生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 697-705.DOI: 10.16258/j.cnki.1674-5906.2023.04.007
收稿日期:
2023-02-02
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*陈琳,教授,E-mail: yrcti@163.com作者简介:
李建辉(1980年生),男,副教授,硕士,主要从事资源环境与GIS应用研究。E-mail: 280439690@qq.com
基金资助:
LI Jianhui(), DANG Zheng, CHEN Lin(
)
Received:
2023-02-02
Online:
2023-04-18
Published:
2023-07-12
摘要:
黄河几字弯都市圈是黄河流域“一轴两区五极”发展动力格局的重要一极,揭示区域PM2.5的时空特征和驱动力,对实施区域联防联控和促进环境的健康发展具有重要意义。基于2015-2021年PM2.5污染物数据,运用地理空间分析方法分析黄河几字弯都市圈PM2.5的时空演变特征,并借助地理探测器工具探究其时空特征的影响因素。结果表明,(1)在时间上,2015-2021年黄河几字弯都市圈PM2.5年均质量浓度整体呈下降趋势,由48 μg?m?3降至27 μg?m?3,降幅达44%;月均质量浓度呈“U”型变化特征,1月(61 μg?m?3)最高,8月(25 μg?m?3)最低;季均质量浓度表现为冬季 (55 μg?m?3)>秋季 (38 μg?m?3)>春季 (34 μg?m?3)>夏季 (27 μg?m?3)。(2)在空间上,2015-2021年PM2.5年均浓度整体呈高浓度区减少的空间格局,由14个城市缩减至2个城市;月均浓度空间分布差异显著,秋冬季中11月、12月、1月和2月的高浓度区域分布范围广,春夏季中4-8月的低浓度区域分布范围大。(3)在关联上,2015-2021年PM2.5年均浓度呈显著的空间集聚分布特征,热点区逐渐收缩,缩减率超过50%,冷点区逐渐扩散,扩大1.6倍,空气质量优良范围增加显著。(4)社会因素的q值大小为第二产业占比 (0.790)>城镇化率 (0.699)>人口密度 (0.590)>地区生产总值 (0.566),对PM2.5浓度的影响程度较大,自然因素中植被指数(0.199)和年均降水量(0.127)的影响程度较小;各因子交互作用后具有双因子增强和非线性增强的协同效应,第二产业占比与其他因子交互作用力达到90%以上。研究结果可为黄河几字弯都市圈制定针对性的PM2.5综合治理政策提供参考。
中图分类号:
李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705.
LI Jianhui, DANG Zheng, CHEN Lin. Spatial-temporal Characteristics of PM2.5 and Its Influencing Factors in the Yellow River Jiziwan Metropolitan Area[J]. Ecology and Environment, 2023, 32(4): 697-705.
年份 | Global Moran’s I | z得分 | P值 |
---|---|---|---|
2015 | 0.605 | 11.138 | 0.000 |
2016 | 0.665 | 12.251 | 0.000 |
2017 | 0.679 | 12.467 | 0.000 |
2018 | 0.690 | 12.704 | 0.000 |
2019 | 0.646 | 11.911 | 0.000 |
2020 | 0.606 | 11.165 | 0.000 |
2021 | 0.713 | 13.182 | 0.000 |
表1 2015—2021年PM2.5年均浓度莫兰指数
Table 1 Moran index of PM2.5 annual average concentration from 2015 to 2021
年份 | Global Moran’s I | z得分 | P值 |
---|---|---|---|
2015 | 0.605 | 11.138 | 0.000 |
2016 | 0.665 | 12.251 | 0.000 |
2017 | 0.679 | 12.467 | 0.000 |
2018 | 0.690 | 12.704 | 0.000 |
2019 | 0.646 | 11.911 | 0.000 |
2020 | 0.606 | 11.165 | 0.000 |
2021 | 0.713 | 13.182 | 0.000 |
因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
q值 | 0.461 | 0.463 | 0.127 | 0.199 | 0.590 | 0.699 | 0.566 | 0.790 |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表2 PM2.5影响因子探测结果
Table 2 Detection results of PM2.5 impact factors
因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
q值 | 0.461 | 0.463 | 0.127 | 0.199 | 0.590 | 0.699 | 0.566 | 0.790 |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
X1 | 0.461 | |||||||
X2 | 0.883* | 0.463 | ||||||
X3 | 0.890^ | 0.861^ | 0.127 | |||||
X4 | 0.773^ | 0.993^ | 0.391^ | 0.199 | ||||
X5 | 0.821* | 0.989* | 0.878^ | 0.774* | 0.590 | |||
X6 | 0.954* | 0.989* | 0.882^ | 0.822* | 0.890* | 0.699 | ||
X7 | 0.936* | 0.896* | 0.789^ | 0.859^ | 0.736* | 0.858* | 0.566 | |
X8 | 0.993* | 0.988* | 0.977^ | 0.903* | 0.921* | 0.900* | 0.910* | 0.790 |
表3 PM2.5影响因子交互探测结果
Table 3 Interactive detection results of PM2.5 impact factors
因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
X1 | 0.461 | |||||||
X2 | 0.883* | 0.463 | ||||||
X3 | 0.890^ | 0.861^ | 0.127 | |||||
X4 | 0.773^ | 0.993^ | 0.391^ | 0.199 | ||||
X5 | 0.821* | 0.989* | 0.878^ | 0.774* | 0.590 | |||
X6 | 0.954* | 0.989* | 0.882^ | 0.822* | 0.890* | 0.699 | ||
X7 | 0.936* | 0.896* | 0.789^ | 0.859^ | 0.736* | 0.858* | 0.566 | |
X8 | 0.993* | 0.988* | 0.977^ | 0.903* | 0.921* | 0.900* | 0.910* | 0.790 |
[1] | CESARI D, DONATEO A, CONTE M, et al., 2016. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment[J]. Atmospheric Research, 174: 106-119. |
[2] |
FENG S L, GAO D, LIAO F, et al., 2016. The health effects of ambient PM2.5 and potential mechanisms[J]. Ecotoxicology and Environmental Safety, 128: 67-74.
DOI URL |
[3] |
GROSSMAN G M, KRUEGER A B, 1995. Economic growth and the environment[J]. The Quarterly Journal of Economics, 110(2): 353-377.
DOI URL |
[4] |
LI X, WU C F, MEADOWS M E, et al., 2021. Factors Underlying Spatiotemporal Variations in Atmospheric PM2.5 Concentrations in Zhejiang Province, China[J]. Remote Sensing, 13(15): 3011.
DOI URL |
[5] |
PING L Y, WANG Y, LU Y L, et al., 2023. Tracing the sources of PM2.5-related health burden in China[J]. Environmental Pollution, 327: 121544.
DOI URL |
[6] |
QI G Z, WEI W D, WANG Z B, et al., 2022. The spatial-temporal evolution mechanism of PM2.5 concentration based on China’s climate zoning[J]. Journal of Environmental Management, 325(Part B): 116671.
DOI URL |
[7] |
RUAN F F, ZENG X G, 2023. Health Effects of PM2.5 Exposure in China from 2004 to 2018: A Systematic Review and Meta-Analysis[J]. Sustainability, 15(1): 224.
DOI URL |
[8] |
SHI G Q, LIU J X, ZHONG X N, 2021. Spatial and temporal variations of PM2.5 concentrations in Chinese cities during 2015-2019[J]. International journal of Environmental Health Research, 32(12): 2695-2707.
DOI URL |
[9] |
TUHETI A, DENG S X, LI J H, et al., 2023. Spatiotemporal variations and the driving factors of PM2.5 in Xi’an, China between 2004 and 2018[J]. Ecological Indicators, 146: 109802.
DOI URL |
[10] |
WANG Z B, LIANG L W, WANG X J, 2021. Spatiotemporal evolution of PM2.5 concentrations in urban agglomerations of China[J]. Journal of Geographical Sciences, 31(6): 878-898.
DOI |
[11] |
WANG W G, WANG Y Y, 2023. Regional differences, dynamic evolution and driving factors analysis of PM2.5 in the Yangtze River Economic Belt[J]. Sustainability, 15(4): 3381.
DOI URL |
[12] |
YAN J W, TAO F, ZHANG S Q, et al., 2021. Spatiotemporal Distribution Characteristics and Driving Forces of PM2.5 in Three Urban Agglomerations of the Yangtze River Economic Belt[J]. International Journal of Environmental Research and Public Health, 18: 2222.
DOI URL |
[13] | YANG D D, ZHAO S Y, ZHANG H, et al., 2017. Simulation of global distribution of temporal and spatial variation of PM2.5 concentration in the future[J]. China Environmental Ence, 9(1): 1-10. |
[14] |
YANG L, QIN C Y, LI K, et al., 2023. Quantifying the Spatiotemporal Heterogeneity of PM2.5 Pollution and Its Determinants in 273 Cities in China[J]. International Journal of Environmental Research and Public Health, 20(2): 1183.
DOI URL |
[15] |
YUE H, DUAN L, LU M S, et al., 2022. Modeling the determinants of PM2.5 in China considering the localized spatiotemporal effects: A multiscale geographically weighted regression method[J]. Atmosphere, 13(4): 627.
DOI URL |
[16] |
ZHANG P H, CHENG H M, JIANG Z W, et al., 2022. How sensitive morphological parameters influence on the PM2.5 diffusion: An empirical study of two neighborhoods in central Beijing[J]. Atmosphere, 13(6): 921.
DOI URL |
[17] | 曹惠玲, 李玉铭, 晏嘉伟, 等, 2022. 基于修正Gaussian Puff模型的飞机LTO循环PM2.5排放及扩散特性研究[J]. 环境科学学报, 42(3): 352-361. |
CAO H L, LI Y M, YAN J W, et al., 2022. Research on PM2.5 emission and diffusion characteristics of aircraft LTO cycle based on modified Gaussian Puff model[J]. Acta Scientiae Circumstantiae, 42(3): 352-361. | |
[18] |
杜彦彦, 黄青, 2019. 河南省 PM2.5时空分布特征及其与植被覆盖度的关系[J]. 生态环境学报, 28(11): 2257-2265.
DOI |
DU Y Y, HUANG Q, 2019. Spatial and temporal variation characteristics of PM2.5 and its relationship with vegetation fraction in Henan Province[J]. Ecology and Environmental Sciences, 28(11): 2257-2265. | |
[19] |
耿佳辰, 沈石, 程昌秀, 2022. “十三五” 时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 24(6): 1163-1175.
DOI |
GENG J C, SHEN S, CHENG C X, 2022. Spatio-temporal evolution and the multi-scale socio-economic influencing mechanism of PM2.5 in the Yellow River Basin during the China’s 13th Five-Year Plan[J]. Journal of Geo-information Science, 24(6): 1163-1175. | |
[20] |
郭雯雯, 陈永金, 刘阁, 等, 2020. 2016-2019年长江中游城市群空气质量时空变化特征及影响因素分析[J]. 生态环境学报, 29(10): 2034-2044.
DOI URL |
GUO W W, CHEN Y J, LIU G, et al., 2020. Analysis on the characteristics and influencing factors of air quality of urban agglomeration in the middle reaches of the Yangtze River in 2016 to 2019[J]. Ecology and Environmental Sciences, 29(10): 2034-2044. | |
[21] | 环境保护部, 国家质量监督检验检疫总局, 2012. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境出版集团: 1-6. |
Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine, 2012. Ambient air qualiy standards: GB 3095-2012[S]. Beijing: China Environment Publishing Group: 1-6. | |
[22] | 李光勤, 秦佳虹, 何仁伟, 2018. 中国大气PM2.5污染演变及其影响因素[J]. 经济地理, 38(8): 11-18. |
LI G Q, QIN J H, HE R W, 2018. Spatial-Temporal Evolution and Influencing Factors of China’s PM2.5 Pollution[J]. Economic Geography, 38(8): 11-18. | |
[23] |
李衡, 韩燕, 2022. 黄河流域PM2.5时空演变特征及其影响因素分析[J]. 世界地理研究, 31(1): 130-141.
DOI |
LI H, HAN Y, 2022. Analysis on the spatial-temporal evolution characteristics of PM2.5 and its influencing factors in the Yellow River Basin[J]. World Regional Studies, 31(1): 130-141. | |
[24] | 李玲蔚, 白永平, 杨雪荻, 等, 2022. 黄河几字湾地区可持续发展的动态演变及区域差异[J]. 干旱区地理, 45(2): 639-649. |
LI L W, BAI Y P, YANG X D, et al., 2022. Dynamic evolution and regional differences of sustainable development in Jiziwan of the Yellow River[J]. Arid Area Geography, 45(2): 639-649. | |
[25] | 李宣, 张华, 闫冬, 等, 2021. 山西省PM2.5污染时空演变特征及其影响因素分析[J]. 环境科学与技术, 44(9): 174-182. |
LI X, ZHANG H, YAN D, et al., 2021. Temporal-spatial evolution of PM2.5 and driving factors in Shanxi Province[J]. Environmental Science & Technology, 44(9): 174-182. | |
[26] | 刘佳, 张洪香, 2018. 中国沿海地区旅游消费潜力测度与评价[J]. 地理与地理信息科学, 34(2): 94-100. |
LIU J, ZHANG H X, 2018. Measurement and evaluation of tourism consumption potential in China’s coastal areas[J]. Geography and Geo-Information Science, 34(2): 94-100. | |
[27] |
齐梦溪, 赵文慧, 孙爽, 等, 2019. 2014-2016年北京市PM2.5污染时空分布特征[J]. 生态环境学报, 28(1): 97-105.
DOI |
QI M X, ZHAO W H, SUN S, et al., 2019. Temporal and spatial distribution characteristics of PM2.5 pollution in Beijing from 2014 to 2016[J]. Ecology and Environmental Sciences, 28(1): 97-105. | |
[28] | 申婷, 闫庆武, 李飞雪, 2022. 晋陕蒙地区PM2.5遥感反演与时空分布研究[J]. 干旱区资源与环境, 36(2): 99-104. |
SHEN T, YAN Q W, LI F X, 2022. Remote sensing retrieval of PM2.5 concentration in Shanxi - Shaanxi Inner Mongolia region and its temporal and spatial distribution[J]. Journal of Arid Land Resources and Environment, 36(2): 99-104. | |
[29] |
石慧斌, 黄艺, 程馨, 等, 2021. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 30(7): 1420-1427.
DOI URL |
SHI H B, HUANG Y, CHENG X, et al., 2021. Pollution characteristics and sources of carbonaceous components in PM2.5 during winter in Chengdu[J]. Ecology and Environmental Sciences, 30(7): 1420-1427. | |
[30] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[31] | 王丽丽, 刘笑杰, 李丁, 等, 2022. 黄河流域PM2.5时空特征及驱动因素[J]. 兰州大学学报 (自然科学版), 58(4): 427-435, 442. |
WANG L L, LIU X J, LI D, et al., 2022. Spatial-temporal characteristics and drivers of PM2.5 in the Yellow River Basin[J]. Journal of Lanzhou University (Natural Sciences), 58(4): 427-435, 442. | |
[32] | 王妘涛, 张强, 温肖宇, 等, 2022. 运城市PM2.5时空分布特征和潜在源区季节分析[J]. 环境科学, 43(1): 74-84. |
WANG Y T, ZHANG Q, WEN X Y, et al., 2022. Spatiotemporal distribution and seasonal characteristics of regional transport of PM2.5 in Yuncheng City[J]. Environmental Science, 43(1): 74-84. | |
[33] | 魏静宜, 2022. 黄河 “几” 字弯都市圈绿色发展水平及其分异机制[D]. 银川: 宁夏大学. |
WEI J Y, 2022. Green development level and differentiation mechanism of Jiziwan metropolitan area of the Yellow River[D]. Yinchuan: Ningxia University. | |
[34] | 魏向前, 2022. 黄河 “几” 字弯都市圈协同治理的动因、约束与前瞻[J]. 北方民族大学学报 (1): 152-160. |
WEI X Q, 2022. Motivation, restriction and prospect of coordinated governance of Jiziwan metropolitan area of the Yellow River[J]. Journal of North Minzu University (1): 152-160. | |
[35] |
魏小锋, 韩红, 闫学军, 等, 2022. 基于卫星遥感与CMB模型的济南市冬季重污染过程PM2.5溯源分析[J]. 生态环境学报, 31(6): 1175-1183.
DOI URL |
WEI X F, HAN H, YAN X J, et al., 2022. Source apportionment of PM2.5 during heavy pollution process in Ji’nan based on satellite remote sensing and CMB model[J]. Ecology and Environmental Sciences, 31(6): 1175-1183. | |
[36] | 夏晓圣, 汪军红, 宋伟东, 等, 2020. 2000-2019年中国PM2.5时空演化特征[J]. 环境科学, 41(11): 4832-4843. |
XIA X S, WANG J H, SONG W D, et al., 2020. Spatio-temporal Evolution of PM2.5 Concentration During 2000-2019 in China[J]. Environmental Science, 41(11): 4832-4843.
DOI URL |
|
[37] | 肖捷颖, 朱欢欢, 秦伟, 等, 2020. 石家庄市采暖季道路降尘PM2.5重金属元素健康风险评价[J]. 安全与环境学报, 20(2): 741-746. |
XIAO J Y, ZHU H H, QIN W, et al., 2020. Health risk assessment of heavy metal contaminants in road dust PM2.5 from urban areas of Shijiazhuang during heating seasons[J]. Journal of Safety and Environment, 20(2): 741-746. | |
[38] | 张剑飞, 姜楠, 段时光, 等, 2020. 郑州市PM2.5化学组分的季节变化特征及来源解析[J]. 环境科学, 41(11): 4813-4824. |
ZHANG J F, JIANG N, DUAN S G, et al., 2020. Seasonal chemical composition characteristics and source apportionment of PM2.5 in Zhengzhou[J]. Environmental Science, 41(11): 4813-4824.
DOI URL |
|
[39] | 张军, 金梓函, 王玥, 等, 2022. 关中平原城市群PM2.5时空演变格局及其影响因素[J]. 环境科学, 43(12): 5333-5343. |
ZHANG J, JIN Z H, WANG Y, et al., 2022. Temporal and spatial evolution pattern of PM2.5 and its influencing factors in Guanzhong Plain urban agglomeration[J]. Environmental Science, 43(12): 5333-5343.
DOI URL |
|
[40] | 张亮林, 潘竟虎, 2021. 全球PM2.5人口暴露风险时空格局[J]. 中国环境科学, 41(11): 5391-5404. |
ZHANG L L, PAN J H, 2021. Spatial-temporal pattern of population exposure risk to PM2.5 in Global[J]. China Environmental Science, 41(11): 5391-5404. | |
[41] | 张运林, 睢晋玲, 吴娴, 等, 2021. 粤港澳大湾区PM2.5时空分布特征及其与气象要素的关系[J]. 生态学报, 41(6): 2272-2281. |
ZHANG Y L, SUI J L, WU X, et al., 2021. Temporal and spatial distribution characteristics of PM2.5 and its relationship with meteorological factors in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Acta Ecologica Sinica, 41(6): 2272-2281. | |
[42] |
赵锐, 詹梨苹, 周亮, 等, 2022. 地理探测联合地理加权岭回归的PM2.5驱动因素分析[J]. 生态环境学报, 31(2): 307-317.
DOI URL |
ZHAO R, ZHAN L P, ZHOU L, et al., 2022. Identification of driving factors of PM2.5 based on geographic detector combined with geographically weighted ridge regression[J]. Ecology and Environmental Sciences, 31(2): 307-317. | |
[43] |
赵文斐, 于占江, 王让会, 等, 2020. 石家庄市PM2.5时空特征及其对土地利用变化的响应[J]. 生态环境学报, 29(12): 2404-2413.
DOI |
ZHAO W F, YU Z J, WANG R H, et al., 2020. Spatial and temporal characteristics of PM2.5 and its response to land use change in Shijiazhuang[J]. Ecology and Environmental Sciences, 29(12): 2404-2413. | |
[44] | 中共中央、 国务院, 2021. 黄河流域生态保护和高质量发展规划纲要[EB/OL]. (2021-10-08) [2023-01-31]. https://www.gov.cn/gongbao/content/2021/content_5647346.htm?eqid=e61efb790007a3050000000364564707 |
The Central Committee of the Communist Party of China and the State Council, 2021. Outline of the Yellow River Basin Ecological Protection and High-quality Development Plan[EB/OL]. (2021-10-08) [2023-01-31]. https://www.gov.cn/gongbao/content/2021/content_5647346.htm?eqid=e61efb790007a3050000000364564707. | |
[45] | 周志衡, 周廷刚, 秦宁, 2022. 中原城市群PM2.5浓度驱动因子联动效应及非线性影响[J]. 环境科学, 43(12): 5344-5353. |
ZHOU Z H, ZHOU T G, QIN N, 2022. Linkage effect and nonlinear impact of PM2.5 concentration driving factors in Central Plains urban agglomeration[J]. Environmental Science, 43(12): 5344-5353. |
[1] | 董洁芳, 邓椿, 张仲伍. 渭河流域PM2.5时空演化及人口暴露风险[J]. 生态环境学报, 2023, 32(6): 1078-1088. |
[2] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[3] | 刘霞, 郭澍, 王琳. 区域一体化地区的土地利用与生态服务价值研究——以双莱先行区为例[J]. 生态环境学报, 2023, 32(6): 1163-1172. |
[4] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[5] | 张钧韦, 夏圣洁, 陈慧儒, 刘艳红. 山西中部城市群景观格局演变对其热环境的影响研究[J]. 生态环境学报, 2023, 32(5): 943-955. |
[6] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[7] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[8] | 王嘉丽, 冯婧珂, 杨元征, 俎佳星, 蔡文华, 杨健. 南宁市主城区不透水面与热环境效应的空间关系研究[J]. 生态环境学报, 2023, 32(3): 525-534. |
[9] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[10] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[11] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[12] | 付蓉, 武新梅, 陈斌. 城市地表温度空间分异及驱动因子差异性分析——以合肥市为例[J]. 生态环境学报, 2023, 32(1): 110-122. |
[13] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[14] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[15] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||