生态环境学报 ›› 2021, Vol. 30 ›› Issue (8): 1672-1682.DOI: 10.16258/j.cnki.1674-5906.2021.08.014
张开1(), 王立为1,2,*(
), 高西宁1,2, 贺明慧3
收稿日期:
2021-04-25
出版日期:
2021-08-18
发布日期:
2021-11-03
通讯作者:
* 王立为(1986年生),男,讲师,博士,从事农业温室气体排放研究。E-mail: wlw@syau.edu.cn作者简介:
张开(1997年生),女,硕士研究生,从事农业温室气体排放研究。E-mail: 821389356@qq.com
基金资助:
ZHANG Kai1(), WANG Liwei1,2,*(
), GAO Xining1,2, HE Minghui3
Received:
2021-04-25
Online:
2021-08-18
Published:
2021-11-03
摘要:
农田N2O排放和产量的形成与施肥和水分的关系密切。为了探究不同降水年型下马铃薯(Solanum tuberosum)田不同施肥方式处理下土壤N2O减排增产潜力,进而提出基于减排和稳产增产的优化施肥方式,利用沈阳市1990—2019年共30年降水数据进行降水年型划分,以马铃薯田为研究对象,设置4种施氮梯度,分别为不施氮肥(0 kg∙hm-2)、低氮(60 kg∙hm-2)、中氮(120 kg∙hm-2)、高氮(180 kg∙hm-2)4种施氮水平,采用静态箱—气相色谱法对土壤N2O气体排放进行田间原位观测,进而运用DeNitrification-DeComposition(DNDC)模型探究在不同降水年型下马铃薯田增产减排的潜力。结果表明,(1)DNDC模型可以较为准确模拟马铃薯田N2O排放通量以及产量情况,模型效率指数分别在0.45—0.88和0.85—0.91之间。(2)运用DNDC模型模拟研究不同降水年型下马铃薯田增产减排的最优施肥量,结果发现随施肥量增加马铃薯产量均呈现出先增加后减少的变化趋势,而N2O排放通量呈现出一直增加的变化趋势。在增产减排的前提下得出干旱年的优化施肥量为45—60 kg∙hm-2,平水年为75—90 kg∙hm-2,湿润年为105—120 kg∙hm-2。(3)在各年型优化施肥量的前提下,提出了适宜的施肥深度以及施肥比例。在干旱年和平水年,随施肥深度增加产量先增加后减少,N2O排放通量却一直增加,当施肥深度为10—15 cm、基追比例为50%+50%时,模型模拟达到最优产量;而在湿润年,随施肥深度增加产量和N2O排放均增加,当施肥深度为20 cm、基追比例为60%+40%时模型模拟达到最优产量。
中图分类号:
张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682.
ZHANG Kai, WANG Liwei, GAO Xining, HE Minghui. Effects of Nitrogen Management on the Potential of N2O Emission Reduction and Yield Increase in Potato Field under Different Precipitation Patterns Based on DNDC Model[J]. Ecology and Environment, 2021, 30(8): 1672-1682.
年型 Annual pattern of precipitation | 合计(年) Total (year) | 年份 Years |
---|---|---|
干旱年 Dry year | 11 | 1992, 1997, 1999, 2000, 2001, 2006, 2011, 2014, 2015, 2017, 2018 |
平水年 Normal year | 8 | 1990, 1993, 1996, 2003, 2004, 2007, 2008, 2009 |
湿润年 Wet year | 11 | 1991, 1994, 1995, 1998, 2002, 2005, 2010, 2012, 2013, 2016, 2019 |
表1 不同降水年型
Table 1 Annual types of different precipitation
年型 Annual pattern of precipitation | 合计(年) Total (year) | 年份 Years |
---|---|---|
干旱年 Dry year | 11 | 1992, 1997, 1999, 2000, 2001, 2006, 2011, 2014, 2015, 2017, 2018 |
平水年 Normal year | 8 | 1990, 1993, 1996, 2003, 2004, 2007, 2008, 2009 |
湿润年 Wet year | 11 | 1991, 1994, 1995, 1998, 2002, 2005, 2010, 2012, 2013, 2016, 2019 |
图3 N2O排放通量的模拟值与实测值的拟合关系 (a)、(b)、(c)分别代表2017、2018、2019年
Fig. 3 The fitting relationship between simulated and measured of N2O emission fluxes (a), (b) and (c) represent 2017, 2018 and 2019 respectively
年份 Year | 处理 Treatment | r 2 | P | E | EF |
---|---|---|---|---|---|
2017 | N0 | 0.92 | 0.000 | -1.17 | 0.88 |
N1 | 0.88 | 0.000 | 4.90 | 0.85 | |
N2 | 0.74 | 0.000 | 1.98 | 0.73 | |
N3 | 0.62 | 0.000 | -19.79 | 0.45 | |
2018 | N0 | 0.88 | 0.000 | -0.89 | 0.80 |
N1 | 0.84 | 0.000 | 6.32 | 0.63 | |
N2 | 0.87 | 0.000 | 6.35 | 0.64 | |
N3 | 0.90 | 0.000 | -0.78 | 0.83 | |
2019 | N0 | 0.76 | 0.000 | 5.43 | 0.59 |
N1 | 0.88 | 0.000 | 9.36 | 0.63 | |
N2 | 0.83 | 0.000 | 11.24 | 0.56 | |
N3 | 0.81 | 0.000 | 4.37 | 0.66 |
表2 DNDC模型对不同施氮水平N2O排放模型拟合指标
Table 2 Fitting indexes of DNDC model for N2O emission model under different nitrogen application levels
年份 Year | 处理 Treatment | r 2 | P | E | EF |
---|---|---|---|---|---|
2017 | N0 | 0.92 | 0.000 | -1.17 | 0.88 |
N1 | 0.88 | 0.000 | 4.90 | 0.85 | |
N2 | 0.74 | 0.000 | 1.98 | 0.73 | |
N3 | 0.62 | 0.000 | -19.79 | 0.45 | |
2018 | N0 | 0.88 | 0.000 | -0.89 | 0.80 |
N1 | 0.84 | 0.000 | 6.32 | 0.63 | |
N2 | 0.87 | 0.000 | 6.35 | 0.64 | |
N3 | 0.90 | 0.000 | -0.78 | 0.83 | |
2019 | N0 | 0.76 | 0.000 | 5.43 | 0.59 |
N1 | 0.88 | 0.000 | 9.36 | 0.63 | |
N2 | 0.83 | 0.000 | 11.24 | 0.56 | |
N3 | 0.81 | 0.000 | 4.37 | 0.66 |
年份 Year | r 2 | P | E | EF |
---|---|---|---|---|
2017 | 0.97 | 0.017 | -403.82 | 0.91 |
2018 | 0.98 | 0.008 | 586.83 | 0.93 |
2019 | 0.92 | 0.041 | 52.29 | 0.85 |
表3 DNDC模型对不同施氮水平产量拟合指标
Table 3 Yield fitting indexes of DNDC model under different nitrogen application levels
年份 Year | r 2 | P | E | EF |
---|---|---|---|---|
2017 | 0.97 | 0.017 | -403.82 | 0.91 |
2018 | 0.98 | 0.008 | 586.83 | 0.93 |
2019 | 0.92 | 0.041 | 52.29 | 0.85 |
图5 DNDC模型模拟的不同降水年型N2O累计排放量、产量与施氮量之间的关系 (a)、(b)、(c)分别代表干旱年、平水年和湿润年
Fig. 5 The relationship between cumulative N2O emission, yield and nitrogen application in different precipitation years simulated by DNDC model (a), (b) and (c) represent dry year, normal year and wet year, respectively
图6 DNDC模型模拟的不同降水年型N2O累计排放量、产量与施肥深度之间的关系 (a)、(b)、(c)分别代表干旱年、平水年和湿润年
Fig. 6 The relationship between cumulative N2O emission, yield and fertilization depth in different precipitation years simulated by DNDC model (a), (b) and (c) represent dry year, normal year and wet year respectively
图7 DNDC模型模拟的不同降水年型N2O累计排放量、产量与施肥比例之间的关系 (a)、(b)、(c)分别代表干旱年、平水年和湿润年;以 (95%+5%) 为例,表示施基肥95%,追肥5%
Fig. 7 The relationship between cumulative N2O emission, yield and fertilization ratio in different precipitation years simulated by DNDC model (a), (b) and (c) represent dry year, normal year and wet year, respectively; Taking (95%+5%) as an example, it means 95% of base fertilizer and 5% of topdressing
[1] | BARNARD R, LEADLEY P W, HUNGATE B A, 2005. Global change, nitrification, and denitrification: A review[J]. Global Biogeochemical Cycles, 19(1): 1-13. |
[2] |
BATEMAN E J, BAGGS E M, 2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space[J]. Biology and Fertility of Soils, 41(6): 379-338.
DOI URL |
[3] |
GARCÍA-LÓPEZ J, LORITE I J, GARCÍA-RUIZ R, et al., 2016. Yield response of sunflower to irrigation and fertilization under semi-arid conditions[J]. Agricultural Water Management, 176: 151-162.
DOI URL |
[4] |
GHOSH S, MAJUMDAR D, JAIN M C, 2003. Methane and nitrous oxide emissions from an irrigated rice of North India[J]. Chemosphere, 51(3): 181-195.
DOI URL |
[5] |
GILTRAP D L, LI C S, SAGGAR S, 2009. DNDC: A process-based model of greenhouse gas fluxes from agricultural soils[J]. Agriculture Ecosystems & Environment, 136(3): 292-300.
DOI URL |
[6] | HU H W, XU Z H, HE J Z, 2014. Ammonia-Oxidizing Archaea Play a Predominant Role in Acid Soil Nitrification[J]. Advances in Agronomy, 125: 261-302. |
[7] | IPCC, 2014. Climate change 2013: The physical science basis: Working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press. |
[8] |
KIANI M, GHEYSARI M, MOSTAFAZADEH-FARD B, et al., 2016. Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region[J]. Agricultural Water Management, 171: 162-172.
DOI URL |
[9] |
LI C S, FROLKING S, FROLKING T A, 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity[J]. Journal of Geophysical Research Atmospheres, 97(D9): 9759-9776.
DOI URL |
[10] | LIU Y, WANG C Y, DING L Y, et al., 2019. Influence of deployment time and surface wind speed on the accuracy of measurements of greenhouse gas fluxes using a closed chamber method under low surface wind speed[J]. Journal of the Air & Waste Management Association, 69(2): 209-219. |
[11] |
SHCHERBAK I, MILLAR N, ROBERTSON G P, 2014. Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen[J]. Proceedings of the National Academy of Sciences, 111(25): 9199-9204.
DOI URL |
[12] |
SMITH K A, BALL T, CONEN F, et al., 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 54(4): 779-791.
DOI URL |
[13] |
SNYDER C S, BRUULSEMA T W, JENSEN T L, et al., 2009. Review of greenhouse gas emissions from crop production systems and fertilizer management effects[J]. Agriculture Ecosystems & Environment, 133(3): 247-266.
DOI URL |
[14] |
WANG L W, WANG C, PAN Z H, et al., 2017. N2O emission characteristics and its affecting factors in rain-fed potato fields in Wuchuan County, China[J]. International journal of biometeorology, 61(5): 911-919.
DOI URL |
[15] |
WELZMILLER J T, MATTHIAS A D, WHITE S, et al., 2008. Elevated Carbon Dioxide and Irrigation Effects on Soil Nitrogen Gas Exchange in Irrigated Sorghum[J]. Soil Science Society of America Journal, 72(2): 393-401.
DOI URL |
[16] | WERNER C, ZHENG X, TANG J, et al., 2006. N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China[J]. Plant & Soil, 289(1-2): 335-353. |
[17] | 巴特尔·巴克, 彭镇华, 张旭东, 等, 2007. 生物地球化学循环模型DNDC及其应用[J]. 土壤通报, 38(6): 1208-1212. |
BAKE B, PENG Z H, ZHANG X D, et al., 2007. Biogeochemical Model DNDC and Its Application[J]. Chinese Journal of Soil Science, 38(6): 1208-1212. | |
[18] | 常乃杰, 2020. 气候变化背景下施肥管理措施对环渤海区域主要粮食作物产量和固碳减排的影响[D]. 北京: 中国农业科学院. |
CHANG N J, 2020. Chinese Academy of Agricultural Sciences Thesis[D]. Beijing: Institute of Agricultural Resources and Regional Planning. | |
[19] | 陈萌山, 王小虎, 2015. 中国马铃薯主食产业化发展与展望[J]. 农业经济问题, 36(12): 4-11. |
CHEN M S, WANG X H, 2015. Development and Prospect of potato staple food industrialization in China[J]. Agricultural economic problems, 36(12): 4-11. | |
[20] | 曹文超, 宋贺, 王娅静, 等, 2019. 农田土壤N2O排放的关键过程及影响因素[J]. 植物营养与肥料学报, 25(10): 1781-1798. |
CAO W C, SONG H, WANG Y J, et al., 2019. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils[J]. Journal of Plant Nutrition and Fertilizers, 25(10): 1781-1798. | |
[21] | 丛鑫, 庞桂斌, 张立志, 等, 2021. 减氮适水对冬小麦光合特性与土壤水氮分布的影响[J]. 农业机械学报, 52(6): 324-332. |
CONG X, PANG G B, ZHANG L Z, et al., 2021. Effects of Nitrogen-reducing and Suitable Water on Photosynthetic Characteristics of Winter Wheat and Distribution of Soil Water and Nitrogen[J]. Transactions of the Chinese Society for Agricultural Machinery, 52(6): 324-332. | |
[22] | 杜吴鹏, 缪启龙, 2006. 温室气体对气候环境的影响预测及其不确定性[J]. 环境科学与技术, 29(2): 72-74. |
DU W P, MIU Q L, 2006. Impacts of Greenhouse Gases on Climatic Environment: Prediction and Its Uncertainties Analysis[J]. Environmental Science and Technology, 29(2): 72-74. | |
[23] | 郭宁, 2011. 水分胁迫下施肥深度对冬小麦生长及根系提水作用的影响[D]. 杨凌: 西北农林科技大学. |
GUO N, 2011. Effects of Fertilization Depth on Growth and Hydraulic Lift of Winter under Water Stress[D]. Yangling: Northwest A & F University. | |
[24] | 李建明, 潘铜华, 王玲慧, 等, 2014. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 30(10): 82-90. |
LI J M, PAN T H, WANG L H, et al., 2014. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(10): 82-90. | |
[25] | 李晓州, 郝明德, 赵晶, 等, 2018. 不同降水年型下长期施肥的小麦产量效应[J]. 应用生态学报, 29(10): 3237-3244. |
LI X Z, HAO M D, ZHAO J, et al., 2018. Effect of long-term fertilization on wheat yield under different precipitation patterns[J]. Chinese Journal of Applied Ecology, 29(10): 3237-3244. | |
[26] | 李长生, 肖向明, FROLKING S, et al., 2003. 中国农田的温室气体排放[J]. 第四纪研究, 23(5): 493-503. |
LI C S, XIAO X M, FROLKING S, et al., 2003. Greenhouse Gas Emissions from Croplands of China[J]. Quaternary Sciences, 23(5): 493-503. | |
[27] | 马晨光, 蔡焕杰, 卢亚军, 2020. 基于APSIM模型不同水氮处理下N2O的排放研究[J]. 灌溉排水学报, 39(11): 120-129. |
MA C G, CAI H J, LU Y J, 2020. Modelling the Impact of Water and Nitrogen Application on N2O Emission from Farmland Using the APSIM Model[J]. Journal of Irrigation and Drainage, 39(11): 120-129. | |
[28] | 孟炀, 2018. 施肥与覆膜对雨养区马铃薯产量及水肥利用效率的影响[D]. 银川: 宁夏大学. |
MENG Y, 2018. Effect of Fertilizer Application and Film Mulching on Potato Yield,Water and Fertilizer efficiency in Rainfed Area[D]. Yinchuan: Ningxia University. | |
[29] | 祁有玲, 张富仓, 李开峰, 2009. 水分亏缺和施氮对冬小麦生长及氮素吸收的影响[J]. 应用生态学报, 20(10): 2399-2405. |
QI Y L, ZHANG F C, LI K F, 2009. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen up-take. Chinese Journal of Applied Ecology, 20(10): 2399-2405. | |
[30] | 尚杰, 杨果, 于法稳, 2015. 中国农业温室气体排放量测算及影响因素研究[J]. 中国生态农业学报, 23(3): 354-364. |
SHANG J, YANG G, YU F W, 2015. Agricultural greenhouse gases emissions and influencing factors in China[J]. Chinese Journal of Eco-Agriculture, 23(3): 354-364. | |
[31] | 万伟帆, 2017. 尿素不同用量及处理措施对马铃薯田温室气体排放和氨挥发影响的研究[D]. 呼和浩特: 内蒙古农业大学. |
WAN W F, 2017. Effects of Different Amounts of Urea and Treatment on Greenhouse Gases Emission and Ammonia Volatilization in Potato Field[D]. Hohhot: Inner Mongolia Agricultural University. | |
[32] | 王静怡, 陈珏颖, 刘合光, 2015. 我国马铃薯供求的影响因素及未来趋势分析[J]. 广东农业科学, 42(24): 189-193. |
WANG J Y, CHEN Y Y, LIU G H, 2015. Influence factors and future trend of potato supply and demand in China[J]. Agricultural science of Guangdong Province, 42(24): 189-193. | |
[33] | 王立为, 郭康军, 李鸣钰, 等, 2019. 基于DNDC模型多因子对马铃薯田N2O排放和产量的影响研究[J]. 生态环境学报, 28(06): 1141-1151. |
WANG L W, GUO K J, LI M Y, et al., 2019. Research on the Effect of Multifactor of DNDC Model on N2O Emission and Yield of Potato Field[J]. Ecology and Environmental Sciences, 28(6): 1141-1151. | |
[34] | 吴龙国, 张瑶, 2021. 浅层土壤水分特征曲线模拟与运移机理研究[J]. 农机化研究, 43(11): 165-170. |
WU L G, ZHANG Y, 2021. Mechanism of Water Transport and Simulation of Water Characteristic Curve in Surface Soil[J]. Research on Agricultural Mechanization, 43(11): 165-170. | |
[35] | 谢海宽, 江雨倩, 李虎, 等, 2017. DNDC模型在中国的改进及其应用进展[J]. 应用生态学报, 28(8): 2760-2770. |
XIE H K, JIANG Y Q, LI H, et al., 2017. Modification and application of the DNDC model in China[J]. Chinese Journal of Applied Ecology, 28(8): 2760-2770. | |
[36] | 肖石江, 普红梅, 王鑫, 等, 2021. 水肥耦合对冬马铃薯产量和水分利用效率的影响[J]. 中国土壤与肥料 (2): 133-140. |
XIAO S J, PU H M, WANG X, et al., 2021. Effect of water and fertilizer coupling on yield and water use efficiency of winter potato[J]. Chinese Journal of soil and fertilizer (2): 133-140. | |
[37] | 杨劲峰, 韩晓日, 战秀梅, 等, 2007. 不同施肥处理对棕壤N2O排放量的影响[J]. 生态环境学报, 16(2): 560-563. |
YANG J F, HAN X R, ZHAN X M, et al., 2007. Effects of different fertilization on N2O emission in brown field[J]. Ecology and Environment, 16(2): 560-563. | |
[38] | 易琼, 逄玉万, 杨少海, 等, 2013. 施肥对稻田甲烷与氧化亚氮排放的影响[J]. 生态环境学报, 22(8): 1432-1437. |
YI Q, PANG Y W, YANG S H, et al., 2013. Methane and nitrous oxide emissions in paddy field as influenced by fertilization[J]. Ecology and Environmental Sciences, 22(8): 1432-1437. | |
[39] | 于亚军, 李军, 贾志宽, 等, 2006. 不同水肥条件对宁南旱地谷子产量、WUE及光合特性的影响[J]. 水土保持研究, 13(2): 87-90. |
YU Y J, LI J, JIA Z K, et al., 2006. Effect of Different Water and Fertilizer on Yield, WUE and Photosynthetic Characteristics of Millet in Southern Ningxia Semi-arid Area[J]. Research of Soil and Water Conservation, 13(2): 87-90. | |
[40] | 张富仓, 高月, 焦婉如, 等, 2017. 水肥供应对榆林沙土马铃薯生长和水肥利用效率的影响[J]. 农业机械学报, 48(3): 270-278. |
ZHANG F C, GAO Y, JIAO W R, et al., 2017. Effects of Water and Fertilizer Supply on Growth,Water and Nutrient Use Efficiencies of Potato in Sandy Soil of Yulin Area[J]. Transactions of the Chinese Society for Agricultural Machinery, 48(3): 270-278. | |
[41] | 张鹏飞, 2020. 不同施肥处理下橘园土壤氧化亚氮排放特征[D]. 武汉: 华中农业大学. |
ZHANG P F, 2020. Characteristics of nitrous oxide emissions from citrus orchard soil under different fertilization treatments[D]. Wuhan: Huazhong Agricultural University. | |
[42] | 赵志华, 李建明, 张大龙, 等, 2013. 水钾耦合对大棚厚皮甜瓜产量和可溶性固形物含量的影响[J]. 西北农林科技大学学报(自然科学版), 41(8): 161-167. |
ZHAO Z H, LI J M, ZHANG D L, et al., 2013. Interactive effects of water and potassium on yield and soluble solid content of plastic greenhouse muskmelon[J]. Journal of Northwest A&F University (Natural Science Edition), 41(8): 161-167. | |
[43] | 周波, 2015. 浅议马铃薯的需肥规律及存在的问题[J]. 农民致富之友 (3): 79. |
ZHOU B, 2015. Discussion on the law of fertilizer requirement and existing problems of potato[J]. Friends of Farmers to Become rich (3): 79. |
[1] | 胡启瑞, 吉春容, 李迎春, 王雪姣, 杨明凤, 郭燕云. 膜下滴灌棉花蕾期干旱胁迫对光合特性及产量的影响[J]. 生态环境学报, 2023, 32(6): 1045-1052. |
[2] | 王敬, 孟珂, 陈璇, 章家恩, 向慧敏, 钟嘉文, 石兆基. 酸雨对生菜和上海青的产量、品质及生理特性的影响[J]. 生态环境学报, 2023, 32(6): 1098-1107. |
[3] | 李成伟, 刘章勇, 龚松玲, 杨伟, 李绍秋, 朱波. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968. |
[4] | 刘江, 朱丽杰, 张开, 王晓明, 王立为, 高西宁. 不同生育期干旱胁迫/复水对大豆光合特性及产量的影响[J]. 生态环境学报, 2022, 31(2): 286-296. |
[5] | 黄巧义, 于俊红, 黄建凤, 黄旭, 李苹, 付弘婷, 唐拴虎, 刘一锋, 徐培智. 广东省主要农作物秸秆养分资源量及替代化肥潜力[J]. 生态环境学报, 2022, 31(2): 297-306. |
[6] | 韩芳, 包媛媛, 刘项宇, 张新永, 韦灯会, 张浩然, 田清龙. 不同轮作方式对马铃薯根际土壤真菌群落结构的影响[J]. 生态环境学报, 2021, 30(7): 1412-1419. |
[7] | 党慧慧, 刘超, 伍翥嵘, 王圆媛, 胡正华, 李琪, 陈书涛. 不同播期粳稻稻田甲烷排放及综合效益研究[J]. 生态环境学报, 2021, 30(7): 1436-1446. |
[8] | 朱勇勇, 宋秉羲, 杨王敏, 张宇鹏, 高志红, 陈晓远. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响[J]. 生态环境学报, 2021, 30(11): 2150-2156. |
[9] | 武岩, 靳拓, 王跃飞, 贺鹏程, 罗军, 刘宏金, 张雷, 郭晓宇, 陈瑞英. 内蒙古阴山北麓马铃薯应用PBAT/PLA全生物降解地膜可行性分析[J]. 生态环境学报, 2021, 30(10): 2100-2108. |
[10] | 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||