生态环境学报 ›› 2023, Vol. 32 ›› Issue (9): 1700-1708.DOI: 10.16258/j.cnki.1674-5906.2023.09.017
石润1,2(), 李法云1,2,*(
), 周纯亮1,3, 王玮1,3, 周艳秋1,2
收稿日期:
2023-05-26
出版日期:
2023-09-18
发布日期:
2023-12-11
通讯作者:
*李法云。E-mail: lnecology@163.com作者简介:
石润(1996年生),女,硕士研究生,主要研究方向为土壤改良与修复。E-mail: shirunfi@163.com
基金资助:
SHI Run1,2(), LI Fayun1,2,*(
), ZHOU Chunliang1,3, WANG Wei1,3, ZHOU Yanqiu1,2
Received:
2023-05-26
Online:
2023-09-18
Published:
2023-12-11
摘要:
土壤石油烃污染已成为全球环境问题之一。生物修复技术具有绿色、低碳、低成本的显著优点,发挥植物和微生物的协同作用是提高有机污染土壤修复效率的重要途径。为了提高植物在污染土壤中的存活率以及保持微生物的活性,以观赏园艺植物凤仙花(Impatiens balsamina L.)作为修复植物,结合种子包衣技术和微生物固定化技术,使用包衣材料海藻酸钠10.0 gL−1膨润土35.0 gL−1以及生物炭8.00 gL−1,交联剂氯化钙50.0 gL−1,采用包埋-交联法先对凤仙花种子包衣处理,然后以凤仙花种子包衣为载体固定化石油烃高效降解菌琼氏不动杆菌(Acinetobacter junii,Hsr2a),通过盆栽试验,研究在总石油烃(Total petroleum hydrocarbons,TPHs)质量分数为10.4 gkg−1的条件下,凤仙花种子包衣载体固定化微生物对土壤TPHs去除率的影响。结果表明,经过40 d盆栽修复,包衣处理的凤仙花较裸种凤仙花植物长势更好。通过对比不同处理组(CK空白对照,T1添加游离微生物,T2裸种凤仙花,T3凤仙花包衣种,T4凤仙花包衣种并添加游离微生物,T5凤仙花种子包衣载体固定化微生物)的土壤脱氢酶、过氧化氢酶、脲酶、多酚氧化酶活性、微生物群落多样性以及TPHs去除率,发现T5的土壤脱氢酶、过氧化氢酶、脲酶、多酚氧化酶活性分别增加了85.8%、8.72%、56.1%、62.1%;T5的Shannon指数最高,土壤物种分布最均匀;同时T5的绿弯菌门(Chloroflexi)占比增加了54.8%,土壤的微生物群落多样性提高;T5的TPHs去除率最高达到45.1%,是其他处理组的1.53-3.53倍。综上,凤仙花种子包衣载体固定化微生物能强化植物-微生物修复能力。研究结果可为种子包衣载体固定化微生物修复石油烃污染土壤提供依据。
中图分类号:
石润, 李法云, 周纯亮, 王玮, 周艳秋. 凤仙花种子包衣载体固定化微生物修复石油烃污染土壤的效应[J]. 生态环境学报, 2023, 32(9): 1700-1708.
SHI Run, LI Fayun, ZHOU Chunliang, WANG Wei, ZHOU Yanqiu. The Effect of Using Impatiens Balsam Seed Coat as a Carrier for Immobilized Microorganisms to Remediate Petroleum Hydrocarbon-contaminated Soil[J]. Ecology and Environment, 2023, 32(9): 1700-1708.
实验组 | 处理方式 | 石油烃主要降解方式 |
---|---|---|
CK T1 T2 T3 T4 T5 | 种子和微生物均不添加 添加游离微生物 凤仙花 (裸种) 凤仙花 (包衣种子) 凤仙花 (包衣种子)+游离微生物 凤仙花种子包衣载体固定化微生物 | 自然挥发和降解 生物降解 植物降解 种衣剂-植物降解 植物降解-生物降解 固定化微生物-植物降解 |
表1 不同处理组设置
Table 1 Different processing group settings
实验组 | 处理方式 | 石油烃主要降解方式 |
---|---|---|
CK T1 T2 T3 T4 T5 | 种子和微生物均不添加 添加游离微生物 凤仙花 (裸种) 凤仙花 (包衣种子) 凤仙花 (包衣种子)+游离微生物 凤仙花种子包衣载体固定化微生物 | 自然挥发和降解 生物降解 植物降解 种衣剂-植物降解 植物降解-生物降解 固定化微生物-植物降解 |
处理 | 发芽率/% | 叶长/cm | 叶宽/cm | 茎长/cm | 根长/cm | 生物量/(10−1 g) |
---|---|---|---|---|---|---|
T2 T3 T4 T5 | 85.0±5.77b 92.5±5.00ab 95.0±5.77a 97.5±5.00a | 1.40±0.16b 1.52±0.20b 1.68±0.03b 1.97±0.12a | 1.37±0.09b 1.38±0.14b 1.49±0.10ab 1.68±0.04a | 7.43±0.32a 6.84±1.59a 6.31±1.13a 7.63±0.67a | 7.61±3.60a 10.9±3.03a 11.9±4.18a 11.9±1.61a | 1.83±0.09b 2.37±0.59ab 2.41±0.08ab 2.66±0.23a |
表2 凤仙花的生长情况
Table 2 The growth of Impatiens
处理 | 发芽率/% | 叶长/cm | 叶宽/cm | 茎长/cm | 根长/cm | 生物量/(10−1 g) |
---|---|---|---|---|---|---|
T2 T3 T4 T5 | 85.0±5.77b 92.5±5.00ab 95.0±5.77a 97.5±5.00a | 1.40±0.16b 1.52±0.20b 1.68±0.03b 1.97±0.12a | 1.37±0.09b 1.38±0.14b 1.49±0.10ab 1.68±0.04a | 7.43±0.32a 6.84±1.59a 6.31±1.13a 7.63±0.67a | 7.61±3.60a 10.9±3.03a 11.9±4.18a 11.9±1.61a | 1.83±0.09b 2.37±0.59ab 2.41±0.08ab 2.66±0.23a |
处理 | Ace | Chao1 | Coverage | Shannon | Simpson |
---|---|---|---|---|---|
CK T1 T2 T3 T4 T5 | 2351.519 2407.069 2176.538 2290.326 2257.312 2170.499 | 2282.758 2341.375 2119.879 2222.017 2213.333 2115.002 | 0.982 0.983 0.986 0.983 0.984 0.986 | 5.776 6.021 5.986 5.901 5.937 6.060 | 0.0106 0.0080 0.0081 0.0088 0.0088 0.0069 |
表3 不同处理的微生物多样性指数表
Table 3 Table of microbial diversity indices for different treatments
处理 | Ace | Chao1 | Coverage | Shannon | Simpson |
---|---|---|---|---|---|
CK T1 T2 T3 T4 T5 | 2351.519 2407.069 2176.538 2290.326 2257.312 2170.499 | 2282.758 2341.375 2119.879 2222.017 2213.333 2115.002 | 0.982 0.983 0.986 0.983 0.984 0.986 | 5.776 6.021 5.986 5.901 5.937 6.060 | 0.0106 0.0080 0.0081 0.0088 0.0088 0.0069 |
[1] |
AGARWAL T, KHILLARE P S, SHRIDHAR V, et al., 2009. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 163(2-3): 1033-1039.
DOI PMID |
[2] | AJONA M, VASANTHI P, 2021. Bio-remediation of crude oil contaminated soil using recombinant native microbial strain[J]. Environmental Technology & Innovation, 23(11): 101635. |
[3] |
ASIABADI F I, MIRBAGHERI S A, NAJAFI P, et al., 2018. Concentrations of petroleum hydrocarbons at different depths of soil following phytoremediation[J]. Environmental Engineering and Management Journal, 17(9): 2129-2135.
DOI URL |
[4] |
ATLAS R M, STOECKEL D M, FAITH S A, et al., 2015. Oil biodegradation and oil-degrading microbial populations in marsh sediments impacted by oil from the deepwater horizon well blowout[J]. Environmental Science & Technology, 49(14): 8356-8366.
DOI URL |
[5] |
CAI Z, ZHOU Q X, PENG S W, et al., 2010. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance[J]. Journal of Hazardous Materials, 183(1): 731-737.
DOI URL |
[6] |
ESCALANTE-ESPINOSA E, GALLEGOS-MARTÍNEZ M E, FAVELA-TORRES E, et al., 2005. Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus lam. inoculated with a microbial consortium in a model system[J]. Chemosphere, 59(3): 405-413.
DOI URL |
[7] | HENTATI O, LACHHAB R, MARIEM A, et al., 2013. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays[J]. Environmental Monitoring & Assessment, 185(4): 2989-2998. |
[8] |
HOU J Y, WANG Q L, LIU W X, et al., 2021. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil[J]. Science of The Total Environment, 792: 148411.
DOI URL |
[9] |
HUSSAIN F, HUSSAIN I, KHAN A H A, et al., 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil[J]. Environmental and Experimental Botany, 153: 80-88.
DOI URL |
[10] |
HUSSAIN F, KHAN A H A, HUSSAIN I, et al., 2022. Soil conditioners improve rhizodegradation of aged petroleum hydrocarbons and enhance the growth of Lolium multiflorum[J]. Environmental Science and Pollution Research, 29(6): 9097-9109.
DOI |
[11] |
KUZINA E, MUKHAMATDYAROVA S, SHARIPOVA Y, et al., 2022. Influence of bacteria of the genus pseudomonas on leguminous plants and their joint application for bioremediation of oil contaminated soils[J]. Plants, 11(23): 3396.
DOI URL |
[12] |
LEE Y Y, SEO Y, HA M, et al., 2021. Evaluation of rhizoremediation and methane emission in diesel-contaminated soil cultivated with tall fescue (Festuca arundinacea)[J]. Environmental Research, 194: 110606.
DOI URL |
[13] |
LI J, MA N, HAO B Y, et al., 2023. Coupling biostimulation and phytoremediation for the restoration of petroleum hydrocarbon-contaminated soil[J]. International Journal of Phytoremediation, 25(6): 706-716.
DOI URL |
[14] |
LI Q Q, LI J B, JIANG L F, et al., 2021. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials, 403: 123895.
DOI URL |
[15] |
LI X K, LI J L, QU C T, et al., 2021. Bioremediation of clay with high oil content and biological response after restoration[J]. Scientific Reports, 11(1): 1-14.
DOI |
[16] |
LUO H, WANG H, KONG L Z, et al., 2019. Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation[J]. Journal of Hazardous Materials, 377: 341-348.
DOI PMID |
[17] |
MEIDUTE S, DEMOLING F, BÅÅTH E, 2008. Antagonistic and synergistic effects of fungal and bacterial growth in soil after adding different carbon and nitrogen sources[J]. Soil Biology and Biochemistry, 40(9): 2334-2343.
DOI URL |
[18] |
NZILA A, MUSA M M, 2021. Current knowledge and future challenges on bacterial degradation of the highly complex petroleum products asphaltenes and resins[J]. Frontiers in Environmental Science, 9: 779644.
DOI URL |
[19] | OSSAI I C, AHMED A, HASSAN A, et al., 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review[J]. Environmental Technology & Innovation, 17: 100526. |
[20] |
PANCHENKO L, MURATOVA A, DUBROVSKAYA E, et al., 2023. Natural and technical phytoremediation of oil-contaminated soil[J]. Life, 13(1): 177.
DOI URL |
[21] |
RAFIQUE H M, KHAN M Y, ASGHAR H N, et al., 2023. Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil[J]. International Journal of Phytoremediation, 25(6): 717-727.
DOI URL |
[22] |
RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al., 2015. Ecological implications of motor oil pollution: Earthworm survival and soil health[J]. Soil Biology and Biochemistry, 85: 72-81.
DOI URL |
[23] |
ROMANTSCHUK M, SARAND I, PETÄNEN T, et al., 2000. Means to improve the effect of in situ bioremediation of contaminated soil: An overview of novel approaches[J]. Environmental Pollution, 107(2): 179-185.
PMID |
[24] |
RON E Z, ROSENBERG E, 2014. Enhanced bioremediation of oil spills in the sea[J]. Current Opinion in Biotechnology, 27: 191-194.
DOI PMID |
[25] | SHAHI A, INCE B, AYDIN S, et al., 2017. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: A mini-review[J]. Applied Microbiology & Biotechnology, 101(11): 4341-4348. |
[26] |
SHEN Y Y, JI Y, WANG W K, et al., 2023. Temporal effect of phytoremediation on the bacterial community in petroleum-contaminated soil[J]. Human and Ecological Risk Assessment, 29(2): 427-448.
DOI URL |
[27] |
YUAN L M, WU Y Q, FAN Q H, et al., 2023. Remediating petroleum hydrocarbons in highly saline-alkali soils using three native plant species[J]. Journal of Environmental Management, 339: 117928.
DOI URL |
[28] |
黄河, 张超兰, 周永信, 等, 2019. 芘污染土壤的根瘤菌-植物修复效应研究[J]. 生态环境学报, 28(7): 1466-1472.
DOI |
HUANG H, ZHANG C L, ZHOU Y X, et al., 2019. Effect of rhizobium-plant remediation on pyrene contaminated soil[J]. Ecology and Environmental Sciences, 28(7): 1466-1472. | |
[29] | 霍乾伟, 李天元, 张闻, 等, 2022. 微生物修复石油污染土壤影响因素分析[J]. 现代化工, 42(S2): 83-87, 93. |
HUO Q W, LI T Y, ZHANG W, et al., 2022. Analysis on influencing factors for remediation of oil contaminated soil by microbe[J]. Modern Chemical Industry, 42(S2): 83-87, 93. | |
[30] | 李广贺, 张旭, 卢晓霞, 2002. 土壤残油生物降解性与微生物活性[J]. 地球科学, 27(2): 181-185. |
LI G H, ZHANG X, LU X X, 2002. Biodegradation of residual petrochemicals and microbial activities in polluted soil[J]. Earth Science, 27(2): 181-185. | |
[31] | 蔺昕, 李培军, 孙铁珩, 等, 2005. 石油污染土壤的生物修复与土壤酶活性关系[J]. 生态学杂志, 24(10): 1226-1229. |
LIN X, LI P J, SUN T H, et al., 2005. Bioremediation of petroleum-contaminated soil and its relationship with soil enzyme activities[J]. Chinese Journal of Ecology, 24(10): 1226-1229. | |
[32] | 刘五星, 骆永明, 滕应, 等, 2007. 我国部分油田土壤及油泥的石油污染初步研究[J]. 土壤, 39(2): 247-251. |
LIU W X, LUO Y M, TENG Y, et al., 2007. A survey of petroleum contamination in several chinese oilfield soils[J]. Soils, 39(2): 247-251. | |
[33] | 石丽芳, 2019. 生物炭固定化微生物对石油烃污染土壤的生物修复研究[D]. 抚顺: 辽宁石油化工大学. |
SHI L F, 2019. Bioremediation of petroleum hydrocarbon contaminated soil by biochar immobilized microorganisms[D]. Fushun: Liaoning Petrochemical University. | |
[34] | 石丽芳, 吝美霞, 李法云, 等, 2021. 生物炭固定化微生物对石油烃污染土壤酶活性与修复效果的影响[J]. 应用技术学报, 21(4): 382-388. |
SHI L F, LIN M X, LI F Y, et al., 2021. Effects of biochar immobilized microorganisms on the enzyme activity and remediation of petroleum hydrocarbon in contaminated soil[J]. Journal of Technology, 21(4): 382-388. | |
[35] | 孙剑平, 孙晶超, 孙梨宗, 等, 2023. 氧化石墨烯强化铜绿假单胞菌降解污染土壤多环芳烃的效果及其机制研究[J]. 环境污染与防治, 45(4): 433-442. |
SUN J P, SUN J C, SUN L Z, et al., 2023. Effect of GO on enhancing the degradation of PAHs by Pseudomonas aeruginosa incontaminated soil and its mechanism[J]. Environmental Pollution & Control, 45(4): 433-442. | |
[36] | 王华金, 朱能武, 杨崇, 等, 2013. 石油污染土壤生物修复对土壤酶活性的影响[J]. 农业环境科学学报, 32(6): 1178-1184. |
WANG H J, ZHU N W, YANG C, et al., 2013. Effect of soil enzyme activities during bioremediation of crude oil-contaminated soil[J]. Journal of Agro-Environment Science, 32(6): 1178-1184. | |
[37] | 王艳杰, 2017. 生物炭固定化微生物与植物联合修复石油烃污染土壤的机理及效应研究[D]. 长沙: 湖南农业大学 |
WANG Y J, 2017. Mechanism and effect of bioremediation of petroleum contaminated soil by combining biochar immobilized microorganisms with plant[D]. Changsha: Hunan Agricultural University | |
[38] | 姚伦芳, 滕应, 刘方, 等, 2014. 多环芳烃污染土壤的微生物-紫花苜蓿联合修复效应[J]. 生态环境学报, 23(5): 890-896. |
YAO L F, TENG Y, LI F, et al., 2014. Influence of Trichoderma reesei and Rhizobium meliloti on Phytoremediation of PAH-contaminated Soil by Alfalfa[J]. Ecology and Environmental Sciences, 23(5): 890-896. | |
[39] | 张琛, 2019. 种子引发与丸粒化对油菜萌发及生长发育的影响[D]. 武汉: 华中农业大学. |
ZHANG C, 2019. Effects of seed priming and pelletization on seed germination and plant growth and development of rapeseed[D]. Wuhan: Huazhong Agricultural University. | |
[40] | 张金秋, 王帅杰, 王露, 等, 2022. 紫花苜蓿-铜绿假单胞菌联合修复石油污染土壤[J]. 石油学报 (石油加工), 38(6): 1399-1405. |
ZHANG J Q, WANG S J, WANG L, et al., 2022. Remediation of petroleum contaminated soil by alfalfa and Pseudomonas aeruginosa[J]. Acta Petrolei Sinica (Petroleum Processing Section), 38(6): 1399-1405. | |
[41] | 张晓庆, 徐丽, 齐悦, 等, 2018. 紫松果菊对多环芳烃重污染土壤修复效能[J]. 生态学杂志, 37(2): 492-497. |
ZHANG X Q, XU L, QI Y, et al., 2018. Remediation efficiency of Echinacea purpurea for heavy PAHs contaminated soils[J]. Chinese Journal of Ecology, 37(2): 492-497. | |
[42] | 张焱华, 吴敏, 何鹏, 等, 2007. 土壤酶活性与土壤肥力关系的研究进展[J]. 安徽农业科学, 35(34): 11139-11142. |
ZHANG Y H, WU M, HE P, et al., 2007. Research advance of the relationship between soil enzyme activity and soil fertility[J]. Journal of Anhui Agricultural Sciences, 35(34): 11139-11142. | |
[43] | 赵琦慧, 李法云, 吝美霞, 等, 2022. 油菜种子联合降解菌对多环芳烃污染土壤的修复[J]. 环境污染与防治, 44(9): 1138-1141. |
ZHAO Q H, LI F Y, LIN M X, et al., 2022. Remediation of polycyclic aromatic hydrocarbons contaminated soil by rape seed combined with degrading bacteria[J]. Environmental Pollution & Control, 44(9): 1138-1141. | |
[44] |
郑学昊, 孙丽娜, 王晓旭, 等, 2017. 植物-微生物联合修复PAHs污染土壤的调控措施对比研究[J]. 生态环境学报, 26(2): 323-327.
DOI |
ZHANG X H, SUN L N, WANG X X, et al., 2017. Compared with different regulation on phytoremediation-microorganism combined remediation PAHs contaminated soil[J]. Ecology and Environmental Sciences, 26(2): 323-327. | |
[45] | 朱文英, 唐景春, 2014. 小麦秸秆生物炭对石油烃污染土壤的修复作用[J]. 农业资源与环境学报, 31(3): 259-264. |
ZHU W Y, TANG J C, 2014. Remediation of wheat-straw-biochar on petroleum-polluted soil[J]. Journal of Agricultural Resources and Environment, 31(3): 259-264. |
[1] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[2] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[3] | 梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284. |
[4] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[5] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[6] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[7] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[8] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[9] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[10] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
[11] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[12] | 吴洁婷, 赵若帆, 包红旭, 张营, 赵磊, 许琪, 陈忠林, 徐丽丽, 张驰, 许海萍, 马放. 鼠李糖脂强化多环芳烃微生物修复的研究进展[J]. 生态环境学报, 2022, 31(1): 205-214. |
[13] | 张太平, 肖嘉慧, 胡凤洁. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 2021, 30(5): 1084-1093. |
[14] | 郝丽虹, 刘桂青, 张世晨, 苗宇萍. 城市加油站场地典型有机污染物空间分布特征[J]. 生态环境学报, 2021, 30(11): 2175-2184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||