生态环境学报 ›› 2022, Vol. 31 ›› Issue (8): 1700-1712.DOI: 10.16258/j.cnki.1674-5906.2022.08.022
• 综述 •
上一篇
崔乔1,2(), 李宗省1,*(
), 张百娟1,2, 赵越1,2, 南富森1
收稿日期:
2022-03-09
出版日期:
2022-08-18
发布日期:
2022-10-10
通讯作者:
* 李宗省,研究员,主要从事寒区同位素水文与气候变化研究。E-mail: lizxhhs@163.com作者简介:
崔乔(1995年生),女,博士研究生,主要从事高寒区土壤碳氮循环研究。E-mail: cuiqiao268@163.com
基金资助:
CUI Qiao1,2(), LI Zongxing1,*(
), ZHANG Baijuan1,2, ZHAO Yue1,2, NAN Fusen1
Received:
2022-03-09
Online:
2022-08-18
Published:
2022-10-10
摘要:
土壤中的活性碳氮作为土壤碳氮库的重要组成部分,是生态系统碳氮循环过程中的重要元素。冻融作用对高纬度和高海拔地区生态系统的土壤活性碳氮含量影响深刻,且气候变化将调控冻融作用对土壤碳氮的影响。然而,针对冻融作用对气候变化的响应机制的研究较少。为揭示气候变化背景下冻融作用对土壤中活性碳氮含量的影响机制,运用已有的相关研究结果进行数据整合分析,综述了在降水量和温度变化下冻融作用对土壤中活性碳氮的影响。得出以下主要结果,(1)冻融作用提高了土壤中的可溶性有机碳、可溶性有机氮、铵态氮含量和微生物量碳氮比,降低了硝态氮和微生物量碳氮含量。(2)冻融作用对土壤中可溶性碳氮和微生物量碳氮比的影响效应随着降水量和温度的增加而增强,而对微生物量碳氮的影响效应随着降水量和温度的增加而减弱。结果表明,冻融作用影响了土壤可溶性碳氮含量和微生物量碳氮含量。降水量和温度的增加增强了冻融作用对高纬度和高海拔区土壤中可溶性碳氮的影响,却不利于微生物量碳氮的储存。土壤活性碳氮对维持生态系统稳定性具有重要作用,研究高纬度和高海拔地区冻融作用对土壤活性碳氮含量的影响,有助于进一步了解土壤活性碳氮对当前气候变化的反馈,为应对冻融对生态系统造成的影响提供参考。
中图分类号:
崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712.
CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents[J]. Ecology and Environment, 2022, 31(8): 1700-1712.
研究区 The study area | 经纬度 Latitude and longitude | 生态系统类型 Ecosystem type | 植被类型 Vegetation type | 土层深度 Soil depth | 冻融温度 Freeze-thaw temperature | 实验处理 Experimental treatment | 实验方法 Experimental method | 文献来源 References | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
瑞典阿斯比库 Abisko, Swedish | 68°21′N, 18°40′E | 亚北极 高山荒地 | 苔藓; 地衣 | 4-5 cm | 2- -2 ℃ | 对照 | 无冻融循环 | Sjursen et al., | ||||
冻融处理 | 2 ℃ | |||||||||||
-2 ℃ | ||||||||||||
-2℃ 3 d | ||||||||||||
加拿大魁北克市 Québec City, Canada | 46°44′N, 71°31′W | 农田 | 大豆; 玉米 | 0-20 cm | 对照 | 无冻融循环 | Pelster et al., | |||||
1- -3 ℃ | 1, 2, 3, 6和8次 冻融处理 | 1 ℃ 4 d | ||||||||||
1- -7 ℃ | -3 ℃和-7 ℃5 d; | |||||||||||
1 ℃ 5 d | ||||||||||||
德国东部 斐克特高原 “Klostergut Scheyern” in Southern Germany | 48°30.0′N, 11°20.7′E | 农田 | 夏小麦 | 0-20 cm | 10- -20 ℃ | 对照 | 无冻融循环 | Su et al., | ||||
冻融处理 | -20 ℃ 3 d | |||||||||||
3 d和7 d | ||||||||||||
意大利 阿尔卑斯山 Alps, Italy | 45°50′N, 4°38′E | 森林 | 落叶松; 桤木; 冷杉 | 0.7-1.5 m | 4- -9 ℃ | 对照 | 无冻融循环 | Freppaz et al., | ||||
单次冻结 | -9 ℃ 12 h | |||||||||||
4 ℃ 12 h | ||||||||||||
4次冻结 | -9 ℃ 12 h | |||||||||||
4 ℃ 12 h | ||||||||||||
45°30′N, 7°51′E | 森林, 草地 | 白桦; 草甸 | 0-10 cm | 2.4- -4.3 ℃; | 对照 | 无冻融循环 | Freppaz et al., | |||||
1.8- -4.5 ℃ | 除雪处理 | -4.3 ℃或 -4.5-2.4 ℃ | ||||||||||
美国怀特山 White Mountains, USA | 43°56′N, 71°45′W | 森林 | 糖枫; 黄桦 | Oa层+ Bs层 | 对照 | 无冻融循环 | Neilson et al., | |||||
-3 ℃ | 重度冻结 | -13 ℃ 10 d | ||||||||||
-13℃ | 20-25 ℃ 3周 | |||||||||||
轻度冻结 | -3 ℃ 10 d | |||||||||||
20-25 ℃ 3周 | ||||||||||||
43°56′N, 71°45′W | 森林 | 红枫; 美国山毛榉 | 3-10 cm | 1- -0.5 ℃ | 对照 | 无冻融循环 | Sorensen et al., 2018 | |||||
4次冻融循环 | -0.5 ℃ 72 h | |||||||||||
1 ℃ 72 h | ||||||||||||
43°56′N, 71°45′W | 森林 | 美国山毛榉; 糖枫;黄桦 | Oa层+ Bs层 | -4.5 ℃/-5.8 ℃ | 对照 | 无冻融循环 | Groffman et al., | |||||
除雪处理 | -5.8 ℃和-4.5 ℃ | |||||||||||
美国科罗拉多 落基山 Colorado rocky mountains, USA | 40°03′N, 105°35′W | 草地 | 草甸 | 0-10 cm | 3- -5 ℃ | 对照 | 无冻融循环 | Lipson et al., | ||||
实验1 (6个冻融循环) | -5 ℃ | |||||||||||
3 ℃ | ||||||||||||
实验2 (6个冻融循环) | -5 ℃ | |||||||||||
0 ℃ | ||||||||||||
3 ℃ | ||||||||||||
实验3 (7个冻融循环) | -5 ℃ | |||||||||||
3 ℃ | ||||||||||||
美国内华达山脉 Southern Sierra Nevada, USA | 36°35′49″N, 118°40′29″W | 草地 | 草甸 | 0-10 cm | 5- -2 ℃ | 对照 | 无冻融循环 | Miller et al., | ||||
冻融处理 | 0 ℃ 16-24周; | |||||||||||
5 ℃ 48 h; | ||||||||||||
-2 ℃ 16周 | ||||||||||||
芬兰约基奥伊宁 Finland in Jokioinen | 60°49'N, 23°30'E | 农田 | — | 0-25 cm | 4.1- -17.3 ℃ | 对照 | 无冻融循环 | Koponen et al., 2006 | ||||
4次冻融循环 | -17.3 ℃ 5 d | |||||||||||
4.1 ℃ 7 d | ||||||||||||
高加索山脉 Caucasus Mountains | 43°27″N, 41°41′E | 荒原, 草地 | 草甸 | 0-10 cm | 4- -10 ℃ | 对照 | 无冻融循环 | Makarov et al., 2015 | ||||
1, 8和15次冻融循环 | -10 ℃ 10 d | |||||||||||
4 ℃ 10 d | ||||||||||||
挪威泰勒马克县 Telemark county, southern Norway | 59°01′N, 8°32′E | 温带灌丛 | 帚石楠; 麦氏草; 泥炭藓 | 0-15 cm | 5- -5 ℃ | 对照 | 无冻融循环 | Vestgarden et al., | ||||
快速冻融循环 | 2周内-5 ℃ 4个25 h | |||||||||||
慢速冻融循环 | 2周内-5 ℃ 1个123 h | |||||||||||
持续冷冻 | -5 ℃ | |||||||||||
持续融化 | 5 ℃ | |||||||||||
研究区 The study area | 经纬度 Latitude and longitude | 生态系统类型 Ecosystem type | 植被类型 Vegetation type | 土层深度 Soil depth | 冻融温度 Freeze-thaw temperature | 实验处理 Experimental treatment | 实验方法 Experimental method | 文献来源 References | ||||
青藏高原 Qinghai-Tibet Plateau | 30°57′N, 88°42′E | 草地 | 草甸 | 0-15 cm | 5- -15℃; | 对照 | 无冻融循环 | Fan et al., | ||||
5- -25 ℃ | 1, 2和4次冻融循环 | -10 ℃和-25 ℃ 1 d | ||||||||||
5 ℃ 1 d | ||||||||||||
32°59′N, 103°40′E | 草地 | 草甸 | 0-20 cm | 对照 | 无冻融循环 | Gao et al., | ||||||
5- -5 ℃ | 轻微冻结 | -5 ℃ | ||||||||||
5- -15 ℃ | 5 ℃ | |||||||||||
低温冻结 | -15 ℃ | |||||||||||
5 ℃ | ||||||||||||
33°03′N, 102°36′E | 草地 | 草甸 | 5- -5 ℃ | 对照 | 无冻融循环 | 谢青琰等, | ||||||
5- -15 ℃ | 3, 6, 9和15次冻融循环 | -5 ℃和-15 ℃ 24 h | ||||||||||
5 ℃ 24 h | ||||||||||||
长白山 Changbai Mountains | 42°24N, 128°6E | 森林 | 阔叶红松混交林; 白桦林 | 0-10 cm | 10- -8 ℃ | 对照 | 无冻融循环 | Xu et al., | ||||
10- -18 ℃ | 短期冻结 | -18 ℃和-80 ℃ 10 d | ||||||||||
10- -80 ℃ | 10 ℃ 21 d | |||||||||||
长期冻结 | -18 ℃和-80 ℃ 145 d | |||||||||||
10 ℃ 21 d | ||||||||||||
42°17′09.54″-42°25′16.22″N, 127°49′16.97″-128°05′35.47″E | 森林 | 硬阔叶林; 红松阔叶林; 次生白桦林 | 0-20 cm | 5- -15 ℃ | 对照 | 无冻融循环 | 高珊等, | |||||
8次冻融循环 | -15 ℃ 33 h | |||||||||||
5 ℃ 19 h | ||||||||||||
小兴安岭 Xiaoxing’an Mountains | 48°03′53″-48°17′11″N, 128°30′36″-128°45'00″E | 湿地 | 森林沼泽 | 0-20 cm | 对照 | 无冻融循环 | 郭冬楠等, | |||||
5- -5 ℃; | 1, 2, 4和9次小幅度冻融循环 | -5 ℃ 24 h | ||||||||||
5- -25 ℃ | 5 ℃ 24 h | |||||||||||
1, 2, 4和9次大幅度冻融循环 | -25 ℃ 24 h | |||||||||||
5 ℃ 24 h | ||||||||||||
大兴安岭 Daxing’an Mountains | 52°25′N, 122°52′E | 湿地 | 杜香; 蓝莓; 泥炭藓 | 0-45 cm | 10- -10 ℃ | 对照 | 无冻融循环 | Wang et al., | ||||
3, 5, 10和15次小幅度冻融循环 | -5 ℃ 24 h | |||||||||||
5 ℃ 24 h | ||||||||||||
3, 5, 10和15次大幅度冻融循环 | -10 ℃ 24 h | |||||||||||
10 ℃ 24 h | ||||||||||||
三江平原 Sanjiang Plain | 45°21.875′N, 132°18.372′E | 湿地 | 小叶章 | 0-10 cm | 10- -10 ℃ | 对照 | 无冻融循环 | Song et al., | ||||
20次冻融循环 | -10 ℃ 2 h | |||||||||||
-2 ℃ 1 h | ||||||||||||
2 ℃ 1 h | ||||||||||||
10 ℃ 2 h | ||||||||||||
47°35′N, 133°31′E | 湿地 | 小叶章 | 0-15 cm | 5- -5 ℃; | 对照 | 无冻融循环 | 周旺明等, | |||||
5- -25 ℃ | 1, 2, 4, 6和10次冻融循环 | -5 ℃或-25 ℃ 1 d | ||||||||||
5 ℃ 1 d | ||||||||||||
松嫩平原 Songnen Plain | 125.27803°N, 43.822955°E | 温带森林 | 农田防护林 | 0-30 cm | 10- -15 ℃ | 对照 | 无冻融循环 | Han et al., | ||||
8次冻融循环 | -15 ℃ 12 h | |||||||||||
10 ℃ 12 h | ||||||||||||
黄土高原 半干旱生态 系统研究站 Semi-arid Ecosystem Research Station of Loess Plateau | 36°2′N, 104°25′E | 草地, 农田 | 多花冰草; 苜蓿; 小麦; 玉米;马铃薯 | 0-20 cm | 3- -2 ℃ | 对照 | 无冻融循环 | Han et al., | ||||
3次冻融循环 | -2 ℃ 8 d | |||||||||||
3 ℃ 8 d | ||||||||||||
6次冻融循环 | -2 ℃ 4 d | |||||||||||
3 ℃ 48 d | ||||||||||||
新疆伊犁 Ili River Valley | 43°27′N, 82°54′E | 农田 | 玉米 | 0-20 cm | 对照 | 无冻融循环 | Liu et al., | |||||
5- -5 ℃ ; | 15次小幅度 冻融循环 | -5 ℃ 24 h | ||||||||||
10- -10 ℃ | 5 ℃ 24 h | |||||||||||
15次大幅度 冻融循环 | -10 ℃ 24 h | |||||||||||
10 ℃ 24 h | ||||||||||||
丹麦 Denmark | 54°55′N, 9°45′E | 农田 | 大麦 | 0-20 cm | 10- -20 ℃ | 对照 | 无冻融循环 | Christensen et al., | ||||
1次冻融循环 | -20 ℃ 4-8周 | |||||||||||
融化 | ||||||||||||
2次冻融循环 | -20 ℃ 4-8周 | |||||||||||
第一次融化 | ||||||||||||
10 ℃ 18 d | ||||||||||||
-20 ℃ 7周 | ||||||||||||
第二次融化 |
表1 数据来源文献
Table 1 Data source literature
研究区 The study area | 经纬度 Latitude and longitude | 生态系统类型 Ecosystem type | 植被类型 Vegetation type | 土层深度 Soil depth | 冻融温度 Freeze-thaw temperature | 实验处理 Experimental treatment | 实验方法 Experimental method | 文献来源 References | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
瑞典阿斯比库 Abisko, Swedish | 68°21′N, 18°40′E | 亚北极 高山荒地 | 苔藓; 地衣 | 4-5 cm | 2- -2 ℃ | 对照 | 无冻融循环 | Sjursen et al., | ||||
冻融处理 | 2 ℃ | |||||||||||
-2 ℃ | ||||||||||||
-2℃ 3 d | ||||||||||||
加拿大魁北克市 Québec City, Canada | 46°44′N, 71°31′W | 农田 | 大豆; 玉米 | 0-20 cm | 对照 | 无冻融循环 | Pelster et al., | |||||
1- -3 ℃ | 1, 2, 3, 6和8次 冻融处理 | 1 ℃ 4 d | ||||||||||
1- -7 ℃ | -3 ℃和-7 ℃5 d; | |||||||||||
1 ℃ 5 d | ||||||||||||
德国东部 斐克特高原 “Klostergut Scheyern” in Southern Germany | 48°30.0′N, 11°20.7′E | 农田 | 夏小麦 | 0-20 cm | 10- -20 ℃ | 对照 | 无冻融循环 | Su et al., | ||||
冻融处理 | -20 ℃ 3 d | |||||||||||
3 d和7 d | ||||||||||||
意大利 阿尔卑斯山 Alps, Italy | 45°50′N, 4°38′E | 森林 | 落叶松; 桤木; 冷杉 | 0.7-1.5 m | 4- -9 ℃ | 对照 | 无冻融循环 | Freppaz et al., | ||||
单次冻结 | -9 ℃ 12 h | |||||||||||
4 ℃ 12 h | ||||||||||||
4次冻结 | -9 ℃ 12 h | |||||||||||
4 ℃ 12 h | ||||||||||||
45°30′N, 7°51′E | 森林, 草地 | 白桦; 草甸 | 0-10 cm | 2.4- -4.3 ℃; | 对照 | 无冻融循环 | Freppaz et al., | |||||
1.8- -4.5 ℃ | 除雪处理 | -4.3 ℃或 -4.5-2.4 ℃ | ||||||||||
美国怀特山 White Mountains, USA | 43°56′N, 71°45′W | 森林 | 糖枫; 黄桦 | Oa层+ Bs层 | 对照 | 无冻融循环 | Neilson et al., | |||||
-3 ℃ | 重度冻结 | -13 ℃ 10 d | ||||||||||
-13℃ | 20-25 ℃ 3周 | |||||||||||
轻度冻结 | -3 ℃ 10 d | |||||||||||
20-25 ℃ 3周 | ||||||||||||
43°56′N, 71°45′W | 森林 | 红枫; 美国山毛榉 | 3-10 cm | 1- -0.5 ℃ | 对照 | 无冻融循环 | Sorensen et al., 2018 | |||||
4次冻融循环 | -0.5 ℃ 72 h | |||||||||||
1 ℃ 72 h | ||||||||||||
43°56′N, 71°45′W | 森林 | 美国山毛榉; 糖枫;黄桦 | Oa层+ Bs层 | -4.5 ℃/-5.8 ℃ | 对照 | 无冻融循环 | Groffman et al., | |||||
除雪处理 | -5.8 ℃和-4.5 ℃ | |||||||||||
美国科罗拉多 落基山 Colorado rocky mountains, USA | 40°03′N, 105°35′W | 草地 | 草甸 | 0-10 cm | 3- -5 ℃ | 对照 | 无冻融循环 | Lipson et al., | ||||
实验1 (6个冻融循环) | -5 ℃ | |||||||||||
3 ℃ | ||||||||||||
实验2 (6个冻融循环) | -5 ℃ | |||||||||||
0 ℃ | ||||||||||||
3 ℃ | ||||||||||||
实验3 (7个冻融循环) | -5 ℃ | |||||||||||
3 ℃ | ||||||||||||
美国内华达山脉 Southern Sierra Nevada, USA | 36°35′49″N, 118°40′29″W | 草地 | 草甸 | 0-10 cm | 5- -2 ℃ | 对照 | 无冻融循环 | Miller et al., | ||||
冻融处理 | 0 ℃ 16-24周; | |||||||||||
5 ℃ 48 h; | ||||||||||||
-2 ℃ 16周 | ||||||||||||
芬兰约基奥伊宁 Finland in Jokioinen | 60°49'N, 23°30'E | 农田 | — | 0-25 cm | 4.1- -17.3 ℃ | 对照 | 无冻融循环 | Koponen et al., 2006 | ||||
4次冻融循环 | -17.3 ℃ 5 d | |||||||||||
4.1 ℃ 7 d | ||||||||||||
高加索山脉 Caucasus Mountains | 43°27″N, 41°41′E | 荒原, 草地 | 草甸 | 0-10 cm | 4- -10 ℃ | 对照 | 无冻融循环 | Makarov et al., 2015 | ||||
1, 8和15次冻融循环 | -10 ℃ 10 d | |||||||||||
4 ℃ 10 d | ||||||||||||
挪威泰勒马克县 Telemark county, southern Norway | 59°01′N, 8°32′E | 温带灌丛 | 帚石楠; 麦氏草; 泥炭藓 | 0-15 cm | 5- -5 ℃ | 对照 | 无冻融循环 | Vestgarden et al., | ||||
快速冻融循环 | 2周内-5 ℃ 4个25 h | |||||||||||
慢速冻融循环 | 2周内-5 ℃ 1个123 h | |||||||||||
持续冷冻 | -5 ℃ | |||||||||||
持续融化 | 5 ℃ | |||||||||||
研究区 The study area | 经纬度 Latitude and longitude | 生态系统类型 Ecosystem type | 植被类型 Vegetation type | 土层深度 Soil depth | 冻融温度 Freeze-thaw temperature | 实验处理 Experimental treatment | 实验方法 Experimental method | 文献来源 References | ||||
青藏高原 Qinghai-Tibet Plateau | 30°57′N, 88°42′E | 草地 | 草甸 | 0-15 cm | 5- -15℃; | 对照 | 无冻融循环 | Fan et al., | ||||
5- -25 ℃ | 1, 2和4次冻融循环 | -10 ℃和-25 ℃ 1 d | ||||||||||
5 ℃ 1 d | ||||||||||||
32°59′N, 103°40′E | 草地 | 草甸 | 0-20 cm | 对照 | 无冻融循环 | Gao et al., | ||||||
5- -5 ℃ | 轻微冻结 | -5 ℃ | ||||||||||
5- -15 ℃ | 5 ℃ | |||||||||||
低温冻结 | -15 ℃ | |||||||||||
5 ℃ | ||||||||||||
33°03′N, 102°36′E | 草地 | 草甸 | 5- -5 ℃ | 对照 | 无冻融循环 | 谢青琰等, | ||||||
5- -15 ℃ | 3, 6, 9和15次冻融循环 | -5 ℃和-15 ℃ 24 h | ||||||||||
5 ℃ 24 h | ||||||||||||
长白山 Changbai Mountains | 42°24N, 128°6E | 森林 | 阔叶红松混交林; 白桦林 | 0-10 cm | 10- -8 ℃ | 对照 | 无冻融循环 | Xu et al., | ||||
10- -18 ℃ | 短期冻结 | -18 ℃和-80 ℃ 10 d | ||||||||||
10- -80 ℃ | 10 ℃ 21 d | |||||||||||
长期冻结 | -18 ℃和-80 ℃ 145 d | |||||||||||
10 ℃ 21 d | ||||||||||||
42°17′09.54″-42°25′16.22″N, 127°49′16.97″-128°05′35.47″E | 森林 | 硬阔叶林; 红松阔叶林; 次生白桦林 | 0-20 cm | 5- -15 ℃ | 对照 | 无冻融循环 | 高珊等, | |||||
8次冻融循环 | -15 ℃ 33 h | |||||||||||
5 ℃ 19 h | ||||||||||||
小兴安岭 Xiaoxing’an Mountains | 48°03′53″-48°17′11″N, 128°30′36″-128°45'00″E | 湿地 | 森林沼泽 | 0-20 cm | 对照 | 无冻融循环 | 郭冬楠等, | |||||
5- -5 ℃; | 1, 2, 4和9次小幅度冻融循环 | -5 ℃ 24 h | ||||||||||
5- -25 ℃ | 5 ℃ 24 h | |||||||||||
1, 2, 4和9次大幅度冻融循环 | -25 ℃ 24 h | |||||||||||
5 ℃ 24 h | ||||||||||||
大兴安岭 Daxing’an Mountains | 52°25′N, 122°52′E | 湿地 | 杜香; 蓝莓; 泥炭藓 | 0-45 cm | 10- -10 ℃ | 对照 | 无冻融循环 | Wang et al., | ||||
3, 5, 10和15次小幅度冻融循环 | -5 ℃ 24 h | |||||||||||
5 ℃ 24 h | ||||||||||||
3, 5, 10和15次大幅度冻融循环 | -10 ℃ 24 h | |||||||||||
10 ℃ 24 h | ||||||||||||
三江平原 Sanjiang Plain | 45°21.875′N, 132°18.372′E | 湿地 | 小叶章 | 0-10 cm | 10- -10 ℃ | 对照 | 无冻融循环 | Song et al., | ||||
20次冻融循环 | -10 ℃ 2 h | |||||||||||
-2 ℃ 1 h | ||||||||||||
2 ℃ 1 h | ||||||||||||
10 ℃ 2 h | ||||||||||||
47°35′N, 133°31′E | 湿地 | 小叶章 | 0-15 cm | 5- -5 ℃; | 对照 | 无冻融循环 | 周旺明等, | |||||
5- -25 ℃ | 1, 2, 4, 6和10次冻融循环 | -5 ℃或-25 ℃ 1 d | ||||||||||
5 ℃ 1 d | ||||||||||||
松嫩平原 Songnen Plain | 125.27803°N, 43.822955°E | 温带森林 | 农田防护林 | 0-30 cm | 10- -15 ℃ | 对照 | 无冻融循环 | Han et al., | ||||
8次冻融循环 | -15 ℃ 12 h | |||||||||||
10 ℃ 12 h | ||||||||||||
黄土高原 半干旱生态 系统研究站 Semi-arid Ecosystem Research Station of Loess Plateau | 36°2′N, 104°25′E | 草地, 农田 | 多花冰草; 苜蓿; 小麦; 玉米;马铃薯 | 0-20 cm | 3- -2 ℃ | 对照 | 无冻融循环 | Han et al., | ||||
3次冻融循环 | -2 ℃ 8 d | |||||||||||
3 ℃ 8 d | ||||||||||||
6次冻融循环 | -2 ℃ 4 d | |||||||||||
3 ℃ 48 d | ||||||||||||
新疆伊犁 Ili River Valley | 43°27′N, 82°54′E | 农田 | 玉米 | 0-20 cm | 对照 | 无冻融循环 | Liu et al., | |||||
5- -5 ℃ ; | 15次小幅度 冻融循环 | -5 ℃ 24 h | ||||||||||
10- -10 ℃ | 5 ℃ 24 h | |||||||||||
15次大幅度 冻融循环 | -10 ℃ 24 h | |||||||||||
10 ℃ 24 h | ||||||||||||
丹麦 Denmark | 54°55′N, 9°45′E | 农田 | 大麦 | 0-20 cm | 10- -20 ℃ | 对照 | 无冻融循环 | Christensen et al., | ||||
1次冻融循环 | -20 ℃ 4-8周 | |||||||||||
融化 | ||||||||||||
2次冻融循环 | -20 ℃ 4-8周 | |||||||||||
第一次融化 | ||||||||||||
10 ℃ 18 d | ||||||||||||
-20 ℃ 7周 | ||||||||||||
第二次融化 |
图1 冻融和非冻融处理对土壤可溶性碳氮含量的影响 数据为表1所有文献收集到的整合数据集。大写字母之间表示P<0.05水平上不同处理之间的空间差异。下同
Figure 1 Effect of freeze-thaw and non-freeze-thaw treatments on soil dissolved carbon and nitrogen content The data is the integrated data set collected from all the documents in Table 1. Capital letters indicate spatial differences between different treatments at the P<0.05 level. The same below
图3 土壤可溶性碳氮和微生物量碳氮的对数响应比(lnRR)的相关性 数据为表1所有文献收集到的整合数据集;蓝色和阴影区域分别代表拟合回归和95%置信区间
Figure 3 Correlation of log response ratios (lnRRs) between soil dissolved carbon and nitrogen and microbial biomass carbon and nitrogen The data is the integrated data set collected from all the documents in Table 1; The blue and shaded areas represent fitted regression and 95% confidence interval, respectively
图4 土壤可溶性碳氮和微生物量碳氮的对数响应比(lnRRs)与年平均降水之间的关系 数据为表1所有文献收集到的整合数据集;蓝线代表拟合回归,阴影区代表95%置信区间,水平虚线代表lnRR=0。下同
Figure 4 Relationship between log response ratios (lnRRs) of soil dissolved carbon and nitrogen, microbial biomass carbon and nitrogen, and mean annual precipitation The data is the integrated data set collected from all the documents in Table 1; The blue line represents the fitted regression, the shaded area represents the 95% confidence interval, and the horizontal dashed line represents lnRR=0. The same below
图5 土壤可溶性碳氮和微生物量碳氮的对数响应比(lnRRs)与年平均温度之间的关系
Figure 5 Relationship between log response ratios (lnRRs) of soil dissolved carbon and nitrogen, microbial biomass carbon and nitrogen, and mean annual temperature
[1] |
BADER J, 2014. The origin of regional arctic warming[J]. Nature, 509(7499): 167-168.
DOI URL |
[2] |
BROOKS P D, WILLIAMS M W, SCHMIDT S K, 1998. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt[J]. Biogeochemistry, 43(1): 1-15.
DOI URL |
[3] |
CHEN S Y, OUYANG W, HAO F H, 2013. Combined impacts of freeze-thaw processes on paddy land and dry land in Northeast China[J]. Science of the Total Environment, 456-457: 24-33.
DOI URL |
[4] | CHEN S Y, ZHAO Q, LIU W J, et al., 2018. Effects of freeze-thaw cycles on soil N2O concentration and flux in the permafrost regions of the Qinghai-Tibetan Plateau[J]. Sciences in Cold and Arid Regions, 10(1): 73-83. |
[5] |
CHRISTENSEN S, CHRISTENSEN B T, 1991. Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal[J]. Journal of Soil Science, 42(4): 637-647.
DOI URL |
[6] |
COOKSON W R, OSMAN M, MARSCHNER P, et al., 2007. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature[J]. Soil Biology & Biochemistry, 39(3): 744-756.
DOI URL |
[7] |
DAVIDSON E A, JANSSENS I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 440(7081): 165-173.
DOI URL |
[8] |
DELUCA T H, KEENEY D R, MCCARTY G W, 1992. Effect of freeze-thaw events on mineralization of soil nitrogen[J]. Biology and Fertility of Soils, 14(2):116-120.
DOI URL |
[9] |
DONG S K, WEN L, LI Y Y, et al., 2012. Soil-Quality Effects of Grassland Degradation and Restoration on the Qinghai-Tibetan Plateau[J]. Soil Science Society of America Journal, 76(6): 2256-2264.
DOI URL |
[10] | DURAN J, MORSE J L, GROFFMAN P M, et al., 2016. Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests[J]. Ecosphere, 7(3): e01251. |
[11] |
EVANS S E, WALLENSTEIN M D, BURKE I C, 2014. Is bacterial moisture niche a good predictor of shifts in community composition under long-term drought?[J]. Ecology, 95(1): 110-122.
PMID |
[12] | FAN J H, CAO Y Z, YAN Y, et al., 2012. Freezing-thawing cycles effect on the water soluble organic carbon, nitrogen and microbial biomass of alpine grassland soil in Northern Tibet[J]. African Journal of Microbiology Research, 6(3): 562-567. |
[13] |
FITZHUGH R D, DRISCOLL C T, GROFFMAN P M, et al., 2001. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem[J]. Biogeochemistry, 56(2): 215-238.
DOI URL |
[14] |
FREPPAZ M, CELI L, MARCHELLI M, et al., 2008. Snow removal and its influence on temperature and N dynamics in alpine soils (Vallee d'Aoste, northwest Italy)[J]. Journal of Plant Nutrition and Soil Science, 171(5): 672-680.
DOI URL |
[15] |
FREPPAZ M, WILLIAMS B L, EDWARDS A C, et al., 2007. Simulating soil freeze/thaw cycles typical of winter alpine conditions: Implications for N and P availability[J]. Applied Soil Ecology, 35(1): 247-255.
DOI URL |
[16] |
GAO D C, BAI E, YANG Y, et al., 2021. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling[J]. Soil Biology & Biochemistry, DOI: 10.1016/j.soilbio.2021.108283.
DOI |
[17] |
GAO D C, ZHANG L, LIU J, et al., 2018. Responses of terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle: A meta-analysis[J]. Global Change Biology, 24(6): 2377-2389.
DOI PMID |
[18] |
GAO Y H, ZENG X Y, XIE Q Y, et al., 2015. Release of carbon and nitrogen from alpine soils during thawing periods in the eastern Qinghai-Tibet Plateau[J]. Water Air and Soil Pollution, 226(7): 209.
DOI URL |
[19] |
GOLDBERG S D, MUHR J, BORKEN W, et al., 2008. Fluxes of climate-relevant trace gases between a Norway spruce forest soil and atmosphere during repeated freeze-thaw cycles in mesocosms[J]. Journal of plant nutrition and soil science, 171(5): 729-739.
DOI URL |
[20] |
GROFFMAN P M, DRISCOLL C T, FAHEY TJ, et al., 2001. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 56(2): 191-213.
DOI URL |
[21] |
GROFFMAN P M, HARDY J P, FASHU-KANU S, et al., 2011. Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape[J]. Biogeochemistry, 102(1-3): 223-238.
DOI URL |
[22] |
GROGAN P, MICHELSEN A, AMBUS P, et al., 2004. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology & Biochemistry, 36(4): 641-654.
DOI URL |
[23] |
GUGGENBERGER G, KAISER K, 2003. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation[J]. Geoderma, 113(3-4): 293-310.
DOI URL |
[24] |
HAN C L, GU Y J, KONG M, et al., 2018. Responses of soil microorganisms, carbon and nitrogen to freeze thaw cycles in diverse land-use types[J]. Applied Soil Ecology, 124: 211-217.
DOI URL |
[25] |
HAN Z M, DENG M W, YUAN A Q, et al., 2018. Vertical variation of a black soil’s properties in response to freeze-thaw cycles and its links to shift of microbial community structure[J]. Science of the Total Environment, 625: 106-113.
DOI URL |
[26] |
HERRMANN A, WITTER E, 2002. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology & Biochemistry, 34(10): 1495-1505.
DOI URL |
[27] |
JEFFERIES R L, WALKER N A, EDWARDS K A, et al., 2010. Is the decline of soil microbial biomass in late winter coupled to changes in the physical state of cold soils?[J]. Soil Biology & Biochemistry, 42(2): 129-135.
DOI URL |
[28] |
JIANG N, JUAN Y H, TIAN L L, et al., 2020. Soil water contents control the responses of dissolved nitrogen pools and bacterial communities to freeze-thaw in temperate soils[J]. Biomed Research International, DOI: 10.1155/2020/6867081.
DOI |
[29] |
KOPONEN H T, JAAKKOLA T, KEINANEN-TOIVOLA M M, et al., 2006. Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles[J]. Soil Biology & Biochemistry, 38(7): 1861-1871.
DOI URL |
[30] |
KREYLING J, SCHUMANN R, WEIGEL R, 2020. Soils from cold and snowy temperate deciduous forests release more nitrogen and phosphorus after soil freeze-thaw cycles than soils from warmer, snow-poor conditions[J]. Biogeosciences, 17(15): 4103-4117.
DOI URL |
[31] |
LAL R, 2004. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627.
DOI PMID |
[32] |
LARSEN K S, JONASSON S, MICHELSEN A, 2002. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 21(3): 187-195.
DOI URL |
[33] |
LIPSON D A, SCHMIDT S K, MONSON R K, 2000. Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass[J]. Soil Biology & Biochemistry, 32(4): 441-448.
DOI URL |
[34] |
LIPSON D A, SCHMIDT S K, MONSON R K, 1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem[J]. Ecology, 80(5): 1623-1631.
DOI URL |
[35] |
LIU S B, ZAMANIAN K, SCHLEUSS P M, et al., 2018. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles[J]. Agriculture Ecosystems & Environment, 252: 93-104.
DOI URL |
[36] |
LIU X, QI Z M, WANG Q, 2017. Effects of biochar addition on CO2 and CH4 emissions from a cultivated sandy loam soil during freeze-thaw cycles[J]. Plant soil and environment, 63(6): 243-249.
DOI URL |
[37] |
MAGILL A H, ABER J D, 2000. Variation in soil net mineralization rates with dissolved organic carbon additions[J]. Soil Biology & Biochemistry, 32(5): 597-601.
DOI URL |
[38] |
MAKAROV M I, MALYSHEVA T I, MULYUKOVA O S, et al., 2015. Freeze-thaw effect on the processes of transformation of carbon and nitrogen compounds in alpine meadow soils[J]. Russian Journal of Ecology, 46(4): 317-324.
DOI URL |
[39] |
MATZNER E, BORKEN W, 2008. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. European Journal of Soil Science, 59(2): 274-284.
DOI URL |
[40] |
MILLER A E, SCHIMEL J P, SICKMAN J O, et al., 2007. Mineralization responses at near-zero temperatures in three alpine soils[J]. Biogeochemistry, 84(3): 233-245.
DOI URL |
[41] |
MUHR J, BORKEN W, MATZNER E, 2009. Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil[J]. Global Change Biology, 15(4): 782-793.
DOI URL |
[42] |
MULLER C, KAMMANN C, OTTOW J C G, 2003. Nitrous oxide emission from frozen grassland soil and during thawing periods[J]. Journal of plant nutrition and soil science, 166(1): 46-53.
DOI URL |
[43] | MURPHY D V, RECOUS S, STOCKDALE E A, et al., 2003. Gross nitrogen fluxes in soil: Theory, measurement and application of N-15 pool dilution techniques[J]. Advances in Agronomy, 79: 69-118 |
[44] |
NAGARE R M, SCHINCARIOL R A, QUINTON W L, et al., 2012. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: laboratory investigations[J]. Hydrology and Earth System Science, 16(2): 501-515.
DOI URL |
[45] |
NEFF J C, HOOPER D U, 2002. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils[J]. Global Change Biology, 8(9): 872-884.
DOI URL |
[46] |
NEILSON C B, GROFFMAN P M, HAMBURG S P, et al., 2001. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal, 65(6): 1723-1730.
DOI URL |
[47] |
PEDERSEN E P, ELBERLING B, MICHELSEN A, 2020. Foraging deeply: Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic[J]. Global Change Biology, 26(11): 6523-6536.
DOI URL |
[48] |
PELSTER D E, CHANTIGNY M H, ROCHETTE P, et al., 2013. Crop residue incorporation alters soil nitrous oxide emissions during freeze-thaw cycles[J]. Canadian Journal of Soil Science, 93(4): 415-425.
DOI URL |
[49] |
SCHIMEL J P, CLEIN J S, 1996. Microbial response to freeze-thaw cycles in tundra and taiga soils[J]. Soil Biology & Biochemistry, 28(8): 1061-1066.
DOI URL |
[50] |
SCHMITT A, GLASER B, BORKEN W, et al., 2008. Repeated freeze-thaw cycles changed organic matter quality in a temperate forest soil[J]. Journal of Plant Nutrition and Soil Science, 171(5): 707-718.
DOI URL |
[51] |
SJURSEN H S, MICHELSEN A, HOLMSTRUP M, 2005. Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-Arctic soil[J]. Applied Soil Ecology, 28(1): 79-93.
DOI URL |
[52] |
SOLINGER S, KALBITZ K, MATZNER E, 2001. Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest[J]. Biogeochemistry, 55(3): 327-349.
DOI URL |
[53] |
SONG Y, ZOU Y C, WANG G P, et al., 2017a. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis[J]. Soil Biology & Biochemistry, 109: 35-49.
DOI URL |
[54] | SONG Y, ZOU Y C, WANG G P, et al., 2017b. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils[J]. Physics and Chemistry of the Earth, 97: 3-11. |
[55] |
SORENSEN P O, FINZI A C, GIASSON M A, et al., 2018. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology & Biochemistry, 116: 39-47.
DOI URL |
[56] |
STARK J M, FIRESTONE M K, 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria[J]. Applied and Environmental Microbiology, 61(1): 218-221.
DOI PMID |
[57] |
SU M X, KLEINEIDAM K, SCHLOTER M, 2010. Influence of different litter quality on the abundance of genes involved in nitrification and denitrification after freezing and thawing of an arable soil[J]. Biology and Fertility of Soils, 46(5): 537-541.
DOI URL |
[58] |
SUN Y, WANG C T, YANG J Y, et al., 2021. Elevated CO2 shifts soil microbial communities from K- to r-strategists[J]. Global Ecology and Biogeography, 30(5): 961-972.
DOI URL |
[59] |
URAKAWA R, SHIBATA H, KUROIWA M, et al., 2014. Effects of freeze-thaw cycles resulting from winter climate change on soil nitrogen cycling in ten temperate forest ecosystems throughout the Japanese archipelago[J]. Soil Biology & Biochemistry, 74: 82-94.
DOI URL |
[60] |
VESTGARDEN L S, AUSTNES K, 2009. Effects of freeze-thaw on C and N release from soils below different vegetation in a montane system: a laboratory experiment[J]. Global Change Biology, 15(4): 876-887.
DOI URL |
[61] | WALKER V K, PALMER G R, VOORDOUW G, 2006. Freeze-Thaw Tolerance and Clues to the Winter Survival of a Soil Community[J]. Applied & Environmental Microbiology, 72(3):1784-1792. |
[62] |
WANG J Y, SONG C C, HOU A X, et al., 2014. Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xing’anling Mountains, Northeast China[J]. Environmental Earth Sciences, 72(6): 1853-1860.
DOI URL |
[63] |
WANG Q X, FAN X H, WANG M B, 2014. Recent warming amplification over high elevation regions across the globe[J]. Climate Dynamics, 43(1-2): 87-101.
DOI URL |
[64] |
WATANABE T, TATENO R, IMADA S, et al., 2019. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 142(3): 319-338.
DOI URL |
[65] |
WILKINSON S C, ANDERSON J M, SCARDELIS S P, et al., 2002. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology & Biochemistry, 34(2): 189-200.
DOI URL |
[66] | WIPF S, SOMMERKORN M, STUTTER M I, et al., 2015. Snow cover, freeze-thaw, and the retention of nutrients in an oceanic mountain ecosystem[J]. Ecosphere, 6(10): 1-16. |
[67] |
XU X K, DUAN C T, WU H H, et al., 2016. Effect of intensity and duration of freezing on soil microbial biomass, extractable C and N pools, and N2O and CO2 emissions from forest soils in cold temperate region[J]. Science China-Earth Sciences, 59(1): 156-169.
DOI URL |
[68] |
YANAI Y, TOYOTA K, OKAZAKI M, 2004. Effects of successive soil freeze-thaw cycles on soil microbial biomass and organic matter decomposition potential of soils[J]. Soil Science and Plant Nutrition, 50(6): 821-829.
DOI URL |
[69] |
YERGEAU E, KOWALCHUK G A, 2008. Responses of Antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency[J]. Environmental Microbiology, 10(9): 2223-2235.
DOI PMID |
[70] |
YU X F, ZHANG Y X, ZHAO H M, et al., 2010. Freeze-thaw effects on sorption/desorption of dissolved organic carbon in wetland soils[J]. Chinese Geographical Science, 20(3): 209-217.
DOI URL |
[71] |
ZHANG T, BARRY R G, KNOWLES K, et al., 2008. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 31(1-2): 47-69.
DOI URL |
[72] |
ZHAO Y F, WANG X, OU Y S, et al., 2019. Variations in soil delta C-13 with alpine meadow degradation on the eastern Qinghai-Tibet Plateau[J]. Geoderma, 338: 178-186.
DOI URL |
[73] |
董晴雪, 罗斯琼, 文小航, 等, 2022. 近60年来藏东南降水变化及其对土壤温度与冻融过程的影响[J]. 高原气象, 41(2): 404-409.
DOI |
DONG Q X, LUO S Q, WEN X H, et al., 2022. Changes of precipitation and its effects on soil temperature and freeze-thaw process in southeastern Xizang in recent 60 Years[J]. Plateau Meteorology, 41(2): 404-409.
DOI |
|
[74] | 杜子银, 2020. 冻融作用对高寒草地土壤理化和生物学性质的影响[J]. 生态环境学报, 29(5): 1054-1061. |
DU Z Y, 2020. Effects of freeze-thaw action on soil physicochemical and biological properties in the alpine grasslands[J]. Ecology and Environmental Sciences, 29(5): 1054-1061. | |
[75] | 杜子银, 蔡延江, 王小丹, 等, 2014. 土壤冻融作用对植物生理生态影响研究进展[J]. 中国生态农业学报, 22(1): 1-9. |
DU Z Y, CAI Y J, WANG X D, et al., 2014. Research process on the effects of soil freeze-thaw on plant physiology and ecology[J]. Chinese Journal of Eco-Agriculture, 22(1): 1-9.
DOI URL |
|
[76] | 高珊, 尹航, 傅民杰, 等, 2018. 冻融循环对温带3种林型下土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 38(21): 7859-7869. |
GAO S, YIN H, FU M J, et al., 2018. Effects of freeze-thaw cycles on soil microbial biomass carbon,nitrogen,and nitrogen mineralization in three types of forest in the temperate zone[J]. Acta Ecologica Sinica, 38(21): 7859-7869. | |
[77] | 郭冬楠, 臧淑英, 赵光影, 等, 2015. 冻融作用对小兴安岭湿地土壤溶解性有机碳和氮素矿化的影响[J]. 水土保持学报, 2(5): 260-265. |
GUO D N, ZANG S Y, ZHAO G Y, et al., 2015. Effect of freeze-thaw action on dissolved organic carbon and nitrogen mineralization of wetland soil in Xiaoxing'an Mountains[J]. Journal of Soil and Water Conservation, 29(5): 260-265. | |
[78] | 胡嵩, 张颖, 史荣久, 等, 2013. 长白山原始红松林次生演替过程中土壤微生物生物量和酶活性变化[J]. 应用生态学报, 24(2): 366-372. |
HU S, ZHANG Y, SHI R J, et al., Temporal variations of soil microbial biomass and enzyme activities during the secondary succession of primary broadleaved-Pinuskoraiensis forests in Changbai Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 24(2): 366-372. | |
[79] | 隽英华, 田路路, 刘艳, 等, 2022. 冻融循环对农田黑土可溶性氮组分的调控效应[J]. 东北农业科学, 47(1): 51-56, 65. |
JUAN Y H, TIAN L L, LIU Y, et al., 2022. Regulation effects of freeze-thaw cycles on soluble nitrogen components in farmland black soil[J]. Journal of Northeast Agricultural Sciences, 47(1): 51-56, 65. | |
[80] | 刘淑霞, 王宇, 赵兰坡, 等, 2008. 冻融作用下黑土有机碳数量变化的研究[J]. 农业环境科学学报, 27(3): 984-990. |
LIU S X, WANG Y, ZHAO L P, et al., 2008. Effect of freezing and thawing on the content of organic carbon of black soil[J]. Journal of Agro-Environment Science, 27(3): 984-990. | |
[81] | 罗亚晨, 吕瑜良, 杨浩, 等, 2014. 冻融作用下寒温带针叶林土壤碳氮矿化过程研究[J]. 生态环境学报, 23(11):1769-1775. |
LUO Y C, LÜ Y L, YANG H, et al., 2014. Soil carbon and nitrogen mineralization in a Larix gmelinii forest during freeze-thaw cycles[J]. Ecology and Environmental Sciences, 23(11): 1769-1775. | |
[82] | 孙辉, 秦纪洪, 吴杨, 2008. 土壤冻融交替生态效应研究进展[J]. 土壤, 40(4): 505-509. |
SUN H, QIN J H, WU Y, 2008. Freeze-Thaw cycles and their impacts on ecological process: A review[J]. Soils, 40(4): 505-509. | |
[83] | 唐玉姝, 魏朝富, 颜廷梅, 等, 2007. 土壤质量生物学指标研究进展[J]. 土壤, 39(2): 157-163. |
TANG Y S, WEI C F, YAN T M, et al., 2007. Biological indicator of soil quality: A Review[J]. Soils, 39(2): 157-163. | |
[84] | 王娇月, 韩耀鹏, 宋长春, 等, 2018. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳矿化的影响研究[J]. 气候变化研究进展, 14(1): 59-66. |
WANG J Y, HAN Y P, SONG C C, et al., 2018. Effects of freezing-thawing cycles on soil organic carbon mineralization in the peatland ecosystems from continuous permafrost zone, Great Hinggan Mountains[J]. Climate Change Research, 14(1): 59-66. | |
[85] | 王康, 2015. 全球变化条件下地表冻融循环及多年冻土热状态响应研究[D]. 兰州: 兰州大学. |
WANG K, 2015. Responses of ground surface freeze-thaw cycles and thermal states of permafrost to global climate change[D]. Lanzhou: Lan Zhou University. | |
[86] | 王岩, 沈其荣, 史瑞和, 等, 1996. 土壤微生物量及其生态效应[J]. 南京农业大学学报, 19(4): 48-54. |
WANG Y, SHNE Q R, SHI R H, et al., 1996. Soil microbial biomass and its ecological effects[J]. Journal of Nanjing Agricultural University, 19(4): 48-54. | |
[87] | 吴旭东, 蒋齐, 任小玢, 等, 2021. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 30(7): 34-43. |
WU X D, JIANG Q, REN X F, et al., 2021. Effect of precipitation on carbon, nitrogen and microbial characteristics of biological soil crusts in a desert steppe of Northern China[J]. Acta Prataculturae Sinica, 30(7): 34-43. | |
[88] | 谢青琰, 高永恒, 2015. 冻融对青藏高原高寒草甸土壤碳氮磷有效性的影响[J]. 水土保持学报, 29(1): 137-142. |
XIE Q Y, GAO Y H, 2015. The effect of freezing-thawing on soil carbon, nitrogen and phosphorus availabilities in alpine meadow on the Qinghai-Tibetan Plateau[J]. Journal of Soil and Water Conservation, 29(1): 137-142. | |
[89] | 杨雪辰, 2020. 松嫩草地土壤微生物对降水变化的响应及其对氮循环的调节机制[D]. 长春: 东北师范大学. |
YANG X C, 2020. Soil microbial responses to precipitation and its regulation of the nitrogen cycle in Songnen meadow steppe[D]. Changchun: Northeast Normal University. | |
[90] | 杨阳, 章妮, 蒋莉莉, 等, 2021. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 29(5): 1043-1052. |
YANG Y, ZHANG N, JIANG L L, et al., 2021. Effect of simulated precipitation on soil edaphic physicochemical factors and microbial community characteristics in bird island of Qinghai Lake on The Tibetan Piateau[J]. Acta Agrestia Sinica, 29(5): 1043-1052. | |
[91] | 杨早, 朱单, 陈槐, 等, 2020. 季节冻融对泥炭沼泽碳排放的影响研究进展[J]. 应用与环境生物学报, 26(5): 1290-1298. |
YANG Z, ZHU D, CHEN H, et al., 2020. Research advances in the influences of seasonal freeze-thaw on carbon emissions from peatlands[J]. Chinese Journal of Applied and Environmental Biology, 26(5): 1290-1298. | |
[92] | 章妮, 暴涵, 左弟召, 等, 2021. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 37(12): 62-71. |
ZHANG N, BAO H, ZUO D Z, et al., 2021. Community characteristic of methanogens in alpine wetland driven by precipitation changes[J]. Biotechnology Bulletin, 37(12): 62-71. | |
[93] | 周旺明, 王金达, 刘景双, 等, 2008. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报, 24(3): 1-6. |
ZHOU W M, WANG J D, LIU J S, et al., 2008. Effects of freezing and thawing on dissolved organic carbon and nitrogen pool and nitrogen mineralization in typical wetland soils from Sanjiang Plain, Heilongjiang, China[J]. Journal of Ecology and Rural Environment, 24(3): 1-6. |
[1] | 葛元凯, 赵龙龙, 陈劲松, 任彦霓, 李洪忠. 1983-2020年西南地区气象干旱时空演变趋势及干旱事件识别[J]. 生态环境学报, 2023, 32(5): 920-932. |
[2] | 付蓉, 武新梅, 陈斌. 城市地表温度空间分异及驱动因子差异性分析——以合肥市为例[J]. 生态环境学报, 2023, 32(1): 110-122. |
[3] | 蒋恬田, 杨纯, 廖炜, 胡力, 刘欢瑶, 任勃, 李小马. 城市绿地景观格局影响地表温度的通径分析——以长沙市为例[J]. 生态环境学报, 2023, 32(1): 18-25. |
[4] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[5] | 韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
[6] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[7] | 雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应[J]. 生态环境学报, 2022, 31(6): 1151-1159. |
[8] | 陈丽娟, 周文君, 易艳芸, 宋清海, 张一平, 梁乃申, 鲁志云, 温韩东, MOHD Zeeshan, 沙丽清. 云南哀牢山亚热带常绿阔叶林土壤CH4通量特征[J]. 生态环境学报, 2022, 31(5): 949-960. |
[9] | 李春环, 王攀, 余海龙, 李冰, 黄菊莹. 西北荒漠煤矿区降水降尘中盐基离子沉降特征及其效应研究[J]. 生态环境学报, 2022, 31(5): 969-978. |
[10] | 李喆, 陈圣宾, 陈芝阳. 地表温度与土地利用类型间的空间尺度依赖性——以成都为例[J]. 生态环境学报, 2022, 31(5): 999-1007. |
[11] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[12] | 闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3): 546-555. |
[13] | 张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682. |
[14] | 王锐, 章新平, 戴军杰, 罗紫东, 贺新光, 关华德. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征[J]. 生态环境学报, 2021, 30(6): 1148-1157. |
[15] | 侯素霞, 雷旭阳, 张辉, 丁淑杰, 崔广宇. 基于EEM与PCR-DGGE技术分析温度对蚯蚓堆肥处理城镇污泥的影响[J]. 生态环境学报, 2021, 30(5): 1060-1068. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||