生态环境学报 ›› 2021, Vol. 30 ›› Issue (6): 1148-1157.DOI: 10.16258/j.cnki.1674-5906.2021.06.005
王锐1(), 章新平1,2,*(
), 戴军杰1, 罗紫东1, 贺新光1,2, 关华德3
收稿日期:
2020-12-15
出版日期:
2021-06-18
发布日期:
2021-09-10
通讯作者:
* 章新平(1956年生),男,教授,博士,博士研究生导师,主要从事气候变化与水文同位素研究。E-mail: zxp@hunnu.edu.cn作者简介:
王锐(1995年生),男,硕士研究生,主要从事植被与生态水文研究。E-mail: 2869299935@qq.com
基金资助:
WANG Rui1(), ZHANG Xinping1,2,*(
), DAI Junjie1, LUO Zidong1, HE Xinguang1,2, GUAN Huade3
Received:
2020-12-15
Online:
2021-06-18
Published:
2021-09-10
摘要:
为揭示亚热带湿润地区森林系统内部的水文过程,通过分析长沙地区针阔混交林内降水、土壤水、樟树(Cinnamomum camphora)和刺杉(Cunninghamia lanceolate)茎杆水与叶片水中稳定同位素组成,并结合相关环境因子,分析了亚热带地区水分在森林系统(SPAC)内部转换过程中稳定同位素的变化特征及其影响因素。结果表明:研究区降水、土壤水和樟树、刺杉茎杆水中δ18O均表现出在湿润期(10月至次年6月)偏正,在干旱期(7—9月)偏负的季节变化趋势。其中,林下土壤水中δ18O随深度的增加季节变化逐渐减小。与茎杆水中δ18O明显的季节变化不同,在湿润期和干旱期典型晴日樟树与刺杉茎杆水中δ18O不存在明显的日内变化。相较于茎杆水中δ18O,樟树和刺杉叶片水中稳定同位素既存在明显季节变化也存在明显的日内变化。在湿润期内,两种植物叶片水中δ18O、Δ18OL(叶片水同位素富集程度)均大于干旱期两种植物叶片水中δ18O、Δ18OL,叶片水线(LWL)的斜率则小于干旱期两种植物LWL的斜率。在湿润期典型晴日内,樟树和刺杉叶片水中δ18O、Δ18OL明显大于干旱期典型晴日内叶片水中δ18O、Δ18OL,LWL的斜率则小于干旱期典型晴日内两种植物LWL的斜率。基于Δ18OL与各气象因子的相关性分析得到,在季节变化上,相对湿度、太阳辐射和饱和水汽压差是影响樟树和刺杉叶片水中稳定同位素富集程度的主要因子;在日内变化上,温度、相对湿度和饱和水汽压差对两种植物叶片水中稳定同位素富集程度影响最大。
中图分类号:
王锐, 章新平, 戴军杰, 罗紫东, 贺新光, 关华德. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征[J]. 生态环境学报, 2021, 30(6): 1148-1157.
WANG Rui, ZHANG Xinping, DAI Junjie, LUO Zidong, HE Xinguang, GUAN Huade. Characteristics of Water Stable Isotopes in Soil-plant-atmosphere Continuum (SPAC) in the Needle-leaf and Broad-leaf Mixed Forest in Subtropical Region[J]. Ecology and Environment, 2021, 30(6): 1148-1157.
时间 Date | 降水 Precipitation | 土壤水 Soil water | |||||||
---|---|---|---|---|---|---|---|---|---|
P | n | SW0‒10 cm | SW10‒20 cm | SW20‒60 cm | SW60‒100 cm | n | |||
湿润期 (10月至次年6月) | 2017 | -6.69±3.45 | 50 | -4.64±2.43 | -5.22±1.39 | -6.49±1.20 | -7.96±1.49 | 7 | |
2017—2018 | -5.29±2.74 | 64 | -6.48±2.65 | -7.09±2.46 | -7.72±1.03 | -7.28±0.68 | 20 | ||
2018—2019 | -4.81±2.46 | 126 | -5.44±1.87 | -6.26±1.85 | -7.16±1.63 | -7.64±1.20 | 16 | ||
干旱期 (7—9月) | 2017 | -10.38±2.35 | 13 | -10.19±1.02 | -10.44±0.76 | -8.47±0.98 | -6.77±0.55 | 8 | |
2018 | -8.93±2.06 | 21 | -8.27±0.90 | -8.68±0.74 | -7.97±0.70 | -7.90±0.36 | 6 | ||
2019 | -8.64±2.19 | 10 | -7.14±1.35 | -8.26±1.06 | -7.51±1.22 | -6.38±0.91 | 8 |
表1 干旱期、湿润期内降水(P)和土壤水(SW)中δ18O
Table 1 δ18O in precipitation (P) and soil water (SW) in wet and dry periods ‰
时间 Date | 降水 Precipitation | 土壤水 Soil water | |||||||
---|---|---|---|---|---|---|---|---|---|
P | n | SW0‒10 cm | SW10‒20 cm | SW20‒60 cm | SW60‒100 cm | n | |||
湿润期 (10月至次年6月) | 2017 | -6.69±3.45 | 50 | -4.64±2.43 | -5.22±1.39 | -6.49±1.20 | -7.96±1.49 | 7 | |
2017—2018 | -5.29±2.74 | 64 | -6.48±2.65 | -7.09±2.46 | -7.72±1.03 | -7.28±0.68 | 20 | ||
2018—2019 | -4.81±2.46 | 126 | -5.44±1.87 | -6.26±1.85 | -7.16±1.63 | -7.64±1.20 | 16 | ||
干旱期 (7—9月) | 2017 | -10.38±2.35 | 13 | -10.19±1.02 | -10.44±0.76 | -8.47±0.98 | -6.77±0.55 | 8 | |
2018 | -8.93±2.06 | 21 | -8.27±0.90 | -8.68±0.74 | -7.97±0.70 | -7.90±0.36 | 6 | ||
2019 | -8.64±2.19 | 10 | -7.14±1.35 | -8.26±1.06 | -7.51±1.22 | -6.38±0.91 | 8 |
时间 Date | 樟树 C. camphora | 刺杉 C. lanceolata | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
叶片 (LW) δ18O | 茎杆 (XW) δ18O | Δ18OL | n | 叶片 (LW) δ18O | 茎杆 (XW) δ18O | Δ18OL | n | |||
湿润期 (10月至次年6月) | 2017 | 8.54±8.66 | -4.59±0.43 | 13.13±8.71 | 7 | |||||
2017—2018 | 7.99±6.46 | -6.99±1.49 | 14.97±5.74 | 20 | ||||||
2018—2019 | 7.46±5.47 | -5.66±1.54 | 13.12±5.47 | 16 | 8.68±5.39 | -5.72±1.36 | 14.41±5.10 | 15 | ||
干旱期 (7—9月) | 2017 | 3.83±4.51 | -7.84±0.85 | 11.68±4.28 | 8 | |||||
2018 | 4.60±3.48 | -7.39±0.58 | 11.98±3.98 | 6 | ||||||
2019 | 5.14±5.16 | -6.34±0.37 | 11.48±5.13 | 8 | 7.46±3.24 | -5.73±0.73 | 13.19±3.14 | 8 |
表2 干旱期、湿润期内樟树与刺杉茎杆水中δ18O、叶片水中δ18O和Δ18OL
Table 2 δ18O in xylem water, δ18O and Δ18OL in leaf water of C. camphora and C. lanceolata in dry and wet periods ‰
时间 Date | 樟树 C. camphora | 刺杉 C. lanceolata | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
叶片 (LW) δ18O | 茎杆 (XW) δ18O | Δ18OL | n | 叶片 (LW) δ18O | 茎杆 (XW) δ18O | Δ18OL | n | |||
湿润期 (10月至次年6月) | 2017 | 8.54±8.66 | -4.59±0.43 | 13.13±8.71 | 7 | |||||
2017—2018 | 7.99±6.46 | -6.99±1.49 | 14.97±5.74 | 20 | ||||||
2018—2019 | 7.46±5.47 | -5.66±1.54 | 13.12±5.47 | 16 | 8.68±5.39 | -5.72±1.36 | 14.41±5.10 | 15 | ||
干旱期 (7—9月) | 2017 | 3.83±4.51 | -7.84±0.85 | 11.68±4.28 | 8 | |||||
2018 | 4.60±3.48 | -7.39±0.58 | 11.98±3.98 | 6 | ||||||
2019 | 5.14±5.16 | -6.34±0.37 | 11.48±5.13 | 8 | 7.46±3.24 | -5.73±0.73 | 13.19±3.14 | 8 |
时间 Date | 樟树 C. camphora | 刺杉 C. lanceolata | ||||
---|---|---|---|---|---|---|
水线方程 Water line (LWL) | n | 水线方 Water line (LWL) | n | |||
季节变化 Seasonal variation | 湿润期 (10月至次年6月) | δD=3.06δ18O-21.74 | 43 | δD=2.44δ18O-14.17 | 15 | |
干旱期 (7—9月) | δD=3.26δ18O-39.70 | 22 | δD=2.61δ18O-27.72 | 8 | ||
日内变化 Daily variation | 湿润期典型晴日 (2019-05-23—2019-05-24) | δD=1.05δ18O+17.24 | 12 | δD=2.17δ18O+1.03 | 12 | |
干旱期典型晴日 (2019-08-28—2019-08-29) | δD=1.94δ18O-29.48 | 12 | δD=2.44δ18O-27.71 | 12 |
表3 不同时间尺度上樟树和刺杉叶片水线方程(LWL)
Table 3 Leaf water line (LWL) of C. camphora and C. lanceolata on different time scales
时间 Date | 樟树 C. camphora | 刺杉 C. lanceolata | ||||
---|---|---|---|---|---|---|
水线方程 Water line (LWL) | n | 水线方 Water line (LWL) | n | |||
季节变化 Seasonal variation | 湿润期 (10月至次年6月) | δD=3.06δ18O-21.74 | 43 | δD=2.44δ18O-14.17 | 15 | |
干旱期 (7—9月) | δD=3.26δ18O-39.70 | 22 | δD=2.61δ18O-27.72 | 8 | ||
日内变化 Daily variation | 湿润期典型晴日 (2019-05-23—2019-05-24) | δD=1.05δ18O+17.24 | 12 | δD=2.17δ18O+1.03 | 12 | |
干旱期典型晴日 (2019-08-28—2019-08-29) | δD=1.94δ18O-29.48 | 12 | δD=2.44δ18O-27.71 | 12 |
图4 湿润期和干旱期典型晴日内樟树和刺杉茎杆水(XW)、叶片水(LW)中δ18O的逐时变化 (a)为湿润期典型晴日(2019-05-23—2019-05-24);(b)为干旱期典型晴日(2019-08-28—2019-08-29)
Fig. 4 Hourly variation of δ18O in xylem water (XW) and leaf water (LW) of C. camphora and C. lanceolata on typical sunny days during wet and dry periods (a) Shows typical sunny day in wet period (2019-05-23?2019-05-24); (b) Shows typical sunny day in dry period (2019-08-28?2019-08-29)
项目 Item | 时间 Date | 树种 Plant species | n | T/℃ | RH/% | RS/(W∙m-2) | VPD/kPa |
---|---|---|---|---|---|---|---|
季节变化 Seasonal variation | 湿润期 (10月至次年6月) | 樟树 C. camphora | 43 | 0.09 | -0.84** | 0.64** | 0.55** |
刺杉 C. lanceolata | 15 | 0.41 | -0.80** | 0.66** | 0.59* | ||
干旱期 (7—9月) | 樟树 C. camphora | 22 | 0.42 | -0.63** | 0.42 | 0.66** | |
刺杉 C. lanceolata | 8 | 0.34 | -0.84** | 0.65 | 0.81* | ||
日内变化 Daily variation | 湿润期典型晴日 (2019-05-23—2019-05-24) | 樟树 C. camphora | 12 | 0.71** | -0.76** | 0.37 | 0.77** |
刺杉 C. lanceolata | 12 | 0.70* | -0.72** | 0.40 | 0.74** | ||
干旱期典型晴日 (2019-08-28—2019-08-29) | 樟树 C. camphora | 12 | 0.70* | -0.73** | 0.40 | 0.76** | |
刺杉 C. lanceolata | 12 | 0.64* | 0.66* | 0.17 | 0.66* |
表4 不同时间尺度下樟树和刺杉Δ18OL与各气象因子的相关关系
Table 4 Correlation between leaf water Δ18OL and meteorological factors of C. camphora and C. lanceolata in different time scales
项目 Item | 时间 Date | 树种 Plant species | n | T/℃ | RH/% | RS/(W∙m-2) | VPD/kPa |
---|---|---|---|---|---|---|---|
季节变化 Seasonal variation | 湿润期 (10月至次年6月) | 樟树 C. camphora | 43 | 0.09 | -0.84** | 0.64** | 0.55** |
刺杉 C. lanceolata | 15 | 0.41 | -0.80** | 0.66** | 0.59* | ||
干旱期 (7—9月) | 樟树 C. camphora | 22 | 0.42 | -0.63** | 0.42 | 0.66** | |
刺杉 C. lanceolata | 8 | 0.34 | -0.84** | 0.65 | 0.81* | ||
日内变化 Daily variation | 湿润期典型晴日 (2019-05-23—2019-05-24) | 樟树 C. camphora | 12 | 0.71** | -0.76** | 0.37 | 0.77** |
刺杉 C. lanceolata | 12 | 0.70* | -0.72** | 0.40 | 0.74** | ||
干旱期典型晴日 (2019-08-28—2019-08-29) | 樟树 C. camphora | 12 | 0.70* | -0.73** | 0.40 | 0.76** | |
刺杉 C. lanceolata | 12 | 0.64* | 0.66* | 0.17 | 0.66* |
[1] |
BRUNEL J, WALKER G R, KENNETT-SMITH A K, 1995. Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment[J]. Journal of Hydrology, 167(1): 351-368.
DOI URL |
[2] |
BUTT S, ALI M, FAZIL M, et al., 2010. Seasonal variations in the isotopic composition of leaf and stem water from an arid region of Southeast Asia[J]. Hydrological Sciences Journal, 55(5): 844-848.
DOI URL |
[3] | BARBOUR M M, SCHURR U, HENRY B K, et al., 2000. Variation in the oxygen isotope ratio of phloem sap sucrose from castor bean[J]. Evidence in support of the Péclet effect. Plant Physiology, 123(2): 671-679. |
[4] | CHE C W, ZHANG M J, ARGIRIOU A A, et al., 2019. The stable isotopic composition of different water bodies at the soil-plant-atmosphere continuum (SPAC) of the western Loess Plateau, China[J]. Water (Basel), 11(9): 1742. |
[5] | CRAIG H, GORDON L, 1961. Isotopic variations in meteoric water[J]. Science, 133: 351-368. |
[6] |
DAI J J, ZHANG X P, LUO Z D, et al., 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region[J]. Journal of Hydrology, DOI: 10.1016/j.jhydrol.2020.125199.
DOI |
[7] |
DAWSON T E, MAMBELLI S, PLAMBOECK A H, et al., 2002. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 33: 507-559.
DOI URL |
[8] | DONGMANN G, NURNBERG H W, FORSTEL H, et al., 1974. On the enrichment of H218O in the leaves of transpiring plant[J]. Radiation and Environmental, 11(1): 41-52. |
[9] |
EHLERINGER J R, DAWSON T E, 1992. Water uptake by plants: perspectives from stable isotope composition[J]. Plant, Cell and Environment, 15(9): 1073-1082.
DOI URL |
[10] |
FARQUHAR G D, GAN K S, 2003. On the progressive enrichment of the oxygen isotopic composition of water along a leaf[J]. Plant Cell Environment, 26(6): 801-819.
DOI URL |
[11] |
GUY R D, FOGEL M L, BERRY J A, 1993. Photosynthetic fractionation of the stable isotopes of oxygen and carbon[J]. Plant Physiology, 101(1): 37-47.
DOI URL |
[12] | HUA M Q, ZHANG X P, YAO T C, et al., 2019. Dual effects of precipitation and evaporation on lake water stable isotope composition in the monsoon region[J]. Hydrological Processes, 33(16): 2192-2205. |
[13] |
LAI C T, OMETTO J P H B, BERRY J A, et al., 2008. Life form-specific variations in leaf water oxygen-18 enrichment in Amazonian vegetation[J]. Oecologia, 157(2): 197-210.
DOI URL |
[14] |
LUO Z D, GUAN H D, ZHANG X P, et al., 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods[J]. Journal of Hydrology, 571: 642-650.
DOI URL |
[15] |
ROBERTSON J A, GAZIS C A, 2006. An oxygen isotope study of seasonal trends in soil water fluxes at two sites along a climate gradient in Washington state (USA)[J]. Journal of Hydrology, 328(1-2): 375-387.
DOI URL |
[16] |
SNYER K A, MONNAR R, POULSON S R, et al., 2010. Diurnal variations of needle water isotopic ratios in two pine species[J]. Trees, 24(3): 585-595.
DOI URL |
[17] |
STAHL C, HERAULT B, ROSSI V, et al., 2013. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?[J]. Oecologia, 173(4): 1191-1201.
DOI URL |
[18] |
YAKIR D, DENIRO M J, GAT J R, 1990. Natural deuterium and oxygen-18 enrichment in leaf water of cotton plants grown under wet and dry conditions: Evidence for water compartmentation and its dynamics[J]. Cell and Environment, 13(1): 49-56.
DOI URL |
[19] | YANG B, WEN X F, SUN X M, et al., 2015. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin[J]. Scientific Reports, 5(5): 289-296. |
[20] | YEPEZ E A, WILLIAMS D G, SCOTT R L, et al., 2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition[J]. Agricultural and Foerst Meteorology, 119(1-2): 53-68. |
[21] | 党宏忠, 却晓娥, 冯金超, 等, 2020. 土壤水分对黄土区苹果园土壤-植物-大气连续体 (SPAC) 中水势梯度的影响[J]. 应用生态学报, 31(3): 829-836. |
DANG H Z, QUE X E, FENG J C, et al., 2020. Effect of soil moisture on water poyenial gradients in the soil-plant-atmosphere continuum (SPAC) of apple orchards in the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 31(3): 829-836. | |
[22] | 邓文平, 章洁, 张志坚, 等, 2017. 北京土石山区水分在土壤-植物-大气连续体(SPAC)中的稳定同位素特征[J]. 应用生态学报, 28(7): 2171-2178. |
DENG W P, ZHANG J, ZHANG Z J, et al., 2017. Stable hydrogen and oxygen isotope compositions in soil-plant-atmosphere continuum (SPAC) in rocky mountain area of Beijing, China[J]. Chinese Journal of Applied Ecology, 28(7): 2171-2178. | |
[23] | 黄一民, 章新平, 唐方丽, 等, 2013. 长沙大气降水中稳定同位素变化及过量氘指示水汽来源[J]. 自然资源学报, 28(11): 1945-1954. |
HUANG Y M, ZHANG X P, TANG F L, et al., 2013. Variations of precipitation stable isotope and vapor origins revealed by deuterium excess in Changsha[J]. Journal of Nature Resource, 28(11): 1946-1954. | |
[24] | 李龙, 唐常源, 曹英杰, 2020. 亚热带地区常绿阔叶林SPAC系统水分的氢氧稳定同位素特征[J/OL]. 应用生态学报, 31(9): 2875-2884. |
LI L, TANG C Y, CAO Y J, 2020. Hydrogen and oxygen stable isotope characteristics of water in SPAC system of evergreen broad-leaved forest in subtropical region[J]. Chinese Journal of Applied Ecology, 31(9): 2875-2884. | |
[25] | 刘文茹, 彭新华, 沈业杰, 等, 2013. 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J]. 生态学杂志, 32(5): 1181-1186. |
LIU W R, PENG X H, SHEN Y J, et al., 2013. Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections[J]. Chinese Journal of Ecology, 32(5): 1181-1186. | |
[26] | 刘仲藜, 章新平, 黎祖贤, 等, 2020. 洞庭湖流域近58年季节性干旱时空分布及大气环流分析[J]. 长江流域资源与环境, 29(6): 1432-1444. |
LIU Z L, ZHANG X P, LI Z X, et al., 2020. Analysis on spatial- temporal distribution and atmospheric circulation of seasonal droughts in the Dongting lake basin in recent 58 years[J]. Resources and Environment in the Yangtze Basin, 29(6): 1432-1444. | |
[27] | 娄源海, 余新晓, 邓文平, 等, 2016. 北京山区三种植物叶片水δ18O特征及影响因子[J]. 生态学杂志, 35(5): 1240-1247. |
LOU H Y, YU X X, DENG W P, et al., 2016. Leaf water δ18O characteristics and impact factors of three plants in Beijing mountainous area[J]. Chinese Journal of Ecology, 35(5): 1240-1247. | |
[28] | 罗紫东, 关华德, 章新平, 等, 2016. 亚热带樟树树干液流通量变化规律[J]. 热带地理, 36(4): 658-665. |
LUO Z D, GUAN H D, ZHANG X P, et al., 2016. Sap flow characteristics of Cinnamomum camphora, a subtropical evergreen tree species[J]. Tropical Geography, 36(4): 658-665. | |
[29] | 罗伦, 余武生, 万诗敏, 等, 2013. 植物叶片水稳定同位素研究进展[J]. 生态学报, 33(4): 1031-1041. |
LUO L, YU W S, WAN S M, et al., 2013. Advances in the study of stable isotope composition of leaf water in plants[J]. Acta Ecologica Sinica, 33(4): 1031-1041.
DOI URL |
|
[30] | 王锐, 章新平, 戴军杰, 等, 2020a. 亚热带典型植物水分利用来源变化的水稳定同位素分析[J]. 水土保持学报, 34(1): 202-209. |
WANG R, ZHANG X P, DAI J J, et al., 2020a. Variation in water uptake sources of typical plants in subtropical area based on stable isotope measurements[J]. Journal of Soil and Water Conservation, 34(1): 202-209. | |
[31] | 王锐, 章新平, 戴军杰, 等, 2020b. 亚热带地区不同林分下植物水分利用的季节差异[J]. 生态环境学报, 29(4): 665-675. |
WANG R, ZHANG X P, DAI J J, et al., 2020b. Seasonal differences in water-uptake pattern of plants under different forest types in subtropical regions[J]. Ecology and Environmental Sciences, 29(4): 665-675. | |
[32] |
王小婷, 温学发, 2016. 黑河中游春玉米叶片水δD和δ18O的富集过程和影响因素[J]. 植物生态学报, 40(9): 912-924.
DOI |
WANG X T, WEN X F, 2016. Leaf water δD and δ18O enrichment process and influencing factors in spring maize (Zea mays) grown in the middle reaches of Heihe River Basin[J]. Chinese Journal of Plant Ecology, 40(9): 912-924.
DOI URL |
|
[33] | 王文, 许志丽, 蔡晓军, 等, 2016. 基于PDSI的长江中下游地区干旱分布特征[J]. 高原气象, 35(3): 693-707. |
WANG W, XU Z L, CAI X J, et al., 2016. Aridity characteristic in middle and lower reaches of Yangtze River area based on Palmer drought severity index analysis[J]. Plateau Meteorology, 35(3): 693-707. | |
[34] |
温学发, 张世春, 孙晓敏, 等, 2008. 叶片水H218O富集的研究进展[J]. 植物生态学报, 32(4): 961-966.
DOI |
WEN X F, ZHANG S C, SUN X M, et al., 2008. Recent advances in H218O enrichment in leaf water[J]. Journal of Plant Ecology, 32(4): 961-966. | |
[35] | 吴华武, 章新平, 关华德, 等, 2012. 不同水汽来源对湖南长沙地区降水中δD、δ18O的影响[J]. 自然资源学报, 27(8): 1404-1414. |
WU H W, ZHANG X P, GUAN H D, et al., 2012. Influences of different moisture sources on δD and δ18O in Precipitation in Changsha, Hunan Province[J]. Journal of Natural Resources, 27(8): 1404-1414. | |
[36] | 章新平, 关华德, 张新主, 等, 2015. 季风区长沙站大气水汽和降水中δ18O的模拟[J]. 冰川冻土, 37(1): 249-257. |
ZHANG X P, GUAN H D, ZHANG X Z, et al., 2015. Simulation of δ18O in atmospheric vapour and precipitation in Changsha Station, East Asian monsoon region[J]. Journal of Glaciology and Geocryology, 37(1): 249-257. | |
[37] | 周盼盼, 张明军, 王圣杰, 等, 2016. 兰州城区绿化植物稳定氢氧同位素特征[J]. 生态学杂志, 35(11): 2942-2951. |
ZHOU P P, ZHANG M J, WANG S J, et al., 2016. The characteristics of stable hydrogen and oxygen isotopes of greening plants in Lanzhou downtown[J]. Chinese Journal of Ecology, 35(11): 2942-2951. | |
[38] | 周慧, 章新平, 姚天次, 等, 2018. 我国大气降水中δ18O变化的多气象因子分析及分区研究[J]. 环境科学学报, 38(6): 2242-2252. |
ZHOU H, ZHANG X P, YAO T C, et al., 2018. Analysis on the impacts of multiple meteorological factors on precipitation δ18O and its regionalization in China[J]. Acta Scientiae Circumstantiae, 38(6): 2242-2252. |
[1] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[2] | 葛元凯, 赵龙龙, 陈劲松, 任彦霓, 李洪忠. 1983-2020年西南地区气象干旱时空演变趋势及干旱事件识别[J]. 生态环境学报, 2023, 32(5): 920-932. |
[3] | 韩翠, 康扬眉, 余海龙, 李冰, 黄菊莹. 荒漠草原凋落物分解过程中降水量对土壤酶活性的影响[J]. 生态环境学报, 2022, 31(9): 1802-1812. |
[4] | 崔乔, 李宗省, 张百娟, 赵越, 南富森. 冻融作用对土壤可溶性碳氮和微生物量碳氮含量影响的荟萃分析[J]. 生态环境学报, 2022, 31(8): 1700-1712. |
[5] | 雷俊, 张健, 赵福年, 齐月, 张秀云, 李强, 尚军林. 春小麦开花期光合参数对土壤水分和温度变化的响应[J]. 生态环境学报, 2022, 31(6): 1151-1159. |
[6] | 李春环, 王攀, 余海龙, 李冰, 黄菊莹. 西北荒漠煤矿区降水降尘中盐基离子沉降特征及其效应研究[J]. 生态环境学报, 2022, 31(5): 969-978. |
[7] | 闫胜文, 刘加珍, 陈永金, 马笑丹, 张亚茹, 朱海勇. 聊城大气降水氢氧同位素特征及水汽来源分析[J]. 生态环境学报, 2022, 31(3): 546-555. |
[8] | 刘佩伶, 刘效东, 冯英杰, 苏宇乔, 甘先华, 张卫强. 新丰江水库库区水源涵养林土壤饱和导水率特征[J]. 生态环境学报, 2022, 31(10): 1993-2001. |
[9] | 张开, 王立为, 高西宁, 贺明慧. 基于DNDC模型不同降水年型下氮肥管理对马铃薯田N2O减排及增产潜力影响研究[J]. 生态环境学报, 2021, 30(8): 1672-1682. |
[10] | 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J]. 生态环境学报, 2021, 30(8): 1732-1741. |
[11] | 朱平, 崔姗姗, 李占彬, 朱雪铜, 何锦林, 谭红. 大气降水对贵州喀斯特地区高背景值土壤镉的释放影响[J]. 生态环境学报, 2021, 30(11): 2213-2222. |
[12] | 卢乔倩, 江涛, 柳丹丽, 刘智勇. 中国不同植被覆盖类型NDVI对气温和降水的响应特征[J]. 生态环境学报, 2020, 29(1): 23-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||