生态环境学报 ›› 2023, Vol. 32 ›› Issue (3): 609-618.DOI: 10.16258/j.cnki.1674-5906.2023.03.018
阳涅1,2(), 孙晓旭2, 孔天乐1,2, 孙蔚旻2, 陈泉源1, 高品1,2,*(
)
收稿日期:
2023-01-16
出版日期:
2023-03-18
发布日期:
2023-06-02
通讯作者:
*高品,E-mail: pingao@dhu.edu.cn作者简介:
阳涅(1999年生),男,硕士研究生,研究方向为金属污染环境下微生物的响应机制。E-mail: 1255948322@qq.com
基金资助:
YANG Nie1,2(), SUN Xiaoxun2, KONG Tianle1,2, SUN Weimin2, CHEN Quanyuan1, GAO Pin1,2,*(
)
Received:
2023-01-16
Online:
2023-03-18
Published:
2023-06-02
摘要:
锑(Sb)矿的开采会造成周边水环境发生Sb污染,对周边生态环境和人体健康造成潜在风险。微生物是河流中Sb污染物生物地球化学循环的主要驱动力之一,通过氧化/还原过程调控Sb的价态转化过程,从而改变Sb的毒性和流动性。以贵州独山县Sb污染河流底泥为研究对象,利用地球化学参数分析、高通量测序和统计分析等方法,研究Sb污染河流底泥中Sb的浓度分布规律及其对河流底泥微生物群落的选择性影响。结果表明,随着与Sb冶炼厂排水口距离的增加,河流底泥中Sb浓度逐渐降低,这可能是微生物还原产生的Sb(III) 在厌氧环境下易与铁锰化合物结合形成沉淀所导致的。基于随机森林分析发现,Sb是塑造河流底泥微生物群落结构的主要因素,河流底泥微生物多样性随Sb浓度的降低而呈现逐渐增加的变化趋势。通过LEfSe差异分析可知,Sb是河流底泥微生物群落结构组成演变的关键驱动因子,在不同Sb污染环境下富集了差异微生物。结合共现网络分析,发现栖泥沼杆菌属Paludibacter和糖发酵菌属Saccharofermentans是Sb污染河流底泥中的核心微生物,其相对丰度与Sbtot、Sb(III) 浓度呈显著正相关,表明这些关键微生物对Sb生物地球化学循环发挥重要作用,尤其对调控Sb的还原过程具有重要潜力。
中图分类号:
阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618.
YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment[J]. Ecology and Environment, 2023, 32(3): 609-618.
[1] |
BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G, 2018. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 16(9): 567-576.
DOI PMID |
[2] |
BELZILE N, CHEN Y W, WANG Z, 2001. Oxidation of antimony (III) by amorphous iron and manganese oxyhydroxides[J]. Chemical Geology, 174(4): 379-87.
DOI URL |
[3] |
CARLIN A, SHI W, DEY S, et al., 1995. The ars operon of Escherichia coli confers arsenical and antimonial resistance[J]. Journal of Bacteriology, 177(4): 981-986.
DOI URL |
[4] |
CHEN S Y, NIU L L, ZHANG Y X, 2010. Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater[J]. International Journal of Systematic and Evolutionary Microbiology, 60(12): 2735-2738.
DOI URL |
[5] |
CHEN Y W, DENG T L, FILELLA M, et al., 2003. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes[J]. Environmental Science & Technology, 37(6): 1163-1168.
DOI URL |
[6] |
COURTIN-NOMADE A, RAKOTOARISOA O, BRIL H, et al., 2012. Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity[J]. Geochemistry, 72(Supplement 4): 29-39.
DOI URL |
[7] | CSARDI G, NEPUSZ T, 2006. The igraph software package for complex network research[J]. Interjournal Complex Systems, 1695(5): 1-9. |
[8] |
CUI X D, WANG Y J, HOCKMANN K, et al., 2015. Effect of iron plaque on antimony uptake by rice (Oryza sativa L.)[J]. Environmental Pollution, 204: 133-40.
DOI URL |
[9] |
DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al., 2020. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 38(6): 685-688.
DOI PMID |
[10] |
ERCOLE E, ADAMO M, LUMINI E, et al., 2022. Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure[J]. Science of The Total Environment, 822: 153640.
DOI URL |
[11] |
FILELLA M, BELZILE N, CHEN Y W, 2002. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry[J]. Earth Science Reviews, 59(1-4): 265-285.
DOI URL |
[12] |
FILELLA M, BELZILE N, LETT M C, 2007. Antimony in the environment: a review focused on natural waters. III. Microbiota relevant interactions[J]. Earth-Science Reviews, 80(3-4): 195-217.
DOI URL |
[13] |
FRIEDMAN J H, 2006. Recent advances in predictive (machine) learning[J]. Journal of Classification, 23(2): 175-197.
DOI URL |
[14] |
GARNOVA E S, ZHILINA T N, TOUROVA T P, et al., 2004. Anaerobic, alkaliphilic, saccharolytic bacterium Alkalibacter saccharofermentans gen. nov., sp. nov. from a soda lake in the Transbaikal region of Russia[J]. Extremophiles, 8(4): 309-316.
DOI URL |
[15] |
GRONOW S, MUNK C, LAPIDUS A, et al., 2011. Complete genome sequence of Paludibacter propionicigenes type strain (WB4T)[J]. Standards in Genomic Sciences, 4(1): 36-44.
DOI URL |
[16] |
HAHNKE S, LANGER T, KOECK D E, et al., 2016. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum[J]. International Journal of Systematic and Evolutionary Microbiology, 66(3): 1466-1475.
DOI URL |
[17] |
HE M C, WANG N N, LONG X J, et al., 2019. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 75: 14-39.
DOI URL |
[18] |
HERATH I, VITHANAGE M, BUNDSCHUH J, 2017. Antimony as a global dilemma: Geochemistry, mobility, fate and transport[J]. Environmental Pollution, 223: 545-559.
DOI PMID |
[19] |
HUANG B C, LONG J, LIAO H K, et al., 2019. Characteristics of bacterial community and function in paddy soil profile around antimony mine and its response to antimony and arsenic contamination[J]. International Journal of Environmental Research and Public Health, 16(24): 4883.
DOI URL |
[20] |
JACQUIOD S, CYRIAQUE V, RIBER L, et al., 2018. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome[J]. Journal of Hazardous Materials, 344: 299-307.
DOI PMID |
[21] |
KANEHISA M, GOTO S, 2000. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 28(1): 27-30.
DOI PMID |
[22] |
KULP T R, MILLER L G, BRAIOTTA F, et al., 2014. Microbiological reduction of Sb(V) in anoxic freshwater sediments[J]. Environmental Science & Technology, 48(1): 218-226.
DOI URL |
[23] |
LEHR C R, KASHYAP D R, MCDERMOTT T R, 2007. New insights into microbial oxidation of antimony and arsenic[J]. Applied and Environmental Microbiology, 73(7): 2386-2389.
PMID |
[24] |
LI J X, WANG Q, OREMLAND R S, et al., 2016. Microbial antimony biogeochemistry: Enzymes, regulation, and related metabolic pathways[J]. Applied and Environmental Microbiology, 82(18): 5482-5495.
DOI PMID |
[25] |
LI L, LIU H, LI H X, 2018. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China[J]. Environmental Science and Pollution Research, 25(28): 28061-28074.
DOI |
[26] |
LI L, TU H, ZHANG S, et al., 2019. Geochemical behaviors of antimony in mining-affected water environment (Southwest China)[J]. Environmental Geochemistry and Health, 41(6): 2397-2411.
DOI PMID |
[27] |
LI Y C, XU Z, WU J X, et al., 2020. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron[J]. Separation and Purification Technology, 246: 116756.
DOI URL |
[28] |
LI Y B, ZHANG M M, XU R, et al., 2021. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling[J]. Environment International, 153: 106522.
DOI URL |
[29] |
LIM S, RHEE M S, CHANG D H, et al., 2016. Whole-genome sequence of Erysipelothrix larvae LV19T (=KCTC 33523T), a useful strain for arsenic detoxification, from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus[J]. Journal of Biotechnology, 223: 40-41.
DOI URL |
[30] |
MOK W M, WAI C M, 1990. Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho[J]. Environmental Science & Technology, 24(1): 102-118.
DOI URL |
[31] |
NGUYEN V K, LEE J U, 2014. Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory[J]. Geomicrobiology Journal, 31(10): 855-861.
DOI URL |
[32] | NING Z P, XIAO Q X, LAN X L, et al., 2017. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang River[J]. Environmental Science, 38(7): 2784-2792. |
[33] |
OKKENHAUG G, ZHU Y G, LUO L, et al., 2011. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 159(10): 2427-2434.
DOI PMID |
[34] | OMS. 2008. Guidelines for drinking-water quality: Second addendum to third edition. Vol. 1: recommendations[J]. Water Quality, 1: 92. |
[35] |
QIN H B, UESUGI S, YANG S T, et al., 2019. Enrichment mechanisms of antimony and arsenic in marine ferromanganese oxides: Insights from the structural similarity[J]. Geochimica et Cosmochimica Acta, 257: 110-130.
DOI URL |
[36] |
QIN Z R, ZHAO Z H, XIA L L, et al., 2022. Pollution pressure and soil depth drive prokaryotic microbial assemblage and co-occurrence patterns in an organic polluted site[J]. Journal of Hazardous Materials, 438: 129570.
DOI URL |
[37] |
RONG Q, LING C Y, LU D T, et al., 2022. Sb (III) resistance mechanism and oxidation characteristics of Klebsiella aerogenes X[J]. Chemosphere, 293: 133453.
DOI URL |
[38] | SCHUMACHER B A. 2002. Methods for the determination of total organic carbon in soils and sediments[J]. Carbon, 32: 25. |
[39] | SEGATA N, IZARD J, WALDRON L, et al., 2011. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 12(6): 1-18. |
[40] |
SHAGOL C C, KRISHNAMOORTHY R, KIM K, et al., 2014. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea[J]. Environmental Science and Pollution Research, 21(15): 9356-9365.
DOI URL |
[41] |
SU P Z, GAO P, SUN W M, et al., 2022. Keystone taxa and functional analysis in arsenic and antimony co-contaminated rice terraces[J]. Environmental Science and Pollution Research, 29(40): 61236-61246.
DOI |
[42] |
SUN W M, SUN X X, LI B Q, et al., 2019b. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of The Total Environment, 675: 273-285.
DOI URL |
[43] |
SUN W M, XIAO E Z, HÄGGBLOM M, et al., 2018. Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses[J]. Environmental Science & Technology, 52(22): 13370-13380.
DOI URL |
[44] |
SUN W M, XIAO E Z, XIAO T F, et al., 2017. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology, 51(16): 9165-9175.
DOI URL |
[45] |
SUN X X, KONG T L, XU R, et al., 2020b. Comparative characterization of microbial communities that inhabit arsenic-rich and antimony-rich contaminated sites: Responses to two different contamination conditions[J]. Environmental Pollution, 260: 114052.
DOI URL |
[46] |
SUN X X, LI B Q, HAN F, et al., 2019a. Impacts of arsenic and antimony co-contamination on sedimentary microbial communities in rivers with different pollution gradients[J]. Microbial Ecology, 78(3): 589-602.
DOI |
[47] |
SUN X X, XU R, DONG Y R, et al., 2020a. Investigation of the ecological roles of putative keystone taxa during tailing revegetation[J]. Environmental Science & Technology, 54(18): 11258-11270.
DOI URL |
[48] |
TELFORD K, MAHER W, KRIKOWA F, et al., 2009. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia[J]. Environmental Chemistry, 6(2): 133-143.
DOI URL |
[49] |
TERRY L R, KULP T R, WIATROWSKI H, et al., 2015. Microbiological oxidation of antimony (III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments[J]. Applied and Environmental Microbiology, 81(24): 8478-8488.
DOI URL |
[50] |
THANABALASINGAM P, PICKERING W, 1990. Specific sorption of antimony (III) by the hydrous oxides of Mn, Fe, and Al[J]. Water, Air, and Soil Pollution, 49: 175-185.
DOI URL |
[51] |
WANG J, SHE J Y, ZHOU Y C, et al., 2020. Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments[J]. Science of The Total Environment, 739: 139957.
DOI URL |
[52] |
WANG Q, WARELOW T P, KANG Y S, et al., 2015a. Arsenite oxidase also functions as an antimonite oxidase[J]. Applied and Environmental Microbiology, 81(6): 1959-1965.
DOI URL |
[53] |
WANG Q, XIE Z Y, LI F B, 2015b. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale[J]. Environmental Pollution, 206: 227-235.
DOI URL |
[54] |
WANG X Q, HE M C, XI J H, et al., 2011. Antimony distribution and mobility in rivers around the world's largest antimony mine of Xikuangshan, Hunan Province, China[J]. Microchemical Journal, 97(1): 4-11.
DOI URL |
[55] | WEN T, XIE P, YANG S, et al., 2022. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts[J]. iMeta, 1(3): e32. |
[56] |
WILSON S C, LOCKWOOD P V, ASHLEY P M, et al., 2010. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review[J]. Environmental Pollution, 158(5): 1169-1181.
DOI PMID |
[57] |
WU T L, CUI X D, CUI P X, et al., 2019. Speciation and location of arsenic and antimony in rice samples around antimony mining area[J]. Environmental Pollution, 252: 1439-1447.
DOI URL |
[58] |
WU X D, SONG J M, LI X G, et al., 2011. Behaviors of dissolved antimony in the Yangtze River Estuary and its adjacent waters[J]. Journal of Environmental Monitoring, 13(8): 2292-2303.
DOI URL |
[59] |
XIAO E Z, KRUMINS V, TANG S, et al., 2016. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond[J]. Environmental Pollution, 215: 141-153.
DOI PMID |
[60] |
XIAO E Z, NING Z P, XIAO T F, et al., 2019. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump[J]. Environmental Pollution, 253: 141-151.
DOI PMID |
[61] |
XU R, LI B Q, XIAO E Z, et al., 2020c. Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage[J]. Environmental Pollution, 261: 114226.
DOI URL |
[62] |
XU R, SUN X X, HAN F, et al., 2020b. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river[J]. Science of The Total Environment, 713: 136451.
DOI URL |
[63] |
XU R, SUN X X, LIN H Z, et al., 2020a. Microbial adaptation in vertical soil profiles contaminated by an antimony smelting plant[J]. FEMS Microbiology Ecology, 96(11): fiaa188.
DOI URL |
[64] |
YAMAMURA S, IIDA C, KOBAYASHI Y, et al., 2021. Production of two morphologically different antimony trioxides by a novel antimonate-reducing bacterium, Geobacter sp. SVR[J]. Journal of Hazardous Materials, 411: 125100.
DOI URL |
[65] |
YANG S Z, WEN X, SHI Y L, et al., 2016. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments[J]. Scientific Reports, 6(1): 1-13.
DOI |
[66] |
YANG Z R, HOSOKAWA H, KURODA M, et al., 2021. Microbial antimonate reduction and removal potentials in river sediments[J]. Chemosphere, 266: 129192.
DOI URL |
[67] | YE L, CHEN H Z, JING C Y, 2019. Sulfate-reducing bacteria mobilize adsorbed antimonate by thioantimonate formation[J]. Environmental Science & Technology Letters, 6(7): 418-422. |
[68] | YU Y S, SU J M, XU J Q, et al., 2022. As (III) Exposure Induces a Zinc Scarcity Response and Restricts Iron Uptake in High-Level Arsenic-Resistant Paenibacillus taichungensis Strain NC1[J]. Applied and Environmental Microbiology, 88(9): e00312-22. |
[69] |
ZHANG M M, LU G M, LI Z, et al., 2021. Effects of antimony on anaerobic methane oxidization and microbial community in an antimony-contaminated paddy soil: A microcosm study[J]. Science of The Total Environment, 784: 147239.
DOI URL |
[70] |
ZHANG Z X, LU Y, LI H P, et al., 2018. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China[J]. Science of The Total Environment, 645: 235-243.
DOI URL |
[71] |
ZHAO X Y, CHEN J T, GUO M R, et al., 2022. Constructed wetlands treating synthetic wastewater in response to day-night alterations: Performance and mechanisms[J]. Chemical Engineering Journal, 446(Part 5): 137460.
DOI URL |
[72] | 李哲, 2020. 典型锑污染土壤中的厌氧锑氧化过程及其相关功能微生物的研究[D]: 武汉: 武汉工程大学. |
LI Z, 2020. Anaerobic antimonite oxidation and the microorganisms involved in a typical antimony-contaminated soil[D]. Wuhan: Wuhan Institute of Technology. |
[1] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[2] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[3] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[4] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[5] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[6] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
[7] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||