生态环境学报 ›› 2023, Vol. 32 ›› Issue (7): 1285-1292.DOI: 10.16258/j.cnki.1674-5906.2023.07.011
赵海英1(), 刘致远2, 袁梦仙2, 张卿雯2, 张琼2, 曹际玲2,*(
)
收稿日期:
2022-12-15
出版日期:
2023-07-18
发布日期:
2023-09-27
通讯作者:
* 曹际玲。E-mail: jlcao2008@163.com作者简介:
赵海英(1979年生),女,讲师,博士,主要从事污染评价与修复方面的研究工作。E-mail: hyzgeography@163.com
基金资助:
ZHAO Haiying1(), LIU Zhiyuan2, YUAN Mengxian2, ZHANG Qingwen2, ZHANG Qiong2, CAO Jiling2,*(
)
Received:
2022-12-15
Online:
2023-07-18
Published:
2023-09-27
摘要:
随着纳米科技的飞速发展和纳米产品的广泛使用,纳米颗粒不可避免地进入土壤环境成为一种潜在环境污染物,对土壤生态系统产生潜在威胁。傅里叶变换红外光谱是一种基于有机物分子中极性键振动简便快速和高分辨率分析物质组成和含量的技术。为明确纳米颗粒对植物生长和主要代谢物的影响,以纳米银为供试材料,以玉米(Zea may)为供试植物,基于盆栽试验探究不同浓度纳米银(0、1.0、5.0、10.0 mg·kg-1)的植物生物效应,分析了不同浓度纳米银对玉米幼苗生物量的影响,利用傅里叶红外光谱法研究了不同浓度纳米银对玉米幼苗根系和叶片有机物质的影响。研究结果表明,随着纳米银浓度增加玉米幼苗地上部和地下部生物量均呈降低趋势,高浓度纳米银(10.0 mg·kg-1)显著降低了玉米幼苗地上部和地下部生物量,降幅分别达16.5%和22.2%。不同浓度纳米银对玉米幼苗根系和叶片有机物质产生了不同程度的影响。低浓度纳米银(1.0、5.0 mg·kg-1)提高了玉米幼苗根系羧基、羟基等基团和有机酸、蛋白质等有机物质含量,有助于吸附和固定银离子,降低纳米银对玉米幼苗生长的影响。高浓度纳米银(10.0 mg·kg-1)降低了玉米幼苗根系和叶片4000-400 cm-1波数范围内官能团相关有机物质含量。由此可见,低浓度纳米银下植物可通过调节羟基、羧基等基团相关有机物质含量的变化抵抗纳米银对植物的影响,但高浓度纳米银不利于植物有机物质的合成,进而影响植物生长。该结果可为揭示纳米银对玉米幼苗生长和生理代谢的影响机理提供理论依据。
中图分类号:
赵海英, 刘致远, 袁梦仙, 张卿雯, 张琼, 曹际玲. 纳米银对玉米幼苗傅里叶红外光谱特性的影响[J]. 生态环境学报, 2023, 32(7): 1285-1292.
ZHAO Haiying, LIU Zhiyuan, YUAN Mengxian, ZHANG Qingwen, ZHANG Qiong, CAO Jiling. Effects of Silver Nanoparticles on FTIR Spectroscopic Characterization of Maize Seedlings[J]. Ecology and Environment, 2023, 32(7): 1285-1292.
图1 不同浓度纳米银处理下玉米幼苗地上部和地下部生物量 不同小写字母表示处理间差异显著(P<0.05)
Figure 1 Shoot dry biomass and root dry biomass of maize seedlings under different concentrations of AgNPs
波数/ cm-1 | 主要基团 | 有机物 |
---|---|---|
3405 | O-H和N-H的伸缩振动 | 蛋白质和碳水化合物 |
2925 | -CH2的反对称伸缩振动 | 脂类和蛋白质 |
2850 | -CH2的对称伸缩振动 | 脂类和蛋白质 |
1729 | C=O的伸缩振动 | 细胞壁果胶成分中的脂类化合物 |
1637 | C=O的伸缩振动 | 蛋白质酰胺I带 |
1565 | N-H的弯曲振动 | 蛋白质酰胺II带 |
1384 | C-H弯曲振动 | 膜和胞壁含油脂化合物 |
1250 | C=O的伸缩振动或NH2变形 | 蛋白质酰胺III带 |
1158 | C-O-C的伸缩振动 | 蛋白质分子氨基酸残基、 纤维素糖苷 |
1110 | C-O的伸缩振动 | 碳水化合物 |
1060 | C-O的伸缩振动 | 碳水化合物 |
1050 | C-C和C-O的伸缩振动 | 碳水化合物 |
表1 红外光谱中有机物、官能团及其对应的FTIR特征波长
Table 1 Main organic matter, functional groups and their corresponding FTIR characteristic wavelengths
波数/ cm-1 | 主要基团 | 有机物 |
---|---|---|
3405 | O-H和N-H的伸缩振动 | 蛋白质和碳水化合物 |
2925 | -CH2的反对称伸缩振动 | 脂类和蛋白质 |
2850 | -CH2的对称伸缩振动 | 脂类和蛋白质 |
1729 | C=O的伸缩振动 | 细胞壁果胶成分中的脂类化合物 |
1637 | C=O的伸缩振动 | 蛋白质酰胺I带 |
1565 | N-H的弯曲振动 | 蛋白质酰胺II带 |
1384 | C-H弯曲振动 | 膜和胞壁含油脂化合物 |
1250 | C=O的伸缩振动或NH2变形 | 蛋白质酰胺III带 |
1158 | C-O-C的伸缩振动 | 蛋白质分子氨基酸残基、 纤维素糖苷 |
1110 | C-O的伸缩振动 | 碳水化合物 |
1060 | C-O的伸缩振动 | 碳水化合物 |
1050 | C-C和C-O的伸缩振动 | 碳水化合物 |
图2 不同浓度纳米银处理下玉米幼苗根系的傅里叶红外光谱特征(4000-400 cm-1)
Figure 2 FTIR spectra of the roots of maize seedlings under different concentration of AgNPs (4000-400 cm-1)
处理 | 波数/cm-1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2925 | 1731 | 1647 | 1637 | 1603 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1159 | 1039 | |
L | 3396 | 2922 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1489 | 1417 | 1384 | 1255 | 1201 | 1159 | 1039 |
M | 3400 | 2922 | 1731 | 1647 | 1633 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1254 | 1201 | 1157 | 1037 |
H | 3406 | 2924 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1156 | 1037 |
表2 不同浓度纳米银处理下玉米根系特征吸收峰波数
Table 2 Characteristic peak wave number of FTIR in maize root under different concentration of AgNPs
处理 | 波数/cm-1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2925 | 1731 | 1647 | 1637 | 1603 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1159 | 1039 | |
L | 3396 | 2922 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1489 | 1417 | 1384 | 1255 | 1201 | 1159 | 1039 |
M | 3400 | 2922 | 1731 | 1647 | 1633 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1254 | 1201 | 1157 | 1037 |
H | 3406 | 2924 | 1731 | 1647 | 1637 | 1604 | 1559 | 1516 | 1490 | 1417 | 1384 | 1256 | 1201 | 1156 | 1037 |
图3 不同浓度纳米银处理下玉米幼苗根系的傅里叶红外光谱图(1800-800 cm-1)
Figure 3 FTIR spectra of the roots of maize seedlings under different concentration of AgNPs (1800-800 cm-1)
图4 不同浓度纳米银处理下玉米幼苗叶片的傅里叶红外光谱图(4000-400 cm-1)
Figure 4 FTIR spectra of the leaves of maize seedlings under different concentration of AgNPs (4000-400 cm-1)
图5 不同浓度纳米银处理下玉米幼苗叶片的傅里叶红外光谱图(1800-800 cm-1)
Figure 5 FTIR spectra of the leaves of maize seedlings under different concentration of AgNPs (1800-800 cm-1)
处理 | 波数/cm-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2918 | 2850 | 1731 | 1633 | 1559 | 1518 | 1490 | 1384 | 1320 | 1258 | 1202 | 1160 | 1104 | 1056 | 1038 | |
L | 3415 | 2918 | 2850 | 1731 | 1633 | - | - | - | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
M | 3406 | 2918 | 2850 | 1731 | 1633 | 1559 | 1517 | 1490 | 1384 | 1320 | 1256 | 1203 | 1160 | 1105 | 1056 | 1038 |
H | 3407 | 2919 | 2850 | 1731 | 1647 | 1559 | - | 1490 | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
表3 不同浓度纳米银处理下玉米叶片特征吸收峰波数
Table 3 Characteristic peak wave number of FTIR in maize leaves under different concentration of AgNPs
处理 | 波数/cm-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3405 | 2918 | 2850 | 1731 | 1633 | 1559 | 1518 | 1490 | 1384 | 1320 | 1258 | 1202 | 1160 | 1104 | 1056 | 1038 | |
L | 3415 | 2918 | 2850 | 1731 | 1633 | - | - | - | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
M | 3406 | 2918 | 2850 | 1731 | 1633 | 1559 | 1517 | 1490 | 1384 | 1320 | 1256 | 1203 | 1160 | 1105 | 1056 | 1038 |
H | 3407 | 2919 | 2850 | 1731 | 1647 | 1559 | - | 1490 | 1384 | 1320 | 1257 | 1203 | 1160 | 1104 | 1057 | 1038 |
[1] |
ACHARYA P, JAYAPRAKASHA G K, CROSBY K M, et al., 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas[J]. Scientific Reports, 10: 5037.
DOI PMID |
[2] |
CALABRESE E J, BALDWIN L A, 2003. Toxicology rethinks its central belief[J]. Nature, 421(6924): 691-692.
DOI URL |
[3] |
DAS P, BARUA S, SARKAR S, et al., 2018. Mechanism of toxicity and transformation of silver nanoparticles: Inclusive assessment in earthworm-microbe-soil-plant system[J]. Geoderma, 314: 73-84.
DOI URL |
[4] |
DIMKPA C O, MCLEAN J E, BRITT D W, et al., 2015. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants[J]. Ecotoxicology, 24: 119-129.
DOI PMID |
[5] |
FALCO W F, SCHERER M D, OLIVEIRA S L, et al., 2020. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange[J]. Science of the Total Environment, 701: 134816.
DOI URL |
[6] |
GE Y, PRIESTER J H, VAN DE WERFHORST L C, et al., 2014. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities[J]. Environmental Science & Technology, 48(22): 13489-13496.
DOI URL |
[7] |
HE G, SHU S, LIU G H, et al., 2022. Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils[J]. Environmental Pollution, 293: 118611.
DOI URL |
[8] |
IMAJI A, SEIWA K, 2010. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad-leaved tree species[J]. Oecologia, 162: 273-281.
DOI PMID |
[9] |
JHANZAB H M, RAZZAQ A, BIBI Y, 2019. Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat[J]. International Journal of Molecular Sciences, 20(4): 825.
DOI URL |
[10] |
JIA H L, WANG X H, WEI T, et al., 2019. Accumulation and fixation of Cd by tomato cell wall pectin under Cd stress[J]. Environmental and Experimental Botany, 167: 103829.
DOI URL |
[11] |
LINARES M G, YU J, SUNAHARA G I, et al., 2020. Barley (Hordeum vulgare) seedling growth declines with increasing exposure to silver nanoparticles in biosolid-amended soils[J]. Canadian Journal of Soil Science, 100(2): 189-197.
DOI URL |
[12] | MADANAYAKE N H, PERERA N, ADASSOORIYA N M, 2022. Engineered nanomaterials: threats, releases, and concentrations in the environment[M]. Amsterdam: Elsevier:225- 240. |
[13] |
MARCHI L D, COPPOLA F, SOARES A M V M, et al., 2019. Engineered nanomaterials: From their properties and applications, to their toxicity towards marine bivalves in a changing environment[J]. Environmental Research, 178: 108683.
DOI URL |
[14] |
MEYCHIK N, NIKOLAEVA Y, KUSHUNINA M, 2014. Are the carboxyl groups of pectin polymers the only metal-binding sites in plant cell walls?[J]. Plant Soil, 381: 25-34.
DOI URL |
[15] |
MUSTAFA G, SAKATA K, HOSSAIN Z, et al., 2015. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress[J]. Journal of Proteomics, 122: 100-118.
DOI PMID |
[16] |
NOORI A, WHITE J C, NEWMAN L A, 2017. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure[J]. Journal of Nanoparticle Research, 19(2): 66.
DOI |
[17] | QIAN H F, PENG X F, HAN X, et al., 2013. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana[J]. Journal of Environmental Science, 25(9): 1947-1956. |
[18] |
TRIPATHY B C, OELM LLER R, 2012. Reactive oxygen species generation and signaling in plants[J]. Plant Signaling and Behavior, 7(12): 1621-1633.
DOI URL |
[19] |
WANG J C, CHEN X F, CHU S H, et al., 2020. Influence of Cd toxicity on subcellular distribution, chemical forms, and physiological responses of cell wall components towards short-term Cd stress in Solanum nigrum[J]. Environmental Science and Pollution Research, 28: 13955-13969.
DOI |
[20] |
WANG P, MENZIES N W, LOMBI E, et al., 2015. Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic[J]. Nanotoxicology, 9(8): 1041-1049.
DOI PMID |
[21] | WATSON J L, FANG T, DIMKPA C O, et al., 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties[J]. Biometals, 28(1): 101-112. |
[23] |
XU L, WANG Y Y, HUANG J, et al., 2020. Silver nanoparticles: Synthesis, medical applications and biosafety[J]. Theranostics, 10(20): 8996-9031.
DOI PMID |
[24] |
YAN X, PAN Z Y, CHEN S, 2022. Rice exposure to silver nanoparticles in a life cycle study: Effect of dose responses on grain metabolomic profile, yield, and soil bacteria[J]. Environmental Science: Nano, 9(6): 2195.
DOI URL |
[25] |
YANG J, JIANG F P, MA C X, et al., 2018. Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study[J]. Journal of agricultural and food chemistry, 66(11): 2589-2597.
DOI PMID |
[26] |
ZHANG H L, DU W C, PERALTA-VIDEA J R, et al., 2018. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress[J]. Environmental Science & Technology, 52(14): 8016-8026.
DOI URL |
[27] |
ZHANG H L, HUANG M, ZHANG W H, et al., 2020. Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils[J]. Environmental Science & Technology, 54(6): 3334-3342.
DOI URL |
[28] | ZHAO J, LIN M Q, WANG Z Y, et al., 2021. Engineered nanomaterials in the environment: Are they safe?[J]. Critical Reviews in Environmental Science & Technology, 51(14): 1443-1478. |
[29] | ZUVERZA-MENA N, ARMENDARIZ R, PERALTA-VIDEA J R, et al., 2016. Effects of silver nanoparticles on radish sprouts: root growth reduction and modifications in the nutritional value[J]. Frontiers in Plant Science, 7: 90. |
[30] | 蔡斌, 陈永华, 杜露, 等, 2021. 博落回对铅的耐性, 富集及生理响应研究[J]. 农业现代化研究, 42(2): 339-348. |
CAI B, CHEN Y H, DU L, et al., 2021. Investigation on tolerance, accumulation and physiological responses of Macleaya cordata to lead[J]. Research of Agricultural Modernization, 42(2): 339-348. | |
[31] | 付川, 余顺慧, 黄怡民, 等, 2014. 紫花苜蓿对铜胁迫生理响应的傅里叶变换红外光谱法研究[J]. 生态学报, 34(5): 1149-1155. |
FU C, YU S H, HUANG Y M, et al., 2014. Physiological response of Medicago sativa L. to copper stress by FTIR spectroscopy[J]. Acta Ecologica Sinica, 34(5): 1149-1155. | |
[32] | 胡立新, 熊倩, 陈晓雯, 等, 2021. FTIR在环境毒理学研究中的应用[J]. 生态毒理学报, 16(3): 107-114. |
HU L X, XIONG Q, CHEN X W, et al., 2021. Application of fourier transform infrared spectroscopy in environmentl toxicology[J]. Asian Journal of Ecotoxicology, 16(3): 107-114. | |
[33] |
黄德超, 任强, 刘蓉, 等, 2016. 纳米银污染对蚕豆根尖微核率影响及评价研究[J]. 生态环境学报, 25(4): 711-714.
DOI |
HUANG D C, REN Q, LIU R, et al., 2016. Research on the influence and evaluation of nano-silver pollution on the micronucleus rate of the root tip of Vicia faba[J]. Ecology and Environmental Sciences, 25(4): 711-714. | |
[34] | 李欣钰, 林妹兰, 卢飞, 等, 2022. 过量铜在两个柑橘品种幼苗中的分布特征及根细胞壁响应机制[J]. 植物营养与肥料学报, 28(6): 1067-1080. |
LI X Y, LIN M L, LU F, et al., 2022. The distribution pattern of copper and the responses of root cell wall to excessive copper in seedlings of two citrus species[J]. Journal of Plant Nutrition and Fertilizers, 28(6): 1067-1080. | |
[35] | 卢晓佩, 姜存仓, 董肖昌, 等, 2017. 硼胁迫下不同柑橘砧木叶片物质组成及结构的FTIR表征[J]. 光谱学与光谱分析, 37(5): 1380-1385. |
LU X P, GU C C, DONG X C, et al., 2017. FTIR spectroscopic characterization of material composition and structure of leaves of different citrus root stocks under boron stress[J]. Spectroscopy and Spectral Analysis, 37(5): 1380-1385. | |
[36] | 彭小凤, 朱敏, 任洁, 等, 2014. 纳米银的植物毒性研究进展[J]. 生态毒理学报, 9(2): 199-204. |
PENG X F, ZHU M, REN J, et al., 2014. Research advance in phytotoxicity of siver nanoparticles[J]. Asian Journal of Ecotoxicology, 9(2): 199-204. | |
[37] | 王荣, 刘艳丽, 张民, 等, 2015. 纳米银对黑麦草生长特性的影响[J]. 农业环境科学学报, 34(4): 639-645. |
WANG R, LIU Y L, ZHANG M, et al., 2015. Effects of nano-silver on growth characteristics of perennial ryegrass[J]. Journal of Agro-Environment Science, 34(4): 639-645. | |
[38] | 夏镇卿, 司雷勇, 金岩, 等, 2020. 根区增温对玉米幼苗主要代谢物傅里叶红外光谱特性及叶绿素含量的影响[J]. 光谱学与光谱分析, 40(4): 1283-1288. |
XIA Z Q, SI L Y, JIN Y, et al., 2020. Effects of root zone temperature increase on fourier transform infrared spectroscopy content of main metabolites and chlorophyll in maize seedlings[J]. Spectroscopy and Spectral Analysis, 40(4): 1283-1288. | |
[39] |
周慧敏, 李品, 冯兆忠, 等, 2019. 地表臭氧浓度升高与干旱交互作用对杨树非结构性碳水化合物积累和叶根分配的短期影响[J]. 植物生态学报, 43(4): 296-304.
DOI |
ZHOU H M, LI P, FENG Z Z, et al., 2019. Short-term effects of combined elevated ozone and limited irrigation on accumulation and allocation of non-structural carbohydrates in leaves and roots of poplar sapling[J]. Chinese Journal of Plant Ecology, 43(4): 296-304.
DOI URL |
[1] | 陈懂懂, 霍莉莉, 赵亮, 陈昕, 舒敏, 贺福全, 张煜坤, 张莉, 李奇. 青海高寒草地水热因子对土壤微生物生物量碳、氮空间变异的贡献——基于增强回归树模型[J]. 生态环境学报, 2023, 32(7): 1207-1217. |
[2] | 王雪梅, 杨雪峰, 赵枫, 安柏耸, 黄晓宇. 基于机器学习算法的干旱区绿洲地上生物量估算[J]. 生态环境学报, 2023, 32(6): 1007-1015. |
[3] | 陈科屹, 林田苗, 王建军, 何友均, 张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响[J]. 生态环境学报, 2023, 32(6): 1016-1025. |
[4] | 朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006. |
[5] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[6] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[7] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[8] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[9] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[10] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[11] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[12] | 刘桢迪, 宋艳宇, 王宪伟, 谭稳稳, 张豪, 高晋丽, 高思齐, 杜宇. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772. |
[13] | 崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712. |
[14] | 王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349. |
[15] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||