生态环境学报 ›› 2021, Vol. 30 ›› Issue (10): 1999-2009.DOI: 10.16258/j.cnki.1674-5906.2021.10.007
郭彩云1(), 张雷2,3,*(
), 高孝威2,3, 苏艳龙1, 李琳1, 王晓江2,3, 杨九艳1
收稿日期:
2021-06-17
出版日期:
2021-10-18
发布日期:
2021-12-21
通讯作者:
* 张雷(1983年生),男,研究员,博士,主要从事恢复生态学方面研究。E-mail: lkyzhanglei@126.com作者简介:
郭彩云(1996年生),女,硕士研究生,研究方向为植被生态学。E-mail: gcy15960573390@qq.com
基金资助:
GUO Caiyun1(), ZHANG Lei2,3,*(
), GAO Xiaowei2,3, SU Yanlong1, LI Lin1, WANG Xiaojiang2,3, YANG Jiuyan1
Received:
2021-06-17
Online:
2021-10-18
Published:
2021-12-21
摘要:
分析生物多样性、土壤肥力、水源涵养、固碳能力等4种生态系统服务间的权衡与协同关系,从而为大青山植被合理经营提供理论依据。以内蒙古大青山白桦(Betula platyphylla)天然次生林、华北落叶松(Larix principis-rupprechtii)人工林、虎榛子(Ostryopsis davidiana)天然灌丛和天然草地等4种植被类型为研究对象,利用均方根偏差(RMSD)对区域生态系统服务的权衡与协同关系进行了研究,并对各生态系统服务的贡献进行了分析。结果表明,4种植被类型生物多样性为:白桦天然次生林 (2.81)>虎榛子天然灌丛 (1.84)>华北落叶松人工林 (1.80)>天然草地 (1.78);土壤肥力为:白桦天然次生林 (71.14 g∙kg-1)>华北落叶松人工林 (57.01 g∙kg-1)>虎榛子天然灌丛 (52.50 g∙kg-1)>天然草地 (35.58 g∙kg-1);水源涵养为:白桦天然次生林 (618.42 t∙hm-2)>华北落叶松人工林 (603.30 t∙hm-2)>虎榛子天然灌丛 (573.85 t∙hm-2)>天然草地 (561.02 t∙hm-2);固碳能力为:华北落叶松人工林 (468.92 t∙hm-2)>虎榛子天然灌丛 (415.31 t∙hm-2)>白桦天然次生林 (291.97 t∙hm-2)>天然草地 (129.37 t∙hm-2)。4种植被类型生态系统服务之间均属于权衡关系,其中白桦天然次生林的生物多样性分别与水源涵养、土壤肥力和固碳能力呈中等程度的权衡(ERMSD=0.149、0.159、0.145),表现为水源涵养具有较高的收益。华北落叶松人工林的固碳能力与生物多样性、水源涵养和土壤肥力呈较高程度的权衡(ERMSD=0.214、0.183、0.184),表现为固碳能力具有较高的收益。各植被类型的4种生态系统服务存在一定差异,白桦天然次生林的水源涵养能力强于其他生态系统服务,华北落叶松人工林的固碳能力占重要地位。由此可知,适当调整经营措施,提高人工林的生物多样性,同时注重改善天然林的固碳能力,可维持内蒙古大青山森林生态系统服务的平衡发展。
中图分类号:
郭彩云, 张雷, 高孝威, 苏艳龙, 李琳, 王晓江, 杨九艳. 内蒙古大青山4种典型植被类型生态系统服务权衡与协同[J]. 生态环境学报, 2021, 30(10): 1999-2009.
GUO Caiyun, ZHANG Lei, GAO Xiaowei, SU Yanlong, LI Lin, WANG Xiaojiang, YANG Jiuyan. Ecosystem Service Tradeoffs and Synergies of Four Typical Vegetation Types in Daqing Mountain, Inner Mongolia[J]. Ecology and Environment, 2021, 30(10): 1999-2009.
植被类型 Vegetation types | 坡位 Slope position | 坡向 Aspect | 坡度 Slope gradient/ (°) | 郁闭度 (盖度) Canopy density (coverage)/% | 平均树高 (株高) Average tree height (plant height)/m | 平均胸径 (地径) Average DBH (Ground diameter)/ cm | 林下草本植物 Understory herbs |
---|---|---|---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 坡中 Middle-slope | N | 18 | 0.75 | 7.30±2.76 | 5.59±4.42 | 山野豌豆 (Vicia amoena)、地榆、黄囊苔草 (Carex korshinskyi)、 早熟禾 (Poa annua)、菊叶委陵菜 (Potentilla tanacetifolia) 等 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 坡上 Up-slope | N | 12 | 0.80 | 11.06±3.83 | 16.13±5.78 | 黄囊苔草、风毛菊 (Saussurea japonica)、菊叶萎陵菜、早熟禾 (Poa annua)、老鹳草 (Geranium wilfordii) 等 |
虎榛子天然灌丛 Ostryopsis davidiananatural natural shrub forest | 坡中 Middle-slope | WS | 18 | 88 | 50.69±15.56 | 6.51±1.79 | 柴胡 (Radix Bupleuri)、黄囊苔草、野艾蒿 (Artemisia lavandulaefolia) 等 |
天然草地 Natural grassland | 坡中 Middle-slope | E | 15° | 82 | 0.23±19.35 | - | 阿狗 (Stipa grandis)、黄囊苔草、羊草等 |
表1 样地基本概况
Table 1 Basic situation of sampleplots
植被类型 Vegetation types | 坡位 Slope position | 坡向 Aspect | 坡度 Slope gradient/ (°) | 郁闭度 (盖度) Canopy density (coverage)/% | 平均树高 (株高) Average tree height (plant height)/m | 平均胸径 (地径) Average DBH (Ground diameter)/ cm | 林下草本植物 Understory herbs |
---|---|---|---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 坡中 Middle-slope | N | 18 | 0.75 | 7.30±2.76 | 5.59±4.42 | 山野豌豆 (Vicia amoena)、地榆、黄囊苔草 (Carex korshinskyi)、 早熟禾 (Poa annua)、菊叶委陵菜 (Potentilla tanacetifolia) 等 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 坡上 Up-slope | N | 12 | 0.80 | 11.06±3.83 | 16.13±5.78 | 黄囊苔草、风毛菊 (Saussurea japonica)、菊叶萎陵菜、早熟禾 (Poa annua)、老鹳草 (Geranium wilfordii) 等 |
虎榛子天然灌丛 Ostryopsis davidiananatural natural shrub forest | 坡中 Middle-slope | WS | 18 | 88 | 50.69±15.56 | 6.51±1.79 | 柴胡 (Radix Bupleuri)、黄囊苔草、野艾蒿 (Artemisia lavandulaefolia) 等 |
天然草地 Natural grassland | 坡中 Middle-slope | E | 15° | 82 | 0.23±19.35 | - | 阿狗 (Stipa grandis)、黄囊苔草、羊草等 |
植被类型 Vegetation types | 枯落物储量 Litter storage/ (t∙hm-2) | 最大持水量 Maximum water holding capacity/ (t∙hm-2) | 最大持水率 Maximum water holding rate/% |
---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 1.37 | 2.93 | 214.62 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 3.81 | 7.46 | 195.24 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 1.21 | 2.49 | 205.33 |
天然草地 Natural grassland | 0.48 | 0.97 | 203.36 |
表2 不同植被类型枯落物持水能力
Table 2 Water holding capacity of litter in different vegetation types
植被类型 Vegetation types | 枯落物储量 Litter storage/ (t∙hm-2) | 最大持水量 Maximum water holding capacity/ (t∙hm-2) | 最大持水率 Maximum water holding rate/% |
---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 1.37 | 2.93 | 214.62 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 3.81 | 7.46 | 195.24 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 1.21 | 2.49 | 205.33 |
天然草地 Natural grassland | 0.48 | 0.97 | 203.36 |
植被类型 Vegetation types | 容重 Unit weight/ (g∙cm-3) | 总孔隙度Total porosity/% | 毛管孔隙度Capillary porosity/% | 非毛管 孔隙度 Non-capillary porosity/% | 毛管持水量 Capillary water capacity/(t∙hm-2) | 非毛管持水量 Non-capillary water holding capacity/ (t∙hm-2) | 土壤最大持水量 Soil maximum water holding capacity/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 0.953 | 61.52 | 57.33 | 4.18 | 573.32 | 418.36 | 615.49 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 0.91 | 59.58 | 52.62 | 6.97 | 526.16 | 696.62 | 595.84 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 1.083 | 57.14 | 51.87 | 5.27 | 518.68 | 526.83 | 571.36 |
天然草地 Natural grassland | 1.188 | 56.01 | 52.83 | 3.18 | 528.23 | 318.25 | 560.05 |
表3 不同植被类型土壤物理性状及持水量
Table 3 The soil physical properties and soil retention under different vegetation types
植被类型 Vegetation types | 容重 Unit weight/ (g∙cm-3) | 总孔隙度Total porosity/% | 毛管孔隙度Capillary porosity/% | 非毛管 孔隙度 Non-capillary porosity/% | 毛管持水量 Capillary water capacity/(t∙hm-2) | 非毛管持水量 Non-capillary water holding capacity/ (t∙hm-2) | 土壤最大持水量 Soil maximum water holding capacity/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 0.953 | 61.52 | 57.33 | 4.18 | 573.32 | 418.36 | 615.49 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 0.91 | 59.58 | 52.62 | 6.97 | 526.16 | 696.62 | 595.84 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 1.083 | 57.14 | 51.87 | 5.27 | 518.68 | 526.83 | 571.36 |
天然草地 Natural grassland | 1.188 | 56.01 | 52.83 | 3.18 | 528.23 | 318.25 | 560.05 |
植被类型 Vegetation types | 枯落物最大持水量 Maximum water holding capacity of litter/(t∙hm-2) | 土壤最大持水量 Soil maximum water holding capacity/(t∙hm-2) | 水源涵养 water conservation/ (t∙hm-2) |
---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 2.93 | 615.49 | 618.42 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 7.46 | 595.84 | 603.30 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 2.49 | 571.36 | 573.85 |
天然草地 Natural grassland | 0.97 | 560.05 | 561.02 |
表4 不同植被类型水源涵养
Table 4 Water conservationof different vegetation types
植被类型 Vegetation types | 枯落物最大持水量 Maximum water holding capacity of litter/(t∙hm-2) | 土壤最大持水量 Soil maximum water holding capacity/(t∙hm-2) | 水源涵养 water conservation/ (t∙hm-2) |
---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 2.93 | 615.49 | 618.42 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 7.46 | 595.84 | 603.30 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | 2.49 | 571.36 | 573.85 |
天然草地 Natural grassland | 0.97 | 560.05 | 561.02 |
植被类型 Vegetation types | 乔木层平均地上 部分碳储量 Average aboveground carbon storage in tree layer/(t∙hm-2) | 灌木层平均地上 部分碳储量 Average aboveground carbon storage in shrub layer/(t∙hm-2) | 草本层平均地上 部分碳储量 Average aboveground carbon storage in herb layer/(t∙hm-2) | 总地上部分碳储量Total aboveground carbon storage/ (t∙hm-2) |
---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 117.89 | 122.37 | 51.71 | 291.97 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 450.40 | — | 18.52 | 468.92 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | — | 366.42 | 48.89 | 415.31 |
天然草地 Natural grassland | — | — | 129.37 | 129.37 |
表5 不同植被类型固碳能力
Table 5 Carbon sequestration capacity of different vegetation types
植被类型 Vegetation types | 乔木层平均地上 部分碳储量 Average aboveground carbon storage in tree layer/(t∙hm-2) | 灌木层平均地上 部分碳储量 Average aboveground carbon storage in shrub layer/(t∙hm-2) | 草本层平均地上 部分碳储量 Average aboveground carbon storage in herb layer/(t∙hm-2) | 总地上部分碳储量Total aboveground carbon storage/ (t∙hm-2) |
---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 117.89 | 122.37 | 51.71 | 291.97 |
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 450.40 | — | 18.52 | 468.92 |
虎榛子天然灌丛 Ostryopsis davidiana natural shrub forest | — | 366.42 | 48.89 | 415.31 |
天然草地 Natural grassland | — | — | 129.37 | 129.37 |
植被类型 Vegetation types | 生态系统服务 Ecosystem services | 水源涵养 Water conservation | 土壤肥力 Soil fertility | 固碳能力 Carbon sequestration capacity |
---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 生物多样性 Biodiversity | 0.149±0.084 | 0.159±0.104 | 0.145±0.091 |
水源涵养 Water conservation | 0.237±0.065 | 0.199±0.092 | ||
土壤肥力 Soil fertility | 0.187±0.079 | |||
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 生物多样性 Biodiversity | 0.153±0.087 | 0.139±0.092 | 0.214±0.048 |
水源涵养 Water conservation | 0.232±0.062 | 0.183±0.081 | ||
土壤肥力 Soil fertility | 0.184±0.012 | |||
虎榛子天然灌丛Ostryopsis davidiana natural shrub forest | 生物多样性 Biodiversity | 0.175±0.080 | 0.121±0.077 | 0.124±0.038 |
水源涵养 Water conservation | 0.285±0.097 | 0.208±0.092 | ||
土壤肥力 Soil fertility | 0.086±0.073 | |||
天然草地 Natural grassland | 生物多样性 Biodiversity | 0.173±0.081 | 0.178±0.089 | 0.182±0.064 |
水源涵养 Water conservation | 0.131±0.089 | 0.143±0.085 | ||
土壤肥力 Soil fertility | 0.156±0.069 |
表6 4种植被类型生态系统服务权衡均方根偏差
Table 6 Root mean square deviation values of ecosystem services for four vegetation types
植被类型 Vegetation types | 生态系统服务 Ecosystem services | 水源涵养 Water conservation | 土壤肥力 Soil fertility | 固碳能力 Carbon sequestration capacity |
---|---|---|---|---|
白桦天然次生林 Betula platyphylla natural secondary forest | 生物多样性 Biodiversity | 0.149±0.084 | 0.159±0.104 | 0.145±0.091 |
水源涵养 Water conservation | 0.237±0.065 | 0.199±0.092 | ||
土壤肥力 Soil fertility | 0.187±0.079 | |||
华北落叶松人工林 Larix principis-rupprechtii plantation forest | 生物多样性 Biodiversity | 0.153±0.087 | 0.139±0.092 | 0.214±0.048 |
水源涵养 Water conservation | 0.232±0.062 | 0.183±0.081 | ||
土壤肥力 Soil fertility | 0.184±0.012 | |||
虎榛子天然灌丛Ostryopsis davidiana natural shrub forest | 生物多样性 Biodiversity | 0.175±0.080 | 0.121±0.077 | 0.124±0.038 |
水源涵养 Water conservation | 0.285±0.097 | 0.208±0.092 | ||
土壤肥力 Soil fertility | 0.086±0.073 | |||
天然草地 Natural grassland | 生物多样性 Biodiversity | 0.173±0.081 | 0.178±0.089 | 0.182±0.064 |
水源涵养 Water conservation | 0.131±0.089 | 0.143±0.085 | ||
土壤肥力 Soil fertility | 0.156±0.069 |
[1] |
BRADFORD J B, D'AMATO A W, 2012. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 10(4):210-216.
DOI URL |
[2] |
CAO S, LI C, SHANKMAN D, et al., 2011. Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration[J]. Earth Science Reviews, 104(4):240-245.
DOI URL |
[3] |
HALL J M, HOLT T V, DANIELS A E, et al., 2012. Trade-offs between tree cover, carbon storage and floristic biodiversity in reforesting landscapes[J]. Landscape Ecology, 27(8):1135-1147.
DOI URL |
[4] |
HEIN L, KOPPEN K V, GROOT R S D, et al., 2006. Spatial scales, stakeholders and the valuation of ecosystem services[J]. Ecological Economics, 57(2):209-228.
DOI URL |
[5] | NELSON H P, DEVENISH-NELSON E S, RUSK B L, et al., 2020. A review of tropical dry forest ecosystem service research in the Caribbean-gaps and policy-implications[J]. Ecosystem Services, 43(5):2212-0416. |
[6] |
PARKES M, 2006. Personal commentaries on “ecosystems and human well-being: Health synjournal—a report of the millennium ecosystem assessment”[J]. Ecohealth, 3(3):136-140.
DOI URL |
[7] |
ROCES-DIAZ J V, VAYREDA J, DE CACERES M, et al., 2021. Temporal changes in Mediterranean forest ecosystem services are driven by stand development, rather than by climate-related disturbances[J]. Forest Ecology and Management, DOI: 10.1016/j.foreco.2020.118623.
DOI |
[8] | STEUR G, VERBURG R W, WASSEN M J, et al., 2020. Shedding light on relationships between plant diversity and tropical forest ecosystem services across spatial scales and plot sizes[J]. Ecosystem Services, 43:2212-0416. |
[9] |
YANG X N, ZHOU Z X, LI J, et al., 2016. Trade-offs between carbon sequestration, soil retention and water yield in the Guanzhong-Tianshui economic region of China[J]. Journal of Geographical Sciences, 26(10):1449-1462.
DOI URL |
[10] | 白育英, 郭永盛, 王晶莹, 2009. 内蒙古大青山森林植物群落与碳储量的调查研究[J]. 内蒙古林业科技, 35(4):25-28. |
BAI Y Y, GUO Y S, WANG J Y, 2009. Investigation on forest plant community and carbon storage in Daqing Mountains, Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science& Technology, 35(4):25-28. | |
[11] | 曹祺文, 卫晓梅, 吴健生, 2016. 生态系统服务权衡与协同研究进展[J]. 生态学杂志, 35(11):3102-3111. |
CAO Q W, WEI X M, WU J S, 2016. A review on the tradeoffs and synergies among ecosystem services[J]. Chinese Journal of Ecology, 35(11):3102-3111. | |
[12] | 陈晓燕, 田有亮, 包志刚, 等, 2009. 大青山主要植被类型土壤物理特性的研究[J]. 水土保持通报, 29(5):30-34. |
CHENG X Y, TIAN Y L, BAO Z G, et al., 2009. Soil physical characteristics of main vegetation types in Daqing Mountains[J]. Bulletin of Soil and Water Conservation, 29(5):30-34. | |
[13] | 邓楚雄, 刘俊宇, 李忠武, 等, 2019. 近20年国内外生态系统服务研究回顾与解析[J]. 生态环境学报, 28(10):2119-2128. |
DENG C X, LIU J Y, LI Z W, et al., 2019. Review and analysis of ecosystem services research between domestic and foreign in recent 20 years[J]. Ecology and Environmental Sciences, 28(10):2119-2128. | |
[14] |
戴尔阜, 王晓莉, 朱建佳, 等, 2016. 生态系统服务权衡: 方法, 模型与研究框架[J]. 地理研究, 35(6):1005-1016.
DOI |
DAI E F, WANG X L, ZHU J J, et al., 2016. Methods, tools and research framework of ecosystem service trade-offs[J]. Geographical Research, 35(6):1005-1016. | |
[15] | 代海燕, 张秋良, 张翠霞, 等, 2011. 内蒙古大青山主要植被类型综合生态效益的评价[J]. 西北农林科技大学学报 (自然科学版), 39(5):98-102. |
DAI H Y, ZHANG Q L, ZHANG C X, et al., 2011. Evaluation of the ecological benefits of main forest type in Inner Mongolian Daqing mountain[J]. Journal of Northwest A&F University (Natural Science Edition), 39(5):98-102. | |
[16] | 郭曼, 郑粉莉, 和文祥, 等, 2010. 黄土丘陵区不同退耕年限植被多样性变化及其与土壤养分和酶活性的关系[J]. 土壤学报, 47(5):979-986. |
GUO M, ZHENG F L, HE W X, et al., 2010. Variation of vegetation diversity and its relationship with soil nutrient and enzyme activity in lands of different abandoned years in the loess hilly-gully region[J]. Acta Pedologica Sinica, 47(5):979-986. | |
[17] | 郭永盛, 白玉英, 杨宏伟, 等, 2010. 内蒙古大青山典型植被水源涵养功能分析[J]. 林业资源管理 (3):75-78. |
GUO Y S, BAI Y Y, YANG H W, et al., 2021. Analysis on water conservation function of typical vegetation of Daqing Mountains in Inner Mongolia Forest[J]. Resources Management (3):75-78. | |
[18] | 郭茹茹, 杨磊, 李宗善, 等, 2020. 半干旱黄土高原苜蓿天然天然天然草地撂荒过程土壤水分变化特征[J]. 生态学报, 40(23):247-255. |
GUO R R, YANG L, LI Z S, et al., 2020. Characteristics of soil moisture variation during the abandonment process of Medicago sative grassland in the semi-arid the Loess Plateau[J]. Acta Phytoecologica Sinica, 40(23):247-255. | |
[19] | 黄从德, 张健, 杨万勤, 等, 2008. 四川人工林生态系统碳储量特征[J]. 应用生态学报, 19(8):10-16. |
HUANG C D, ZHANG J, YANG W Q, et al., 2008. Characteristics of carbon stock in artificial forest ecosystem in Sichuan Province of China[J]. Chinese Journal of Applied Ecology, 19(8):10-16. | |
[20] | 贾晓燕, 王晓江, 刘玉军, 等, 2013. 水源涵养服务综合评价指标及其在干旱、半干旱区的研究进展[J]. 内蒙古林业科技, 39(1):49-53. |
JIA X Y, WANG X J, LIU Y J, et al., 2013. Comprehensive evaluation indexes of water conservation service and its research progress in arid and semiarid region[J]. Inner Mongolia Forestry Science and Technology, 39(1):49-53. | |
[21] | 贾晓燕, 王晓江, 牛建明, 等, 2014. 赛罕乌拉国家级自然保护区不同植被类型水源涵养服务特征[J]. 干旱区研究, 31(3):495-501. |
JIA X Y, WANG X J, NIU J M, et al., 2014. Water conservation services of different vegetation types in the Saihan Ulla National Nature Reserve[J]. Arid Zone Research, 31(3):495-501. | |
[22] | 李德生, 张萍, 张水龙, 等, 2003. 黄前库区流域植被水源涵养功能及植被类型选择的研究[J]. 水土保持学报, 17(4):128-131. |
LI D S, ZHANG P, ZHANG S L, et al., 2003. Study on water resource conservation function of vegetation and its selection in Huangqian Reservoir Area[J]. Journal of Soil and Water Conservation, 17(4):128-131. | |
[23] | 兰洁, 雷相东, 张毓涛, 2019. 天山中部雪岭云杉林多功能权衡与协同关系[J]. 林业科学, 55(11):9-18. |
LAN J, LEI X D, ZHANG Y T, 2019. Analysis on trade-offs and synergies of multiple functions of picea schrenkiana forests in Central Tianshan[J]. Mountains.Scientia Silvae Sinicae, 55(11):9-18. | |
[24] | 吕圣吉, 2012. 杉木-木荷混交林土壤肥力与水源涵养功能的研究[J]. 安徽农业科学, 40(28):13844-13846. |
LV S J, 2012. Study on the Soil Fertility and Water Conservation Functions of Cunninghamia lanceolata and Schima superba Mixed Forests[J]. Journal of Anhui Agricultural Sciences, 40(28):13844-13846. | |
[25] | 李双喜, 朱建军, 张银龙, 等, 2009. 人工马褂木林下草本植物物种多样性与林分郁闭度的关系[J]. 生态与农村环境学报, 25(2):20-24. |
LI S X, ZHU J J, ZHANG Y L, et al., 2009. Diversity of Understory Herbaceous Species and Canopy Density of Liriodendron chinense Stand[J]. Journal of Ecology and Rural Environment, 25(2):20-24. | |
[26] | 孟庆繁, 2006. 人工林在生物多样性保护中的作用[J]. 世界林业研究, 19(5):1-6. |
MENG Q F, 2006. Discussion on effects of plantation on biodiversity conservation[J]. World Forestry Research, 19(5):1-6. | |
[27] | 孙艺杰, 任志远, 郝梦雅, 等, 2019. 黄土高原生态系统服务权衡与协同时空变化及影响因素——以延安市为例[J]. 生态学报, 39(10):3443-3454. |
SUN Y J, REN Z Y, HAO M Y, et al., 2019. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yanan, Loess Plateau[J]. Acta Phytoecologica Sinica, 39(10):3443-3454. | |
[28] | 王云霓, 王晓江, 高孝威, 等, 2018. 内蒙古大青山典型森林植被水文功能研究[J]. 干旱区资源与环境, 32(10):191-196. |
WANG Y N, WANG X J, GAO X W, et al., 2018. Study on hydrological function of typical forest vegetations on Daqing Mountains of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 32(10):191-196. | |
[29] | 王冬至, 张秋良, 张冬燕, 等, 2012. 大青山不同植被类型保育土壤能力[J]. 东北林业大学学报, 40(5):22-24. |
WANG D Z, ZHANG Q L, ZHANG D Y, et al., 2012. Soil Conservation Capacity of Different Types of Vegetations in Daqing Mountain, Inner Mongolia[J]. Journal of Northeast Forestry University, 40(5):22-24. | |
[30] | 王娜, 楚鑫磊, 勾蒙蒙, 等, 2021. 三峡库区森林生态系统服务权衡与协同分析[J]. 生态环境学报, 30(3):475-484. |
WANG N, CHU X L, GOU M M, et al., 2021. Tradeoffs and synergies analysis on forest ecosystem services in the Three Gorges Reservoir Area[J]. Ecology and Environmental Sciences, 30(3):475-484. | |
[31] | 袁坤宇, 曹扬, 杨洁, 等, 2020. 黄土残塬沟壑区不同林龄与坡向人工刺槐林生态系统服务协同关系[J]. 水土保持通报, 40(5):103-111. |
YUAN K Y, CAO Y, YANG J, et al., 2020. Synergy relation between ecosystem services of robinia pseuoacacia plantation with different age and slope aspects in Residual Gully Region of Loess Plateau[J]. Bulletin of Soil and Water Conservation, 40(5):103-111. | |
[32] | 杨潇, 2013. 内蒙古大青山主要森林植被生产力与碳储量研究[D]. 呼和浩特: 内蒙古农业大学. |
YANG X, 2013. ProductNity and carbon reserves study of main forest vegetation in Daqingshan Mountain Inner [D]. Inner Mongolia Agricultural University. | |
[33] |
杨晓楠, 李晶, 秦克玉, 等, 2015. 关中—天水经济区生态系统服务的权衡关系[J]. 地理学报, 70(11):1762-1773.
DOI |
YANG X N, LI J, QING K Y, et al., 2015. Trade-offs between ecosystem services in Guanzhong-Tianshui Economic Region[J]. Acta Geographica Sinica, 70(11):1762-1773. | |
[34] |
朱建佳, 戴尔阜, 郑度, 等, 2018. 采伐影响下人工林木材生产与固碳功能权衡特征——以湖南会同森林生态实验站为例[J]. 地理学报, 73(1):152-163.
DOI |
ZHU J J, DAI E F, ZHENG D, et al., 2018. Characteristic of tradeoffs between timber production and carbon storage for plantation under harvesting impact: A case study of Huitong National Research Station of forest ecosystem[J]. Acta Geographica Sinica, 73(1):152-163. | |
[35] | 赵丽, 王建国, 车明中, 等, 2014. 内蒙古扎兰屯市典型森林枯落物、土壤水源涵养功能研究[J]. 干旱区资源与环境, 28(5):91-96. |
ZHAO L, WANG J G, CHE M Z, et al., 2014. Forest litter,soil characteristics and water conservation function of typical forest in Zhalantun, Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 28(5):91-96. | |
[36] | 曾伟生, 程志楚, 李力球, 等, 2016a. 中华人民共和国林业行业标准《立木生物量模型及碳计量参数——桦树》: LY/T 2659—2016 [S]. 北京: 中国标准出版社. |
ZENG W S, CHENG Z C, LI L Q, et al., 2016. Forestry industry standards of the People's Republic of China《Tree Biomass Models and Related Parameters to Carbon Accounting for Betula》: LY/T 2659—2016 [S]. Beijing: China Standards Press. | |
[37] | 曾伟生, 李立球, 魏建祥, 等, 2016b. 中华人民共和国林业行业标准《立木生物量模型及碳计量参数——落叶松》: LY/T 2654—2016 [S]. 北京: 中国标准出版社. |
ZENG W S, LI L Q, WEI J X, et al., 2016. Forestry industry standards of the People's Republic of China《Tree Biomass Models and Related Parameters to Carbon Accounting for Larix》: LY/T 2654—2016 [S]. Beijing: China Standards Press. | |
[38] | 周玉荣, 于振良, 赵士洞, 2000. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 24(5):518-522. |
ZHOU Y R, YU Z L, ZHAO S D, 2000. Carbon storage and budget of major Chinese forest types[J]. Acta Phytoecologica Sinica, 24(5):518-522. |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 许静, 廖星凯, 甘崎旭, 周茅先. 基于MSPA与电路理论的黄河流域甘肃段生态安全格局构建[J]. 生态环境学报, 2023, 32(4): 805-813. |
[3] | 张平江, 党国锋. 基于MCR模型与蚁群算法的洮河流域生态安全格局构建[J]. 生态环境学报, 2023, 32(3): 481-491. |
[4] | 朱锦维, 柯新利, 何利杰, 周婷, 王青, 任妍钰. 基于价值链理论的生态产品价值实现机制理论解析[J]. 生态环境学报, 2023, 32(2): 421-428. |
[5] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[6] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[7] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
[8] | 刘香华, 王秀明, 刘谞承, 张音波, 刘飘. 基于外溢生态系统服务价值的广东省生态补偿机制研究[J]. 生态环境学报, 2022, 31(5): 1024-1031. |
[9] | 相恒星, 张健, 王宗明, 毛德华. 松嫩平原生态系统服务供需研究[J]. 生态环境学报, 2021, 30(8): 1769-1776. |
[10] | 齐静, 邓伟, 周渝, 刘婷, 罗旭. 重庆市生态保护红线成效评估方法与应用[J]. 生态环境学报, 2021, 30(7): 1532-1540. |
[11] | 周笛轩, 林永标, 汪雁佳, 刘占锋, 周丽霞. 南亚热带不同人工林生态系统服务功能评估[J]. 生态环境学报, 2021, 30(5): 907-919. |
[12] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||