, 61(2): 250-260. | |
[76] | 曲文杰, 宋乃平, 陈林, 等, 2014. 荒漠草原两种沙化草地对浅耕翻的响应[J]. 水土保持研究, 21(1): 85-89, 94. |
QU W J, SONG N P, CHEN L, et al., 2014. Responses of two types of desertification grasslands in desert steppe to shallow ploughing[J]. Research of Soil and Water Conservation, 21(1): 85-89, 94. | |
[77] | 任继周, 侯扶江, 胥刚, 2011. 放牧管理的现代化转型--我国亟待补上的一课[J]. 草业科学, 28(10): 1745-1754. |
REN J Z, HOU F J, XU G, 2011. Transformation of grazing system: The urgent task for China[J]. Pratacultural Science, 28(10): 1745-1754. | |
[78] | 尚占环, 董全民, 施建军, 等, 2018. 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展--兼论三江源生态恢复问题[J]. 草地学报, 26(1): 1-21. |
SHANG Z H, DONG Q M, SHI J J, et al., 2018. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau: Concurrently discuss of ecological restoration in Sanjiangyuan region[J]. Acta Agrestia Sinica, 26(1): 1-21. | |
[79] | 尚占环, 董世魁, 周华坤, 等, 2017. 退化草地生态恢复研究案例综合分析: 年限、效果和方法[J]. 生态学报, 37(24): 8148-8160. |
SHANG Z H, DONG S K, ZHOU H K, et al., 2017. Synthesis-review for research cases of grassland ecological restoration: Years, effect and method[J]. Acta Ecologica Sinica, 37(24): 8148-8160. | |
[80] | 沈海花, 朱言坤, 赵霞, 等, 2016. 中国草地资源的现状分析[J]. 科学通报, 61(2): 139-154. |
SHEN H H, ZHU Y K, ZHAO X, et al., 2016. Analysis of current grassland resources in China[J]. Chinese Science Bulletin, 61(2): 139-154. | |
[81] | 宋君祥, 雷雄, 叶明清, 等, 2019. 生物有机肥对川西北退化草地群落结构和生产性能的影响[J]. 草地学报, 27(5): 1355-1363. |
SONG J X, LEI X, YE M Q, et al., 2019. Effects of bioorganic fertilizer on community diversity and production performance of degraded grassland[J]. Acta Agrestia Sinica, 27(5): 1355-1363. | |
[82] |
孙庚, 吴宁, 罗鹏, 2005. 不同管理措施对川西北草地土壤氮和碳特征的影响[J]. 植物生态学报, 29(2): 304-310.
DOI |
SUN G, WU N, LUO P, 2005. Characteristics of soil nitrogen and carbon of pastures under different management in northwestern Sichuan[J]. Chinese Journal of Plant Ecology, 29(2): 304-310.
DOI URL |
|
[83] | 唐华俊, 辛晓平, 李凌浩, 等, 2016. 北方草甸退化草地治理技术与示范[J]. 生态学报, 36(22): 7034-7039. |
TANG H J, XIN X P, LI L H, et al., 2016. North meadow degraded grassland treatment technology and demonstration[J]. Acta Ecologica Sinica, 36(22): 7034-7039. | |
[84] | 滕悦, 路凯亮, 戈昕宇, 等, 2017. 内蒙古典型草原不同围封年限样地访花昆虫多样性[J]. 生态学杂志, 36(10): 2855-2865. |
TENG Y, LU K L, GE X Y, et al., 2017. Diversity of flower-visiting insects in typical steppe with different enclosure durations in Inner Mongolia[J]. Chinese Journal of Ecology, 36(10): 2855-2865. | |
[85] | 王百竹, 朱媛君, 山丹, 等, 2019. 呼伦贝尔典型草原群落退化对其物种多样性及生物量的影响[J]. 植物资源与环境学报, 28(4): 68-76. |
WANG B Z, ZHU Y J, SHAN D, et al., 2019. Effects of community degradation of Hulun Buir typical steppe on its species diversity and biomass[J]. Journal of Plant Resources and Environment, 28(4): 68-76. | |
[86] | 王德利, 王岭, 辛晓平, 等, 2020. 退化草地的系统性恢复: 概念、机制与途径[J]. 中国农业科学, 53(13): 2532-2540. |
WANG D L, WANG L, XIN X P, et al., 2020. Systematic restoration for degraded grasslands: Concept, mechanisms and approaches[J]. Scientia Agricultura Sinica, 53(13): 2532-2540. | |
[87] | 王洪义, 常继方, 王正文, 2020. 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应[J]. 中国农业科学, 53(13): 2604-2613. |
WANG H Y, CHANG J F, WANG Z W, 2020. Responses of community species diversity and productivity to nitrogen and phosphorus addition during restoration of degraded grassland[J]. Scientia Agricultura Sinica, 53(13): 2604-2613. | |
[88] | 徐田伟, 赵新全, 张晓玲, 等, 2020. 青藏高原高寒地区生态草牧业可持续发展: 原理、技术与实践[J]. 生态学报, 40(18): 6324-6337. |
XU T W, ZHAO X Q, ZHANG X L, et al., 2020. Sustainable development of ecological grass-based livestock husbandry in Qinghai-Tibet Plateau alpine area: Principle, technology and practice[J]. Acta Ecologica Sinica, 40(18): 6324-6337. | |
[89] | 阎子盟, 张玉娟, 潘利, 等, 2014. 天然草地补播豆科牧草的研究进展[J]. 中国农学通报, 30(29): 1-7. |
YAN Z M, ZHANG Y J, PAN L, et al., 2014. Research progress of reseeding forage legumes into natural grassland[J]. Chinese Agricultural Science Bulletin, 30(29): 1-7. | |
[90] | 杨增增, 张春平, 董全民, 等, 2018. 补播对中度退化高寒草地群落特征和多样性的影响[J]. 草地学报, 26(5): 1071-1077. |
YANG Z Z, ZHANG C P, DONG Q M, et al., 2018. Effects of reseeding on plant community composition and diversity of moderately degraded alpine grassland in Qinghai-Tibetan Plateau[J]. Acta Agrestia Sinica, 26(5): 1071-1077. | |
[91] | 姚宝辉, 王缠, 郭怀亮, 等, 2019. 人工草地建设对甘南草原土壤理化特性和微生物数量特征的影响[J]. 水土保持学报, 33(1): 192-199. |
YAO B H, WANG C, GUO H L, et al., 2019. Effects of artificial supplementary sowing on soil physical and chemical characteristics and microorganism quantity in Gannan grassland[J]. Research of Soil and Water Conservation, 33(1): 192-199. | |
[92] | 张慧敏, 李希来, 李兰平, 等, 2020. 草种配置对高寒人工草地群落多样性和生产力的影响[J]. 草地学报, 28(5): 1436-1443. |
ZHANG H M, LI X L, LI L P, et al., 2020. Effects of species combination on community diversity and productivity of alpine artificial grassland[J]. Acta Agrestia Sinica, 28(5): 1436-1443. | |
[93] |
张璐, 郝匕台, 齐丽雪, 等, 2018. 草原群落生物量和土壤有机质含量对改良措施的动态响应[J]. 植物生态学报, 42(3): 317-326.
DOI |
ZHANG L, HAO B T, QI L X, et al., 2018. Dynamic responses of aboveground biomass and soil organic matter content to grassland restoration[J]. Chinese Journal of Plant Ecology, 42(3): 317-326.
DOI |
|
[94] | 张骞, 马丽, 张中华, 等, 2019. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望[J]. 生态学报, 39(20): 7441-7451. |
ZHANG Q, MA L, ZHANG Z H, et al., 2019. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: Degradation status, restoration measures, effects and prospects[J]. Acta Ecologica Sinica, 39(20): 7441-7451. | |
[95] | 张新时, 唐海萍, 董孝斌, 等, 2016. 中国草原的困境及其转型[J]. 科学通报, 61(2): 165-177. |
ZHANG X S, TANG H P, DONG X B, et al., 2016. The dilemma of steppe and it’s transformation in China[J]. Chinese Science Bulletin, 61(2): 165-177. | |
[96] | 张英俊, 周冀琼, 杨高文, 等, 2020. 退化草原植被免耕补播修复理论与实践[J]. 科学通报, 65(16): 1546-1555. |
ZHANG Y J, ZHOU J Q, YANG G W, et al., 2020. Theory and application of no-tillage reseeding in degraded grasslands[J]. Chinese Science Bulletin, 65(16): 1546-1555. | |
[97] | 赵宝玉, 刘忠艳, 万学攀, 等, 2008. 中国西部草地毒草危害及治理对策[J]. 中国农业科学, 41(10): 3094-3103. |
ZHAO B Y, LIU Z Y, WAN X P, et al., 2008. Damage and control of poisonous-weeds in Chinese western grassland[J]. Scientia Agricultura Sinica, 41(10): 3094-3103. | |
[98] | 周道玮, 钟荣珍, 孙海霞, 等, 2015. 草地划区轮牧饲养原则及设计[J]. 草业学报, 24(2): 176-184. |
ZHOU D W, ZHONG R Z, SUN H X, et al., Principles for design of rotational grazing systems[J]. Acta Prataculturae Sinica, 24(2): 176-184. | |
[99] | 周青平, 陈仕勇, 郭正刚, 2016. 标准化牧场建设的原理与实践[J]. 科学通报, 61(2): 231-238. |
ZHOU Q P, CHEN S Y, GUO Z G, 2016. The principles and practice of standardized demonstration ranches construction[J]. Chinese Science Bulletin, 61(2): 231-238. | |
[100] | 朱瑞芬, 刘杰淋, 王建丽, 等, 2020. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 53(13): 2637-2646. |
ZHU R F, LIU J L, WANG J L, et al., 2020. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the degraded grasslands[J]. Scientia Agricultura Sinica, 53(13): 2637-2646. |
[1] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[2] | 刘祥宏, 尹勤瑞, 辛建宝, 刘伟, 许秀泉, 黄占斌, 安如意. 生态植被自然修复及其人工促进技术研究进展与展望[J]. 生态环境学报, 2022, 31(7): 1476-1488. |
[3] | 刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722. |
[4] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[5] | 郭丽芳, 杨瑞, 孙蔚旻. 尾矿固氮菌的分离筛选及其植物促生效应研究[J]. 生态环境学报, 2022, 31(11): 2180-2188. |
[6] | 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 2021, 30(8): 1732-1741. |
[7] | 李锋民, 陈琳, 姜晓华, 李晨光, 赵莎莎, 种云霄, 胡洪营, 高帅强. 水质净化与生态修复的水生植物优选指标体系构建[J]. 生态环境学报, 2021, 30(12): 2411-2422. |
[8] | 徐文印, 张宇鹏, 段成伟, 柴瑜, 宋娴, 李希来. 黄河源不同区域退化高寒草甸土壤养分空间变异研究[J]. 生态环境学报, 2021, 30(10): 1968-1975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||