生态环境学报 ›› 2022, Vol. 31 ›› Issue (6): 1225-1234.DOI: 10.16258/j.cnki.1674-5906.2022.06.019
高鹏1(), 高品1, 孙蔚旻2, 孔天乐1,2, 黄端仪2, 刘华清2, 孙晓旭2,*
收稿日期:
2022-01-26
出版日期:
2022-06-18
发布日期:
2022-07-29
通讯作者:
*作者简介:
高鹏(1998年生),男,硕士研究生,研究方向为土壤微生物。E-mail: gaopeng9839@163.com
基金资助:
GAO Peng1(), GAO Pin1, SUN Weimin2, KONG Tianle1,2, HUANG Duanyi2, LIU Huaqing2, SUN Xiaoxun2,*
Received:
2022-01-26
Online:
2022-06-18
Published:
2022-07-29
摘要:
由于广泛的采矿和工业活动,土壤砷污染已成为全球环境问题之一。蜈蚣草(Pteris vittata L.)作为世界上首次被发现的砷超累积植物,被认为是一种修复土壤砷污染的理想植物。蜈蚣草对砷的吸收和转运过程会受多种因素调控,其中蜈蚣草内生菌能够促进这一过程,然而目前关于微生物促进蜈蚣草砷富集的响应机制方面的研究报道还很少。为探明蜈蚣草内生微生物对砷污染的响应机制,采用不同砷添加量(0、250、500 mg∙kg-1)进行蜈蚣草盆栽试验,结合蜈蚣草根际土、根和茎叶砷含量分析及对应微生物群落分析,研究砷污染对蜈蚣草根际及内生微生物群落结构的影响及相关性。结果表明,砷在蜈蚣草茎叶中的富集量远高于根内砷含量,当土壤砷污染水平分别为250 mg∙kg-1和500 mg∙kg-1时,蜈蚣草茎叶砷富集系数分别为99.99和66.83,转运系数分别为103.53和93.98。微生物群落多样性结果表明,砷胁迫对微生物群落结构具有显著影响(P=0.001),砷污染对蜈蚣草根际土微生物群落结构的影响大于对内生微生物群落结构的影响,其中根瘤菌目是在蜈蚣草根际及根内富集的核心微生物。相关性分析结果表明,德沃斯氏菌属(Devosia)、根瘤杆菌属(Rhizobacter)等菌属是与砷含量呈正相关的优势微生物种群(P>0.6)。在蜈蚣草茎叶中,寡营养单胞细菌属(Stenotrophomonas)不仅是核心微生物,还是与砷含量呈正相关的优势微生物种群。
中图分类号:
高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234.
GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress[J]. Ecology and Environment, 2022, 31(6): 1225-1234.
图1 不同As污染下蜈蚣草根际土、根及茎叶As吸收差异 图中*表示不同砷处理间差异显著(* P<0.05,** P<0.01,*** P<0.001)
Figure 1 As concentration in rhizosphere, roots and stems of Pteris vittata L. contaminated with different concentration of As * in the figure indicates significant differences between different treatment of arsenic concentrations (* P<0.05, ** P<0.01, *** P<0.001)
图4 门水平上蜈蚣草所有样品中微生物群落相对丰度位列前7的细菌
Figure 4 Relative abundances of the top 7 most-abundant phylum within the microbial communities in all samples of Pteris vittata L.
图5 属水平上蜈蚣草根际土、根及茎叶中微生物群落相对丰度各位列前5的细菌
Figure 5 Relative abundances of the top 5 most-abundant genera within the microbial communities in rhizosphere, roots and stems of Pteris vittata L. respectively
图6 蜈蚣草根际土、根和茎叶中核心微生物群落(属水平) (a)根际土;(b)根;(c)茎叶
Figure 6 The core microbial community in the rhizosphere, roots and stems of Pteris vittata L. (a) rhizosphere; (b) roots; (c) stems
图7 属水平上蜈蚣草根际土、根和茎叶样品中相对丰度位列前9的微生物与砷之间的相关性
Figure 7 The correlation between microorganisms of the top 9 most-abundant genera and arsenic in the rhizosphere, roots, and stems of Pteris vittata L.
[1] | AHMAD A, HEIJNEN L, DE WAAL L, et al., 2020. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production[J]. Water Research, 178: 115826. |
[2] | BOLYEN E, RIDEOUT J R, DILLON M R, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 37(8): 852-857. |
[3] | BROECKLING C D, BROZ A K, BERGELSON J, et al., 2008. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 74(3): 738-744. |
[4] | CANTAMESSA S, MASSA N, GAMALERO E, et al., 2020. Phytoremediation of a highly arsenic polluted site, using Pteris vittata L. and Arbuscular Mycorrhizal fungi[J]. Plants, 9(9): 1211. |
[5] | CAPORASO J G, LAUBER C, WALTERS W A, 2010. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1): 4516-4522. |
[6] | CHEN T B, WEI C Y, HUANG Z C, et al., 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation[J]. Chinese Science Bulletin, 47(11): 902-905. |
[7] | CHHETRI G, KIM I, KANG M, et al., 2022. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants[J]. Journal of Microbiology, 60: 1-10. |
[8] | DAS S, CHOU M L, JEAN J S, et al., 2016. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem[J]. Science of The Total Environment, 542(Part A): 642-652. |
[9] | DEEPIKA K, RAGHURAM M, KARIALI E, et al., 2016. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean[J]. Ecotoxicology and Environmental Safety, 134( Part 1): 1-10. |
[10] | DIXIT S, HERING J G, 2003. Comparison of arsenic (V) and arsenic (Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science & Technology, 37(18): 4182-4189. |
[11] | DREWNIAK L, CIEZKOWSKA M, RADLINSKA M, et al., 2015. Construction of the recombinant broad-host-range plasmids providing their bacterial hosts arsenic resistance and arsenite oxidation ability[J]. Journal of Biotechnology, 196-197: 42-51. |
[12] | GAO M, XIONG C, GAO C, et al., 2021. Disease-induced changes in plant microbiome assembly and functional adaptation[J]. Microbiome, 9(1): 1-18. |
[13] | GHNAYA T, MNASSRI M, GHABRICHE R, et al., 2015. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L.[J]. Frontiers in Plant Science, 6: 863. |
[14] | HAN Y H, FU J W, CHEN Y, et al., 2016. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria[J]. Chemosphere, 144: 1937-1942. |
[15] | HAN Y H, FU J W, XIANG P, et al., 2017a. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials, 321: 146-153. |
[16] | HAN Y H, LIU X, RATHINASABAPATHI B, et al., 2017b. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata[J]. Environmental Pollution, 227: 569-577. |
[17] | JIA M, SANGWAN N, TZENG A, et al., 2021. Interplay Between Class II HLA Genotypes and the Microbiome and Immune Phenotypes in Individuals With PTEN Hamartoma Tumor Syndrome[J]. JCO Precision Oncology, 5: 357-369. |
[18] | MA L Q, KOMAR K M, TU C, et al., 2001. A fern that hyperaccumulates arsenic[J]. Nature, 409(6820): 579-579. |
[19] | MAHIEU S, FRéROT H, VIDAL C, et al., 2011. Anthyllis vulneraria/ Mesorhizobium metallidurans, an efficient symbiotic nitrogen fixing association able to grow in mine tailings highly contaminated by Zn, Pb and Cd[J]. Plant and Soil, 342(1-2): 405-417. |
[20] | NAIDU P, SMITH S, 2012. A review of 11 years of Stenotrophomonas maltophilia blood isolates at a tertiary care institute in Canada[J]. Canadian Journal of Infectious Diseases and Medical Microbiology, 23(4): 165-169. |
[21] | NIHORIMBERE V, ONGENA M, SMARGIASSI M, et al., 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health[J]. Biotechnologie, Agronomie, Société et Environnement, 15(2): 327-337. |
[22] | SCHROEDER P J, JENKINS D G, 2018. How robust are popular beta diversity indices to sampling error?[J]. Ecosphere, 9(2): e02100. |
[23] | SUN W M, SUN X X, LI B Q, et al., 2019. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of The Total Environment, 675: 273-285. |
[24] | SUN X X, KONG T L, XU R, et al., 2020. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions[J]. Environmental Pollution, 260: 114052. |
[25] | SUN X X, SONG B R, XU R, et al., 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination[J]. Journal of Environmental Sciences, 104(6): 387-398. |
[26] | TAKARINA N D, PIN T G, 2017. Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm[J]. Makara Journal of Science, 21(2): 4. |
[27] | TANG J W, LIAO Y P, YANG Z H, et al., 2016. Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China[J]. Journal of Soils and Sediments, 16(5): 1519-1528. |
[28] | TURPEINEN R, PANTSAR-KALLIO M, HÄGGBLOM M, et al., 1999. Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil[J]. Science of The Total Environment, 236(1-3): 173-180. |
[29] | XIONG J B, WU L Y, TU S X, et al., 2010. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L.[J]. Applied and Environmental Microbiology, 76(21): 7277-7284. |
[30] | YANG C, HO Y N, INOUE C, et al., 2020. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials[J]. Science of The Total Environment, 740: 140137. |
[31] | 陈同斌, 李海翔, 雷梅, 等, 2010. 植物修复过程中蜈蚣草对土壤养分的吸收动态: 5年田间定位试验[J]. 环境科学学报, 30(2): 402-408. |
CHEN T B, LI H Y, LEI M, et al., 2010. The absorption dynamics of soil nutrients by centipede grass during phytoremediation: A 5-year field trial[J]. Acta Scientiae Circumstantiae, 30(2): 402-408. | |
[32] | 陈焱山, 贾梦茹, 曹越, 等, 2018. 蜈蚣草砷富集的分子机制研究进展[J]. 农业环境科学学报, 37(7): 1402-1408. |
CHEN Y S, JIA M R, CAO Y, et al., 2018. Research progress on the molecular mechanism of arsenic enrichment in centipede grass[J]. Journal of Agro-Environment Science, 37(7): 1402-1408. | |
[33] | 仇荣亮, 仇浩, 雷梅, 等, 2009. 矿山及周边地区多金属污染土壤修复研究进展[J]. 农业环境科学学报, 28(6): 1085-1091. |
CHOU R L, CHOU H, LEI M, et al., 2008. Research progress on polymetallic contaminated soil remediation in mines and surrounding areas[J]. Journal of Agro-Environmental Science, 28(6): 1085-1091. | |
[34] | 戴志楠, 温尔刚, 陈翰博, 等, 2021. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 38(2): 346-354. |
DAI Z N, WEN E G, CHEN H B, et al., 2021. Effects of application of original and iron-modified biomass charcoal on the adsorption of arsenic(Ⅴ) in soil[J]. Journal of Zhejiang A & F University, 38(2): 346-354. | |
[35] | 谷倩, 张琢, 张丽, 等, 2021. 砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报, 11(4): 734-739. |
GU Q, ZHANG Z, ZHANG L, et al., 2021. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology, 11(4): 734-739. | |
[36] | 韩永和, 贾梦茹, 傅景威, 等, 2017. 不同浓度砷酸盐胁迫对蜈蚣草根际微生物群落功能多样性特征的影响[J]. 南京大学学报 (自然科学版), 53(2): 275-285. |
HAN Y H, JIA M R, FU J W, et al., 2017. Effects of arsenic acid stress at different concentrations on functional diversity characteristics of the rhizosphere microbial community of Centipede grass[J]. Journal of Nanjing University (Natural Sciences), 3(2): 275-285. | |
[37] | 焦常锋, 常会庆, 王启震, 等, 2020. 碳酸钙和壳聚糖联用对高pH值石灰性土壤砷污染的钝化[J]. 农业工程学报, 36(11): 234-240. |
JIAO C F, CHANG H Q, WANG Q Z, et al., 2020. Combined use of calcium carbonate and chitosan to passivate arsenic pollution in high pH calcareous soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(11): 234-240. | |
[38] | 孟伟, 何邵麟, 吴攀, 等, 2021. 贵州中部土壤砷累积特征及异常富集成因研究[J]. 安全与环境学报, 21(2): 841-848. |
MENG W, HE S L, WU P, et al., 2021. Study on the accumulation characteristics and abnormal enrichment causes of arsenic in the soils of central Guizhou[J]. Journal of Safety and Environment, 21(2): 841-848. | |
[39] | 莫昌琍, 吴丰昌, 符志友, 等, 2013. 湖南锡矿山锑矿区农用土壤锑、砷及汞的污染状况初探[J]. 矿物学报, 33(3): 344-350. |
MO C L, WU F C, FU Z Y, et al., 2013. A preliminary study on the pollution status of antimony, arsenic and mercury in agricultural soil in the antimony mining area of Hunan Tin Mine[J]. Acta Mineralogica Sinica, 33(3): 344-350. | |
[40] | 生态环境部南京环境科学研究所, 2007. 土壤环境质量标准: GB15618–2008[S]. 北京: 中国环境出版社. |
Nanjing Institute of Environmental Sciences, MEE, 2007. Environmental quality standards soils: GB15618-2008[S]. Beijing: China Environment Publishing Group. | |
[41] |
汪京超, 李楠楠, 谢德体, 等, 2015. 砷在植物体内的吸收和代谢机制研究进展[J]. 植物学报, 50(4): 516-526.
DOI |
WANG J C, LI N N, XIE D T, et al., 2015. Research Progress on Arsenic Absorption and Metabolism in Plants[J]. Chinese Bulletin of Botany, 50(4): 516-526. | |
[42] | 熊金波, 2010. 微生物群落结构在砷污染土壤蜈蚣草根际和不同深度土壤中的变化[D]. 武汉: 华中农业大学. |
XIONG J B, 2010. Changes of microbial community structure in the rhizosphere of centipede grass in arsenic-contaminated soil and soils at different depths[D]. Wuhan: Huazhong Agricultural University. | |
[43] | 许飞飞, 2017. 不同生态型蜈蚣草砷吸收差异特征及其机理[D]. 咸阳: 西北农林科技大学. |
XU F F, 2017. Characteristics and mechanism of arsenic absorption differences in different ecotypes of centipede grass[D]. Xianyang: Northwest A & F University. | |
[44] | 叶文玲, 樊霆, 鲁洪娟, 等, 2014. 蜈蚣草的植物修复作用对土壤中砷总量及形态分布的影响研究[J]. 土壤通报, 45(4): 1003-1007. |
YE W L, FAN T, LU H J, et al., 2014. Study on the effect of phytoremediation of centipede grass on the total arsenic content and speciation distribution in soil[J]. Chinese Journal of Soil Science, 45(4): 1003-1007. | |
[45] | 张田, 闫慧莉, 何振艳, 2020. 蜈蚣草中砷超富集的分子机制研究进展[J]. 生物工程学报, 36(3): 397-406. |
ZHANG T, YAN H L, HE Z Y, 2020. Research progress on the molecular mechanism of arsenic hyperaccumulation in centipede grass[J]. Chinese Journal of Biotechnology, 36(3): 397-406. | |
[46] | 赵根成, 廖晓勇, 阎秀兰, 等, 2010. 微生物强化蜈蚣草累积土壤砷能力的研究[J]. 环境科学, 31(2): 431-436. |
ZHAO G C, LIAO X Y, YAN X L, et al., 2010. Study on microbial enhancing the ability of centipede grass to accumulate arsenic in soil[J]. Environmental Science, 31(2): 431-436. |
[1] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[2] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[3] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[4] | 杨宇, 邓仁健, 隆佩, 黄中杰, 任伯帜, 王政华. 砷氧化菌Pseudomonas sp. AO-1的分离鉴定及其对As(Ⅲ)的氧化性能研究[J]. 生态环境学报, 2023, 32(3): 619-626. |
[5] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[6] | 尹浩均, 龙明亮, 刘维, 倪春林, 李芳柏, 吴云当. 溶氧浓度调控嗜水气单胞菌的砷还原:效应与机制[J]. 生态环境学报, 2023, 32(2): 381-387. |
[7] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[8] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[9] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[10] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[11] | 徐梅华, 顾明华, 王骋臻, 雷静, 韦燕燕, 沈方科. 锰对土壤砷形态转化及水稻吸收砷的影响[J]. 生态环境学报, 2022, 31(4): 802-813. |
[12] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
[13] | 刘畅, 罗艳丽, 刘晨通, 郑玉红, 晁博, 董乐乐. 奎屯河下游区域地下水和农田土壤砷的空间分布特征[J]. 生态环境学报, 2022, 31(10): 2070-2078. |
[14] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[15] | 李富荣, 王旭, 李庆荣, 吴志超, 冯起, 文典, 徐爱平, 赵沛华. 蚕沙复合硼调理剂对酸性菜地土壤镉铅的钝化效应[J]. 生态环境学报, 2021, 30(9): 1888-1895. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||