生态环境学报 ›› 2023, Vol. 32 ›› Issue (4): 687-696.DOI: 10.16258/j.cnki.1674-5906.2023.04.006
收稿日期:
2023-03-03
出版日期:
2023-04-18
发布日期:
2023-07-12
通讯作者:
*E-mail: xxfu@njfu.edu.cn作者简介:
袁佳秋(1994年生),女,讲师,博士研究生,主要从事抗逆机制研究。E-mail: 20221026@jsfpc.edu.cn
基金资助:
YUAN Jiaqiu1,2(), SUN Dawei2, YANG Ling3, FU Xiangxiang2,*(
)
Received:
2023-03-03
Online:
2023-04-18
Published:
2023-07-12
摘要:
随着滨海地区土壤盐渍化程度不断扩大,选育耐盐性和观赏价值并存的木本植物进行引种栽培,将有利于盐渍土壤资源的利用和生态系统的改善。东京四照花(Cornus hongkongensis subsp. tonkinensis)作为观赏型苗木,从幼苗的钙组分与渗透物质方面探讨其盐胁迫响应机制,为其在滨海地区推广种植提供理论依据。设置4种质量分数梯度的盐浓度:0(CK)、0.20%(T1)、0.30%(T2)和0.45%(T3),水培法培养幼苗。盐处理幼苗的盐害等级(ISD)随着盐分浓度的升高和胁迫时间的延长而增加。盐胁迫5 d时,各处理组的幼苗ISD和成活率未有明显变化;盐胁迫30 d时,T1、T2和T3处理组的ISD分别为47.80%、52.00%和71.20%,对应的成活率分别为82.60%、84.00%和56.00%。胁迫初期(5 d),T1、T2和T3保卫细胞中Ca2+浓度较CK分别增加了13.98%、22.54%和17.33%。同时,T1、T2和T3的气孔孔径的宽长比(W/L)比CK分别减少了23.60%、25.98%和36.05%。其中,仅T3处理保卫细胞中Ca2+浓度随胁迫时间延长而显著升高。胁迫至30 d,T3处理下的水溶性钙(H2O-Ca)、草酸钙(HCl-Ca)、果胶酸钙(NaCl-Ca)质量分数分别降低至4.99、7.12、4.04 mg?g?1。同时,随着盐浓度的升高,草酸钙晶体在叶肉细胞中破碎化程度明显。与CK相比,T1、T2和T3草酸钙晶体在叶肉细胞中面积占比分别显著降低了43.10%、15.25%、69.90%。T3处理下的可溶性蛋白(SP)、可溶性糖(SS)和脯氨酸(Pro)含量较CK分别增加了20.04 %、15.38%和19.74%。东京四照花短期(30 d)可承受0.45%的盐胁迫。幼苗通过提高Ca2+浓度,促进可溶性蛋白的合成来提高其耐盐性。此外,草酸钙降解释放出的Ca2+可能是缓解盐胁迫对东京四照花幼苗损伤的有效策略。
中图分类号:
袁佳秋, 孙大伟, 杨玲, 洑香香. 东京四照花钙组分与渗透调节物质对盐胁迫的响应[J]. 生态环境学报, 2023, 32(4): 687-696.
YUAN Jiaqiu, SUN Dawei, YANG Ling, FU Xiangxiang. Responses of Calcium Composition and Osmotica under Salt Stress in Cornus hongkongensis Subsp. Tonkinensis (W. P. Fang) Q. Y. Xiang[J]. Ecology and Environment, 2023, 32(4): 687-696.
图2 不同盐浓度下东京四照花盐损伤指数和成活率 方块代表第五天的数据,三角代表第30天的数据;实线代表盐损伤指数,虚线代表成活率。CK、T1、T2、T3分别表示4种质量分数的海盐浓度,依次为0%、0.20%、0.30%、0.45%。下同
Figure 2 Salt damage index (ISD) and survival rate of C. hongkongensis subsp. tonkinensis under different salt concentrations
图3 盐胁迫下东京四照花叶片保卫细胞Ca2+分布 用荧光显微镜观察对照和盐处理后荧光Fluo-3AM染色叶中的Ca2+。(a和i)CK处理、(b和j)T1处理、(c和k)T2处理和(d和l)T3处理的叶片下表皮图像,(e、f、g和h)和(m、n、o和p)分别为盐处理5 d和30 d时红色框内对应的气孔放大图,所有处理中均可见Ca2+在保卫细胞周围的定位。标尺为50 μm
Figure 3 Ca2+ distribution in guard cells of leaves in C. hongkongensis subsp. tonkinensis under salt stress
图4 盐胁迫下东京四照花叶片保卫细胞Ca2+荧光强度变化 图中数据为平均值±标准误,n=3。不同大写字母表示不同处理同一时间的多重比较(P<0.05);根据独立样本T检验,*和**表示同一处理不同时间的差异显著(P<0.05,0.01)。下同
Figure 4 Change of fluorescence intensity of Ca2+ in guard cells of leaves in C. hongkongensis subsp. tonkinensis under salt stress
处理 | 孔隙长度/µm | 孔隙宽度/µm | 宽长比W/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 d | 30 d | Sig. | 5 d | 30 d | Sig. | 5 d | 30 d | Sig. | |||
CK | 7.51±0.27A | 8.53±0.08A | * | 2.86±0.33A | 3.05±0.03A | ns | 0.38±0.03A | 0.36±0.00A | ns | ||
T1 | 4.79±0.80B | 4.78±0.53C | ns | 1.38±0.19B | 1.33±0.17C | ns | 0.29±0.03B | 0.27±0.01C | ns | ||
T2 | 5.16±0.50B | 5.01±0.13C | ns | 1.43±0.15B | 1.37±0.02C | ns | 0.28±0.01B | 0.28±0.01C | ns | ||
T3 | 4.65±0.84B | 7.08±0.72B | ** | 1.16±0.32B | 2.04±0.17B | * | 0.24±0.03B | 0.29±0.01B | ns |
表1 盐胁迫对东京四照花叶片气孔相关参数的影响
Table 1 Effect of salt stress on stoma of leaves in C. hongkongensis subsp. tonkinensis
处理 | 孔隙长度/µm | 孔隙宽度/µm | 宽长比W/L | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5 d | 30 d | Sig. | 5 d | 30 d | Sig. | 5 d | 30 d | Sig. | |||
CK | 7.51±0.27A | 8.53±0.08A | * | 2.86±0.33A | 3.05±0.03A | ns | 0.38±0.03A | 0.36±0.00A | ns | ||
T1 | 4.79±0.80B | 4.78±0.53C | ns | 1.38±0.19B | 1.33±0.17C | ns | 0.29±0.03B | 0.27±0.01C | ns | ||
T2 | 5.16±0.50B | 5.01±0.13C | ns | 1.43±0.15B | 1.37±0.02C | ns | 0.28±0.01B | 0.28±0.01C | ns | ||
T3 | 4.65±0.84B | 7.08±0.72B | ** | 1.16±0.32B | 2.04±0.17B | * | 0.24±0.03B | 0.29±0.01B | ns |
图5 盐胁迫对东京四照花叶片气孔形态的影响 图a-d分别为在盐胁迫5 d时,CK、T1、T2、T3组叶片气孔电镜图;图e-h分别为在盐胁迫30 d时,CK、T1、T2、T3组叶片气孔电镜图;图中标尺为40 μm
Figure 5 Effect of salt stress on stoma morphology of leaves in C. hongkongensis subsp. tonkinensis
图6 不同盐浓度对东京四照花叶片不同形态钙质量分数的影响
Figure 6 Effect of salt stress on mass fraction of different calcium forms in leaves of C. hongkongensis subsp. tonkinensis
图7 盐胁迫下东京四照花叶片草酸钙晶体显微观察 图a-d分别为在盐胁迫5 d时,CK、T1、T2、T3组叶片草酸钙晶体显微图;图e-h分别为在盐胁迫30 d时,CK、T1、T2、T3组叶片草酸钙晶体显微图;图中标尺为100 μm
Figure 7 Microscopic observation on calcium oxalate crystals in salt-stressed leaves of C. hongkongensis subsp. tonkinensis
指标 | 处理 | 胁迫时间/d/ | ||
---|---|---|---|---|
5 d | 30 d | Sig. | ||
可溶性蛋白 质量分数/ (mg∙g−1) | CK | 5.39±0.40A | 5.54±0.35B | ns |
T1 | 5.17±0.48A | 5.44±0.12B | ns | |
T2 | 5.95±0.38A | 5.60±0.43B | ns | |
T3 | 5.81±0.52A | 6.65±0.45A | ns | |
可溶性糖 质量分数/ (mg∙g−1) | CK | 21.91±1.87A | 19.77±1.83B | ns |
T1 | 24.60±1.52A | 20.29±2.12B | * | |
T2 | 21.72±2.22A | 25.13±1.70A | ns | |
T3 | 22.50±2.17A | 22.81±1.80AB | ns | |
脯氨酸 质量分数/ (μg∙g−1) | CK | 1436.83±256.96A | 1221.83±72.96AB | ns |
T1 | 1089.86±66.99B | 897.59±196.75B | ns | |
T2 | 971.23±111.53B | 956.41±214.04B | ns | |
T3 | 1042.41±229.38B | 1463.03±244.93A | ns |
表2 东京四照花盐胁迫下渗透调节物质响应
Table 2 Response of osmotic regulators in the salt-stressed seedlings of C. hongkongensis subsp. tonkinensis
指标 | 处理 | 胁迫时间/d/ | ||
---|---|---|---|---|
5 d | 30 d | Sig. | ||
可溶性蛋白 质量分数/ (mg∙g−1) | CK | 5.39±0.40A | 5.54±0.35B | ns |
T1 | 5.17±0.48A | 5.44±0.12B | ns | |
T2 | 5.95±0.38A | 5.60±0.43B | ns | |
T3 | 5.81±0.52A | 6.65±0.45A | ns | |
可溶性糖 质量分数/ (mg∙g−1) | CK | 21.91±1.87A | 19.77±1.83B | ns |
T1 | 24.60±1.52A | 20.29±2.12B | * | |
T2 | 21.72±2.22A | 25.13±1.70A | ns | |
T3 | 22.50±2.17A | 22.81±1.80AB | ns | |
脯氨酸 质量分数/ (μg∙g−1) | CK | 1436.83±256.96A | 1221.83±72.96AB | ns |
T1 | 1089.86±66.99B | 897.59±196.75B | ns | |
T2 | 971.23±111.53B | 956.41±214.04B | ns | |
T3 | 1042.41±229.38B | 1463.03±244.93A | ns |
指标 | ISD | Ca2+ FI | W/L | SP | SS | Pro | H2O-Ca | NaCl-Ca | HAc-Ca | HCl-Ca | CaOx AR |
---|---|---|---|---|---|---|---|---|---|---|---|
ISD | 1 | ||||||||||
Ca2+ FI | 0.628** | 1 | |||||||||
W/L | −0.305 | −0.221 | 1 | ||||||||
SP | 0.606** | 0.554** | −0.237 | 1 | |||||||
SS | 0.131 | 0.139 | −0.355 | −0.001 | 1 | ||||||
Pro | 0.137 | 0.072 | 0.512* | 0.265 | −0.047 | 1 | |||||
H2O-Ca | −0.915** | −0.692** | 0.351 | −0.515** | −0.070 | 0.056 | 1 | ||||
NaCl-Ca | −0.865** | −0.478* | 0.177 | −0.644** | 0.129 | −0.209 | 0.777** | 1 | |||
HAc-Ca | −0.209 | −0.065 | 0.091 | −0.214 | 0.120 | 0.134 | 0.249 | 0.288 | 1 | ||
HCl-Ca | −0.819** | −0.453* | 0.211 | −0.480* | 0.060 | 0.133 | 0.846** | 0.764** | 0.498* | 1 | |
CaOx AR | −0.784** | −0.543** | 0.322 | −0.731** | 0.118 | −0.122 | 0.734** | 0.747** | 0.266 | 0.796** | 1 |
表3 叶片钙组分和渗透调节物质的相关系数(r)
Table 3 Correlation coefficients among leaves calcium component and osmoregulation substances
指标 | ISD | Ca2+ FI | W/L | SP | SS | Pro | H2O-Ca | NaCl-Ca | HAc-Ca | HCl-Ca | CaOx AR |
---|---|---|---|---|---|---|---|---|---|---|---|
ISD | 1 | ||||||||||
Ca2+ FI | 0.628** | 1 | |||||||||
W/L | −0.305 | −0.221 | 1 | ||||||||
SP | 0.606** | 0.554** | −0.237 | 1 | |||||||
SS | 0.131 | 0.139 | −0.355 | −0.001 | 1 | ||||||
Pro | 0.137 | 0.072 | 0.512* | 0.265 | −0.047 | 1 | |||||
H2O-Ca | −0.915** | −0.692** | 0.351 | −0.515** | −0.070 | 0.056 | 1 | ||||
NaCl-Ca | −0.865** | −0.478* | 0.177 | −0.644** | 0.129 | −0.209 | 0.777** | 1 | |||
HAc-Ca | −0.209 | −0.065 | 0.091 | −0.214 | 0.120 | 0.134 | 0.249 | 0.288 | 1 | ||
HCl-Ca | −0.819** | −0.453* | 0.211 | −0.480* | 0.060 | 0.133 | 0.846** | 0.764** | 0.498* | 1 | |
CaOx AR | −0.784** | −0.543** | 0.322 | −0.731** | 0.118 | −0.122 | 0.734** | 0.747** | 0.266 | 0.796** | 1 |
[1] |
ABID M, ZHANG Y J, LI Z, et al., 2020. Effect of Salt stress on growth, physiological and biochemical characters of Four kiwifruit genotypes[J]. Scientia Horticulturae, 271: 109473.
DOI URL |
[2] |
AL HASSAN M, MOROSAN M, LÓPEZ-GRESA M D P, et al., 2016. Salinity-induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans[J]. International Journal of Molecular Sciences, 17(9): 1582.
DOI URL |
[3] |
AZEVEDO NETO A D, PRISCO J T, GOMES-FILHO E, 2009. Changes in soluble amino-N, soluble proteins and free amino acids in leaves and roots of salt-stressed maize genotypes[J]. Journal of Plant Interactions, 4(2): 137-144.
DOI URL |
[4] |
DEINLEIN U, STEPHAN A B, HORIE T, et al., 2014. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 19(6): 371-379.
DOI PMID |
[5] |
FAROOQ M, GOGOI N, HUSSAIN M, et al., 2017. Effects, tolerance mechanisms and management of salt stress in grain legumes[J]. Plant Physiology and Biochemistry, 118: 199-217.
DOI PMID |
[6] |
FU X X, LIU H N, ZHOU X D, et al., 2013. Seed dormancy mechanism and dormancy breaking techniques for Cornus kousa var. chinensis [J]. Seed Science and Technology, 41(3): 458-463.
DOI URL |
[7] |
GONG Z Z, XIONG L M, SHI H Z, et al., 2020. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 63(5): 635-674.
DOI |
[8] |
JAFARI S, GARMDAREH S E H, 2019. Effects of salinity on morpho-physiological, and biochemical characteristics of stock plant (Matthiola incana L.)[J]. Scientia Horticulturae, 257: 108731.
DOI URL |
[9] |
JENSEN E C, 2013. Quantitative analysis of histological staining and fluorescence using ImageJ[J]. The Anatomical Record, 296(3): 378-381.
DOI URL |
[10] |
LU Q, XU J, FU X X, et al., 2020. Physiological and growth responses of two dogwoods to short-term drought stress and re-watering[J]. Acta Ecologica Sinica, 40(2): 172-177.
DOI URL |
[11] |
LU Q, YANG L, WANG H W, et al., 2021. Calcium Ion Richness in Cornus hongkongensis subsp. elegans (WP Fang et YT Hsieh) QY Xiang Could Enhance Its Salinity Tolerance[J]. Forests, 12(11): 1522.
DOI URL |
[12] |
MUNNS R, GILLIHAM M, 2015. Salinity tolerance of crops-what is the cost?[J]. New Phytologist, 208(3): 668-673.
DOI URL |
[13] | OHTA Y, YAMAMOTO K, DEGUCHI M, 1970. Chemical fractionation of calcium in the fresh rice leaf blade and influences of deficiency or oversupply of calcium and age of leaf on the content of each calcium fraction: chemical fractionation of calcium in some plant species (part 1)[J]. Japanese Journal of Soil Science & Plant Nutrition, 41(1):19-26. |
[14] |
RENAULT S, 2012. Salinity tolerance of Cornus sericea seedlings from three provenances[J]. Acta Physiologiae Plantarum, 34(5): 1735-1746.
DOI URL |
[15] |
SHAHID M A, SARKHOSH A, KHAN N, et al., 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development[J]. Agronomy, 10(7): 938.
DOI URL |
[16] |
TUNA A L, KAYA C, ASHRAF M, et al., 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress[J]. Environmental and Experimental Botany, 59(2): 173-178.
DOI URL |
[17] | ZHANG J F, JIANG J M, SHAN Q H, et al., 2010. Soil salinization and ecological remediation by planting trees in China[P]. Mechanic Automation and Control Engineering (MACE), International Conference on. |
[18] |
ZHANG R, XU C, BAO Z L, et al., 2021. Auxin alters sodium ion accumulation and nutrient accumulation by playing protective role in salinity challenged strawberry[J]. Plant Physiology and Biochemistry, 164: 1-9.
DOI PMID |
[19] | ZHANG T, YANG H B, 2022. Physiological and biochemical mechanisms of exogenous calcium chloride on alleviating salt stress in two tartary buckwheat (Fagopyrum tataricum) varieties differing in salinity tolerance[J]. Phyton-International Journal of Experimental Botany, 91(8): 1643-1658. |
[20] |
ZHONG Y P, QI X J, CHEN J Y, et al., 2019. Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation[J]. Journal of Integrative Agriculture, 18(1): 83-95.
DOI URL |
[21] | 曹建华, 朱敏洁, 黄芬, 等, 2011. 不同地质条件下植物叶片中钙形态对比研究——以贵州茂兰为例[J]. 矿物岩石地球化学通报, 30(3): 251-260. |
CAO J H, ZHU M J, HUANG F, et al., 2011. Comparison Study on Calcium forms in Plant Leaves under Different Geological Backgrounds: A Case Study in Maolan, Guizhou Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 30(3): 251-260. | |
[22] | 洑香香, 徐杰, 刘国华, 2015. 观赏型四照花种质资源及其开发利用[J]. 林业科技开发, 29(3): 1-6. |
FU X X, XU J, LIU G H, 2015. Development and utilization of germplasm resources of ornamental C. kousa subsp. chinensis[J]. Journal of Forestry Engineering, 29(3): 1-6. | |
[23] | 李合生, 2006. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社: 182- 201, 258-260. |
LI H S, 2006. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Chinese high education press: 182- 201, 258-260. | |
[24] | 鲁强, 徐杰, 洑香香, 等, 2019. 短期高温胁迫对大花四照花和日本四照花生长和光合的影响[J]. 江苏农业科学, 47(22): 159-163. |
LU Q, XU J, FU X X et al., 2019. Effects of short-term high temperature stress on the growth and photosynthesis of C. florida and C. kousa subsp. Kousa[J]. Jiangsu Agricultural Sciences, 47(22): 159-163. | |
[25] | 鲁强, 杨玲, 王昊伟, 等, 2020. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报, 44(4): 29-36. |
LU Q, YANG L, WANG H W, et al., 2020. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. Elegans[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 44(4): 29-36. | |
[26] | 鲁强, 2019. 两种四照花盐胁迫的生长及生理响应研究[D]. 南京: 南京林业大学: 67-68. |
LU Q, 2019. Growth and physiological response to salt stress in two species of Cornus[D]. Nanjing: Journal of Nanjing Forestry University: 67-68. | |
[27] | 马建军, 张立彬, 杜彬, 等, 2012. 欧李果实采后不同形态钙的质量分数及组成变化[J]. 浙江农林大学学报, 29(3): 401-406. |
MA J J, ZHANG L B, DU S, et al., 2012. Mass fraction and compositional change of calcium forms in wild Prunus humilis fruits during the post-harvest storage period[J]. Journal of Zhejiang A & F University, 29(3): 401-406. | |
[28] | 苏志孟, 张习敏, 马琳, 等, 2019. 堇菜叶片草酸钙晶体与水分维持的关系[J]. 广西植物, 39(6): 720-728. |
SU Z M, ZHANG X M, MA L, et al., 2019. Relationship between calcium oxalate crystals and water maintenance in leaves of Viola verecumda[J]. Guihaia, 39(6): 720-728. | |
[29] | 王光野, 曲红岩, 蔡立格, 等, 2018. 植物草酸钙晶体合成、降解机制及功能研究进展[J]. 中草药, 49(7): 1710-1715. |
WANG G Y, QU H Y, CAI L G, et al., 2018. Research progress on mechanism of synthesis and degradation and function of calcium oxalate crystals in plants[J]. Chinese Traditional and Herbal Drugs, 49(7): 1710-1715. | |
[30] | 王昊伟, 杨玲, 鲁强, 等, 2020. 盐胁迫对大花四照花种子萌发与幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 44(3): 89-94. |
WANG H W, YANG L, LU Q, et al., 2020. Effects of salt stress on seed germination and seedling growth of Cornus florida[J]. Journal of Nanjing Forestry University (Natural Science Edition), 44(3): 89-94. | |
[31] | 王学奎, 黄见良, 2015. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社: 131-133. |
WANG X K, HUANG J L, 2015. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Chinese high Education Press: 131-133. | |
[32] | 吴运荣, 林宏伟, 莫肖蓉, 2014. 植物抗盐分子机制及作物遗传改良耐盐性的研究进展[J]. 植物生理学报, 50(11): 1621-1629. |
WU Y R, LIN H W, MO X R, 2014. Research progress in the mechanism of plant salt tolerance and genetic engi-neering of salt resistant crops[J]. Plant Physiology Communications, 50(11): 1621-1629. | |
[33] | 徐静静, 慈华聪, 何兴东, 等, 2012. 天津盐渍化生境54种植物钙晶体与钙组分特征[J]. 应用生态学报, 23(5): 1247-1253. |
XU J J, CI H C, HE X D, et al., 2012. Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin[J]. Chinese Journal of Applied Ecology, 23(5): 1247-1253. | |
[34] | 张国显, 2015. 外源钙缓解低夜温导致番茄叶片光抑制的机理[D]. 沈阳: 沈阳农业大学: 36-59. |
ZHANG G X, 2015. Exogenous calcium alleviates low night temperature stress induced photoinhibition in tomato leaves[D]. Shengyang: Shenyang Agricultural University: 36-59. | |
[35] |
张京磊, 慈华聪, 何兴东, 等, 2015. 狼尾草对土壤柴油污染和盐分胁迫的适应性[J]. 生态环境学报, 24(11): 1904-1909.
DOI URL |
ZHANG J L, CI H C, HE X D, et al., 2015. Adaptability of Pennisetum alopecuroides to diesel oil-contaminated soil and salt stress[J]. Ecology and Environmental Sciences, 24(11): 1904-1909. | |
[36] | 张艳珍, 程存刚, 赵德英, 等, 2021. 施氮水平对富士苹果果实钙形态及品质的影响[J]. 植物营养与肥料学报, 27(1): 87-96. |
ZHANG Y Z, CHENG C G, ZHAO D Y, et al., 2021. Effects of nitrogen application levels on fruit Ca forms and quality of ‘Fuji’ apples[J]. Plant Nutrition and Fertilizer Science, 27(1): 87-96. |
[1] | 李程程, 张子蕤, 宋晓萱, 孔娟娟, 韩阳, 阮亚男. 臭氧胁迫对大豆抗氧化代谢与生殖生长的影响[J]. 生态环境学报, 2022, 31(7): 1383-1392. |
[2] | 刘旻霞, 于瑞新, 穆若兰, 夏素娟. 兰州北山不同海拔3种典型绿化树种光合特性研究[J]. 生态环境学报, 2021, 30(10): 1943-1951. |
[3] | 路旭平, 李芳兰, 石亚飞, 张娟伟, 杨文伟, 罗成科, 田蕾, 李培富. 不同水稻品种幼苗响应碱胁迫的生理差异及胁迫等级构建[J]. 生态环境学报, 2021, 30(8): 1757-1768. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||