生态环境学报 ›› 2023, Vol. 32 ›› Issue (7): 1275-1284.DOI: 10.16258/j.cnki.1674-5906.2023.07.010
梁燚彤1(), 李泽敏1, 吴宇伦1, 邱光磊1, 吴海珍2, 韦朝海1,*(
)
收稿日期:
2023-05-21
出版日期:
2023-07-18
发布日期:
2023-09-27
通讯作者:
* 韦朝海。E-mail: cechwei@scut.edu.cn作者简介:
梁燚彤(1998年生),女,硕士研究生,主要从事厌氧氨氧化与自养反硝化耦合工艺研究。E-mail: gkzxxx_2009@126.com
基金资助:
LIANG Yitong1(), LI Zemin1, WU Yulun1, QIU Guanglei1, WU Haizhen2, WEI Chaohai1,*(
)
Received:
2023-05-21
Online:
2023-07-18
Published:
2023-09-27
摘要:
在连续流反应器中,逐步增加
中图分类号:
梁燚彤, 李泽敏, 吴宇伦, 邱光磊, 吴海珍, 韦朝海. 亚硝酸盐对厌氧氨氧化耦合系统的脱氮效能及微生物群落的影响[J]. 生态环境学报, 2023, 32(7): 1275-1284.
LIANG Yitong, LI Zemin, WU Yulun, QIU Guanglei, WU Haizhen, WEI Chaohai. Effects of Nitrite on Nitrogen Removal Efficiency and Microbial Community in Anammox-based Coupled System[J]. Ecology and Environment, 2023, 32(7): 1275-1284.
阶段 | 时间/ d | 进水氮质量浓度/(mg·L-1) | 进水氮比例 | 水力停留时间/ h | 氮负荷率/ (kg kg·m-3·d-1) | FeS日投加量/ (g·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
N0 | 1-21 | 50 | 50 | 0 | 1.00 | 0 | 35 | 0.069 | 0.1 | ||
A | A1 | 22-35 | 100 | 50 | 0 | 0.50 | 0 | 17 | 0.207 | 0.1 | |
A2 | 36-50 | 50 | 0.50 | 0.276 | |||||||
A3 | 51-65 | 100 | 1.00 | 0.345 | |||||||
A4 | 66-80 | 150 | 1.50 | 0.414 | |||||||
B | B1 | 81-95 | 100 | 100 | 0 | 1.00 | 0 | 24 | 0.209 | 0.2 | |
B2 | 96-110 | 50 | 0.50 | 0.261 | |||||||
B3 | 111-125 | 100 | 1.00 | 0.313 | |||||||
B4 | 126-140 | 150 | 1.50 | 0.365 |
表1 AFBR在不同阶段的操作条件
Table 1 Operational conditions of the AFBR at different phases
阶段 | 时间/ d | 进水氮质量浓度/(mg·L-1) | 进水氮比例 | 水力停留时间/ h | 氮负荷率/ (kg kg·m-3·d-1) | FeS日投加量/ (g·d-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
N0 | 1-21 | 50 | 50 | 0 | 1.00 | 0 | 35 | 0.069 | 0.1 | ||
A | A1 | 22-35 | 100 | 50 | 0 | 0.50 | 0 | 17 | 0.207 | 0.1 | |
A2 | 36-50 | 50 | 0.50 | 0.276 | |||||||
A3 | 51-65 | 100 | 1.00 | 0.345 | |||||||
A4 | 66-80 | 150 | 1.50 | 0.414 | |||||||
B | B1 | 81-95 | 100 | 100 | 0 | 1.00 | 0 | 24 | 0.209 | 0.2 | |
B2 | 96-110 | 50 | 0.50 | 0.261 | |||||||
B3 | 111-125 | 100 | 1.00 | 0.313 | |||||||
B4 | 126-140 | 150 | 1.50 | 0.365 |
样品 名称 | 序列 | OUT 数目 | Chao指数 | ACE指数 | Coverage指数 | 辛普森 指数 | 香农 指数 |
---|---|---|---|---|---|---|---|
N0 | 43223 | 991 | 224 | 214 | 0.999 | 0.065 | 3.55 |
A1 | 41258 | 991 | 214 | 211 | 0.999 | 0.085 | 3.37 |
A2 | 38530 | 991 | 206 | 206 | 0.999 | 0.271 | 2.53 |
A3 | 40755 | 991 | 229 | 226 | 0.999 | 0.487 | 1.79 |
A4 | 38569 | 991 | 219 | 216 | 0.999 | 0.415 | 2.00 |
B1 | 37984 | 991 | 223 | 222 | 0.999 | 0.365 | 2.22 |
B2 | 39069 | 991 | 226 | 226 | 0.999 | 0.463 | 1.81 |
B3 | 38439 | 991 | 233 | 230 | 0.999 | 0.483 | 1.75 |
B4 | 38143 | 991 | 222 | 224 | 0.999 | 0.468 | 1.80 |
表2 不同阶段的菌群微生物多样性指数
Table 2 Richness and diversity of microbial communities in different phases
样品 名称 | 序列 | OUT 数目 | Chao指数 | ACE指数 | Coverage指数 | 辛普森 指数 | 香农 指数 |
---|---|---|---|---|---|---|---|
N0 | 43223 | 991 | 224 | 214 | 0.999 | 0.065 | 3.55 |
A1 | 41258 | 991 | 214 | 211 | 0.999 | 0.085 | 3.37 |
A2 | 38530 | 991 | 206 | 206 | 0.999 | 0.271 | 2.53 |
A3 | 40755 | 991 | 229 | 226 | 0.999 | 0.487 | 1.79 |
A4 | 38569 | 991 | 219 | 216 | 0.999 | 0.415 | 2.00 |
B1 | 37984 | 991 | 223 | 222 | 0.999 | 0.365 | 2.22 |
B2 | 39069 | 991 | 226 | 226 | 0.999 | 0.463 | 1.81 |
B3 | 38439 | 991 | 233 | 230 | 0.999 | 0.483 | 1.75 |
B4 | 38143 | 991 | 222 | 224 | 0.999 | 0.468 | 1.80 |
图6 不同废水水质与脱氮理化性质和群落组成之间的典型相关性分析(CCA)
Figure 6 Canonical correlation analysis (CCA) between different wastewater quality and physicochemical properties and community composition of denitrification
[1] |
BAO P, WANG S Y, MA B, et al., 2017. Achieving partial nitrification by inhibiting the activity of Nitrospira-like bacteria under high-DO conditions in an intermittent aeration reactor[J]. Journal of Environmental Sciences, 56: 71-78.
DOI PMID |
[2] |
CAO S B, DU R, ZHOU Y, 2021. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: A review[J]. Critical Reviews in Environmental Science and Technology, 51(19): 2260-2293.
DOI URL |
[3] |
DEDYSH S N, KULICHEVSKAYA I S, BELETSKY A V, et al., 2020. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov[J]. Systematic and Applied Microbiology, 43(1): 126050.
DOI URL |
[4] |
DI CAPUA F, PIROZZI F, LENS P N L, et al., 2019. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 362: 922-937.
DOI |
[5] |
DU R, CAO S B, LI B K, et al., 2017. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and anammox treating ammonia and nitrate wastewaters[J]. Water Research, 108: 46-56.
DOI PMID |
[6] |
GONG Y Y, TANG J C, ZHAO D Y, 2016. Application of iron sulfide particles for groundwater and soil remediation: A review[J]. Water Research, 89: 309-320.
DOI PMID |
[7] |
GRAMP J P, BIGHAM J M, JONES F S, et al., 2010. Formation of Fe-sulfides in cultures of sulfate-reducing bacteria[J]. Journal of Hazardous Materials, 175(1): 1062-1067.
DOI URL |
[8] |
HAN X Y, ZHANG S J, YANG S H, et al., 2020. Full-scale partial nitritation/anammox (PN/A) process for treating sludge dewatering liquor from anaerobic digestion after thermal hydrolysis[J]. Bioresource Technology, 297: 122380.
DOI URL |
[9] |
HU Y S, WU G X, LI R H, et al., 2020. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research, 179: 115914.
DOI URL |
[10] |
HUANG D Q, FU J J, LI Z Y, et al., 2022. Inhibition of wastewater pollutants on the anammox process: A review[J]. Science of the Total Environment, 803: 150009.
DOI URL |
[11] |
HUO D, DANG Y, SUN D Z, et al., 2022. Efficient nitrogen removal from leachate by coupling Anammox and sulfur-siderite-driven denitrification[J]. Science of the Total Environment, 829: 154683.
DOI URL |
[12] |
JI J T, PENG Y Z, WANG B, et al., 2020. Synergistic Partial-Denitrification, Anammox, and in-situ Fermentation (SPDAF) Process for Advanced Nitrogen Removal from Domestic and Nitrate-Containing Wastewater[J]. Environmental Science & Technology, 54(6): 3702-3713.
DOI URL |
[13] |
JIN R C, YANG G F, YU J J, et al., 2012. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 197: 67-79.
DOI URL |
[14] |
KARTAL B, KELTJENS J T, 2016. Anammox Biochemistry: A Tale of Heme c Proteins[J]. Trends in Biochemical Sciences, 41(12): 998-1011.
DOI PMID |
[15] |
LAWSON C E, WU S, BHATTACHARJEE A S, et al., 2017. Metabolic network analysis reveals microbial community interactions in anammox granules[J]. Nature Communications, 8(1): 15416.
DOI URL |
[16] |
MA J, WEI J, KONG Q, et al., 2021. Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal[J]. Chemosphere, 280: 130726.
DOI URL |
[17] |
PAN J X, MA J D, WU H Z, et al., 2019. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 150: 216-224.
DOI PMID |
[18] |
QIN Y, WU C, CHEN B, et al., 2019. Short term performance and microbial community of a sulfide-based denitrification and Anammox coupling system at different N/S ratios[J]. Bioresource Technology, 294: 122130.
DOI URL |
[19] |
RAMBO I M, DOMBROWSKI N, CONSTANT L, et al., 2020. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus[J]. Environmental Microbiology, 22(5): 1764-1783.
DOI PMID |
[20] |
SHARMA V, VASHISHTHA A, JOS A L M, et al., 2022. Phylogenomics of the Phylum Proteobacteria: Resolving the Complex Relationships[J]. Current Microbiology, 79(8): 224.
DOI PMID |
[21] |
SIJBESMA W F, ALMEIDA J S, REIS M A, et al., 1996. Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens: An in vivo 31P-NMR study[J]. Biotechnology and Bioengineering, 52(1): 176-182.
DOI URL |
[22] |
VAN DE GRAAF A A, DE BRUIJN P, ROBERTSON L A, et al., 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 142(8): 2187-2196.
DOI URL |
[23] |
WAN K, YU Y, HU J G, et al., 2022. Recovery of anammox process performance after substrate inhibition: Reactor performance, sludge morphology, and microbial community[J]. Bioresource Technology, 357: 127351.
DOI URL |
[24] |
WU C L, QIN Y J, YANG L, et al., 2020. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and Anammox coupling system[J]. Bioresource Technology, 316: 123969.
DOI URL |
[25] |
WU P, CHEN J J, GARLAPATI V K, et al., 2022. Novel insights into Anammox-based processes: A critical review[J]. Chemical Engineering Journal, 444: 136534.
DOI URL |
[26] |
YANG Y, LU H, SHAO Z Y, et al., 2020. Electron buffer formation through coupling thiosulfate-dependent denitratation with anammox in a single-stage sequencing batch reactor[J]. Bioresource Technology, 312: 123560.
DOI URL |
[27] |
ZHOU X, WANG G L, YIN Z Y, et al., 2020. Performance and microbial community in a single-stage simultaneous carbon oxidation, partial nitritation, denitritation and anammox system treating synthetic coking wastewater under the stress of phenol[J]. Chemosphere, 243: 125382.
DOI URL |
[28] | 陈重军, 王建芳, 张海芹, 等, 2014. 厌氧氨氧化污水处理工艺及其实际应用研究进展[J]. 生态环境学报, 23(3): 521-527. |
CHEN C J, WANG J F, ZHANG H Q, et al., 2014. Research progress in anammox wastewater treatment system and its actual application[J]. Ecology and Environmental Sciences, 23(3): 521-527. | |
[29] | 国家环境保护总局, 2002. 水和废水检测分析方法[M]. 第4版. 北京:中国环境科学出版社: 255-279. |
State Environmental Protection Administration, 2002. Water and wastewater monitoring analysis method[M]. 4th edition. Beijing: China Environmental Science Press: 255-279. | |
[30] | 马景德, 潘建新, 李泽敏, 等, 2019. FeS自养反硝化与厌氧氨氧化耦合总氮去除及微生物特征[J]. 环境科学, 40(8): 3683-3690. |
MA J D, PAN J X, LI Z M, et al., 2019. Performance and mechanisms of advanced nitrogen removal via fes-driven autotrophic denitrification coupled with ANAMMOX[J]. Environmental Science, 40(8): 3683-3690. | |
[31] | 李泽莹, 班玮璘, 王锦, 等, 2022. 厌氧氨氧化脱氮工艺及其影响因素[J]. 给水排水, 58(S1): 1100-1107. |
LI Z Y, BAN W L, WANG J, et al., 2022. Anammox denitrification process and its influencing factors[J]. Water & Wastewater Engineering, 48(S1): 1100-1107. | |
[32] |
朱紫旋, 陈俊江, 张星星, 等, 2023. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 42(4): 2091-2100.
DOI |
ZHU Z X, CHEN J J, ZHANG X X, et al., 2023. Research advances on novel wastewater biological nitrogen removal technology by partial denitrification coupled with Anammox[J]. Chemical Industry and Engineering Progress, 42(4): 2091-2100.
DOI |
|
[33] | 韩雪恪, 王峥嵘, 彭永臻, 等, 2023. 几种重要因素对厌氧氨氧化过程的影响综述[J]. 中国环境科学, 43(5): 2220-2227. |
HAN X G, WANG Z R, PENG Y Z, et al., 2023. A review of several important factors influencing the Anammox process[J]. China Environmental Science, 43(5): 2220-2227. |
[1] | 王云, 郑西来, 曹敏, 李磊, 宋晓冉, 林晓宇, 郭凯. 滨海含水层咸-淡水过渡带反硝化性能与控制因素研究[J]. 生态环境学报, 2023, 32(5): 980-988. |
[2] | 阳涅, 孙晓旭, 孔天乐, 孙蔚旻, 陈泉源, 高品. 微生物群落对河流底泥中锑含量变化的响应[J]. 生态环境学报, 2023, 32(3): 609-618. |
[3] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[4] | 陈小弯, 田华川, 常军军, 陈礼强, 舒兴权, 冯秀祥. 杞麓湖中河河口表流湿地净化河道污染水的效果及其微生物群落特征[J]. 生态环境学报, 2022, 31(9): 1865-1875. |
[5] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
[6] | 高鹏, 高品, 孙蔚旻, 孔天乐, 黄端仪, 刘华清, 孙晓旭. 蜈蚣草根际及内生微生物群落对砷污染胁迫的响应机制研究[J]. 生态环境学报, 2022, 31(6): 1225-1234. |
[7] | 朱奕豪, 李青梅, 刘晓丽, 李娜, 宋凤玲, 陈为峰. 不同土地整治类型新增耕地土壤微生物群落特征研究[J]. 生态环境学报, 2022, 31(5): 909-917. |
[8] | 梅闯, 蔡昆争, 黎紫珊, 徐美丽, 黄飞. 稻秆生物炭对稻田土壤Cd形态转化和微生物群落的影响[J]. 生态环境学报, 2022, 31(2): 380-390. |
[9] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[10] | 相恒星, 张健, 王宗明, 毛德华. 松嫩平原生态系统服务供需研究[J]. 生态环境学报, 2021, 30(8): 1769-1776. |
[11] | 郭彩云, 张雷, 高孝威, 苏艳龙, 李琳, 王晓江, 杨九艳. 内蒙古大青山4种典型植被类型生态系统服务权衡与协同[J]. 生态环境学报, 2021, 30(10): 1999-2009. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 222
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 267
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||