生态环境学报 ›› 2022, Vol. 31 ›› Issue (7): 1340-1349.DOI: 10.16258/j.cnki.1674-5906.2022.07.006
王磊1(), 温远光1,2,3, 周晓果2,*(
), 朱宏光1,3, 孙冬婧2
收稿日期:
2021-09-06
出版日期:
2022-07-18
发布日期:
2022-08-31
通讯作者:
*周晓果(1980年生),女,副教授,博士,主要从事森林生态研究。E-mail: xgzhou2014@126.com作者简介:
王磊(1985年生),男,工程师,博士研究生,主要研究方向为森林生态。E-mail: 395457176@qq.com
基金资助:
WANG Lei1(), WEN Yuanguang1,2,3, ZHOU Xiaoguo2,*(
), ZHU Hongguang1,3, SUN Dongjing2
Received:
2021-09-06
Online:
2022-07-18
Published:
2022-08-31
摘要:
以尾巨桉(Eucalyptus urophylla×E. grandis)纯林(PEU)、红锥(Castanopsis hystrix)纯林(PCH)和尾巨桉-红锥混交林(MEC)为研究对象,探究在生态营林方式下尾巨桉与红锥混交对林下物种多样性、生物量、土壤理化性质的影响及其关联性。结果表明,(1)MEC林下植被群落的物种丰富度显著高于两种纯林,MEC和PEU灌木层的物种丰富度显著高于PCH,而MEC和PCH草本层的物种丰富度显著高于PEU;MEC显著提高灌木层的Shannon-Wiener指数和Simpson指数。(2)PEU显著提高灌木层的地上生物量,显著降低草本层生物量;PCH降低灌木层生物量,增加草本层生物量;而MEC则能在较高水平上维持灌草生物量和地上地下生物量的相对平衡。(3)MEC 0—20、20—40、40—60、60—80、80—100 cm土层的pH均显著高于两种纯林;PEU 5个土层的土壤容重均高于MEC和PCH,且0—20 cm土层达到显著差异;MEC和PCH各层次的土壤有机碳均显著高于PEU;除个别土层(60—80 cm)外,MEC和PEU各土层的全氮、全钾均显著高于PCH,3种林分各土层土壤全磷差异不显著。(4)影响林下植物群落物种多样性的主控因子为灌木层地下生物量(SBB)、草本层地上生物量(HAB)、乔木层地上生物量(TAB)、土壤全氮(TN)、土壤碳氮比(C:N)、土壤氮磷比(N:P)和pH;其中,TAB、SBB、TN、pH、N:P与PEU和MEC林下植物群落、灌木层的物种丰富度呈显著正相关,HAB、C:N与PCH草本层物种丰富度呈显著正相关。综上所述,尾巨桉与红锥混交能显著提高林下物种多样性,维持灌草生物量平衡,改良土壤质量,有效提升混交树种和混交林分的生长量和生物量,是一种较好的发展模式。
中图分类号:
王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349.
WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties[J]. Ecology and Environment, 2022, 31(7): 1340-1349.
林分类型 Stand type | 海拔 Altitude/ m | 坡度Slope/ (°) | 郁闭度 Canopy density | 胸径 DBH/cm | 树高 Height/m | 胸高断面积Basal area/ (m2∙hm-2) | 乔木生物量 Tree biomass/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
尾巨桉纯林 Pure Eucalyptus urophylla×E. grandis plantations | 241 | 14 | 0.49±0.01c | 13.61±0.20a | 19.38±0.20a | 18.35±0.59b | 130.47±5.65b |
红锥纯林 Pure Castanopsis hystrix plantations | 281 | 16 | 0.75±0.02a | 7.34±0.16c | 9.52±0.14c | 8.87±0.90c | 35.79±4.20c |
尾巨桉-红锥混交林 Mixed E. urophylla×E. grandis and C. hystrix plantations | 245 | 14 | 0.68±0.02b | 13.01±0.18b | 18.39±0.29b | 24.57±0.95a | 175.80±8.68a |
尾巨桉 E. urophylla×E. grandis | 14.28±0.30 | 20.79±0.77 | 20.99±0.60* | 159.45±6.68* | |||
红锥 C. hystrix | 9.49±1.12* | 11.68±2.26* | 3.58±0.45* | 16.35±2.91* |
表1 不同林分试验样方概况
Table 1 Characteristics of the experiment plots in different stands
林分类型 Stand type | 海拔 Altitude/ m | 坡度Slope/ (°) | 郁闭度 Canopy density | 胸径 DBH/cm | 树高 Height/m | 胸高断面积Basal area/ (m2∙hm-2) | 乔木生物量 Tree biomass/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
尾巨桉纯林 Pure Eucalyptus urophylla×E. grandis plantations | 241 | 14 | 0.49±0.01c | 13.61±0.20a | 19.38±0.20a | 18.35±0.59b | 130.47±5.65b |
红锥纯林 Pure Castanopsis hystrix plantations | 281 | 16 | 0.75±0.02a | 7.34±0.16c | 9.52±0.14c | 8.87±0.90c | 35.79±4.20c |
尾巨桉-红锥混交林 Mixed E. urophylla×E. grandis and C. hystrix plantations | 245 | 14 | 0.68±0.02b | 13.01±0.18b | 18.39±0.29b | 24.57±0.95a | 175.80±8.68a |
尾巨桉 E. urophylla×E. grandis | 14.28±0.30 | 20.79±0.77 | 20.99±0.60* | 159.45±6.68* | |||
红锥 C. hystrix | 9.49±1.12* | 11.68±2.26* | 3.58±0.45* | 16.35±2.91* |
图1 不同林分林下植物多样性指数 PEU,桉树纯林;MEC,尾巨桉-红锥混交林;PCH,红锥纯林,下同。不同小写字母表示相同层次不同林分间差异显著(P<0.05),n=5
Figure 1 Plant diversity indices in the understory of different stands PEU, Pure Eucalyptus urophylla×E. grandis plantations; MEC, Mixed E. urophylla×E. grandis and Castanopsis hystrix plantations; PCH, Pure C. hystrix plantations. Different lowercase letters indicate significant difference between different stands at the same layer at 0.05 level,n=5
图2 不同林分林下植被的生物量 SAB,灌木层地上部分生物量;SBB,灌木层地下部分生物量;HAB,草本层地上部分生物量;HBB,草本层地下部分生物量;UB,林下植被总生物量。不同小写字母表示同一组分不同林分间差异显著(P<0.05),n=5
Figure 2 Biomass of understory vegetation in different stands SAB, Shrub aboveground biomass; SBB, Shrub belowground biomass; HAB, Herb aboveground biomass; HBB, Herb belowground biomass; UB, Understory biomass. Different lowercase letters indicate significant differences among different stands of the same component at 0.05 level, n=5
林分类型 Stand type | 土层深度 Soil depth/ cm | pH | 土壤含水率 Soil moisture content/% | 土壤容重 Soil bulk density/ (g∙cm-3) | 有机碳 w(organic carbon)/ (g∙kg-1) | 全氮 w(total nitrogen)/ (g∙kg-1) | 全钾 w(total potassium)/ (g∙kg-1) | 全磷 w(total phosphorus)/ (g∙kg-1) | 速效钾 w(available potassium)/ (mg∙kg-1) | 有效磷 w(available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
尾巨桉纯林Pure Eucalyptus urophylla×E. grandis plantations | 0‒20 | 4.41±0.07Bb | 24.42±2.32Ab | 1.33±0.05Ca | 19.97±1.99Ac | 2.00±0.15Aa | 10.12±3.33Ba | 0.30±0.06Aa | 44.06±2.03Aa | 4.52±0.18Ac |
20‒40 | 4.62±0.28ABb | 21.57±6.03ABa | 1.59±0.22Ba | 7.51±1.92Bb | 1.53±0.27Ba | 13.55±4.56ABa | 0.25±0.05Aa | 25.92±2.35Ba | 1.43±0.30Bc | |
40‒60 | 4.80±0.16Ab | 20.82±6.67ABa | 1.58±0.11Ba | 6.57±1.29BCb | 1.27±0.23BCa | 16.90±4.15Aa | 0.27±0.07Aa | 25.92±3.11Ba | 1.89±1.78Bb | |
60‒80 | 4.69±0.38ABb | 18.12±3.87ABb | 1.69±0.09ABa | 2.95±1.75Db | 1.06±0.30Cab | 15.75±6.41ABa | 0.23±0.09Aa | 23.06±4.12Ba | 1.17±0.51Bc | |
80‒100 | 4.91±0.18Ab | 15.56±3.72Bb | 1.78±0.12Aa | 4.69±1.25CDb | 1.17±0.08Ca | 18.45±2.88Aa | 0.25±0.08Aa | 24.49±1.25Ba | 0.85±0.27Bc | |
尾巨桉-红锥混交林Mixed E. urophylla× E. grandis and Castanopsis hystrix plantations | 0‒20 | 5.00±0.13Ca | 27.64±0.69Aa | 1.25±0.02Cb | 27.00±3.89Ab | 2.08±0.36Aa | 8.77±5.20Ba | 0.29±0.09Aa | 44.88±14.56Aa | 7.87±0.60Aa |
20‒40 | 5.12±0.14BCa | 25.12±2.66ABa | 1.44±0.09Bab | 15.81±2.52Ba | 1.40±0.35Ba | 10.13±4.6ABa | 0.25±0.08Aa | 27.96±8.5Ba | 4.57±0.93Ba | |
40‒60 | 5.27±0.14ABa | 25.18±1.71ABa | 1.50±0.03ABab | 13.85±3.86BCa | 1.28±0.32Ba | 11.65±5.46ABa | 0.27±0.08Aa | 26.26±6.06Ba | 3.88±0.15Ba | |
60‒80 | 5.39±0.22Aa | 24.99±3.01ABa | 1.52±0.06ABb | 11.66±3.47BCa | 1.22±0.18Ba | 13.13±4.6ABa | 0.29±0.08Aa | 25.10±4.83Ba | 4.55±1.95Ba | |
80‒100 | 5.41±0.18Aa | 24.26±3.36Ba | 1.56±0.08Ab | 10.99±2.14Cab | 1.24±0.25Ba | 15.77±4.39Aa | 0.24±0.04Aa | 26.19±4.63Ba | 4.08±1.06Ba | |
红锥纯林 Pure C. hystrix plantations | 0‒20 | 4.55±0.10ABb | 25.82±0.93Aab | 1.22±0.05Cb | 33.95±3.43Aa | 2.29±0.09Aa | 2.16±0.96Ab | 0.31±0.06Aa | 50.61±21.57Aa | 5.31±0.70Ab |
20‒40 | 4.34±0.05Cc | 23.12±2.54Aa | 1.33±0.06BCb | 18.90±3.05Ba | 1.21±0.32Ba | 2.73±1.22Ab | 0.36±0.24Aa | 22.86±15.83Ba | 3.20±0.59Bb | |
40‒60 | 4.47±0.10Bc | 23.33±2.31Aa | 1.40±0.07ABb | 12.06±4.39Ca | 0.83±0.14Cb | 3.06±1.22Ab | 0.25±0.01Aa | 15.71±12.26Ba | 2.97±0.56Bab | |
60‒80 | 4.57±0.11ABb | 23.61±3.12Aa | 1.39±0.15ABb | 8.98±2.71Ca | 0.83±0.13Cb | 3.19±1.23Ab | 0.24±0.03Aa | 13.06±10.54Bb | 2.86±0.49Bb | |
80‒100 | 4.60±0.09Ac | 24.30±3.00Aa | 1.47±0.07Ab | 11.93±7.86Ca | 0.79±0.15Cb | 3.30±1.30Ab | 0.25±0.05Aa | 10.61±6.79Bb | 2.75±0.72Bb |
表2 不同林分的土壤理化性质
Table 2 Soil physicochemical properties in different stands
林分类型 Stand type | 土层深度 Soil depth/ cm | pH | 土壤含水率 Soil moisture content/% | 土壤容重 Soil bulk density/ (g∙cm-3) | 有机碳 w(organic carbon)/ (g∙kg-1) | 全氮 w(total nitrogen)/ (g∙kg-1) | 全钾 w(total potassium)/ (g∙kg-1) | 全磷 w(total phosphorus)/ (g∙kg-1) | 速效钾 w(available potassium)/ (mg∙kg-1) | 有效磷 w(available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
尾巨桉纯林Pure Eucalyptus urophylla×E. grandis plantations | 0‒20 | 4.41±0.07Bb | 24.42±2.32Ab | 1.33±0.05Ca | 19.97±1.99Ac | 2.00±0.15Aa | 10.12±3.33Ba | 0.30±0.06Aa | 44.06±2.03Aa | 4.52±0.18Ac |
20‒40 | 4.62±0.28ABb | 21.57±6.03ABa | 1.59±0.22Ba | 7.51±1.92Bb | 1.53±0.27Ba | 13.55±4.56ABa | 0.25±0.05Aa | 25.92±2.35Ba | 1.43±0.30Bc | |
40‒60 | 4.80±0.16Ab | 20.82±6.67ABa | 1.58±0.11Ba | 6.57±1.29BCb | 1.27±0.23BCa | 16.90±4.15Aa | 0.27±0.07Aa | 25.92±3.11Ba | 1.89±1.78Bb | |
60‒80 | 4.69±0.38ABb | 18.12±3.87ABb | 1.69±0.09ABa | 2.95±1.75Db | 1.06±0.30Cab | 15.75±6.41ABa | 0.23±0.09Aa | 23.06±4.12Ba | 1.17±0.51Bc | |
80‒100 | 4.91±0.18Ab | 15.56±3.72Bb | 1.78±0.12Aa | 4.69±1.25CDb | 1.17±0.08Ca | 18.45±2.88Aa | 0.25±0.08Aa | 24.49±1.25Ba | 0.85±0.27Bc | |
尾巨桉-红锥混交林Mixed E. urophylla× E. grandis and Castanopsis hystrix plantations | 0‒20 | 5.00±0.13Ca | 27.64±0.69Aa | 1.25±0.02Cb | 27.00±3.89Ab | 2.08±0.36Aa | 8.77±5.20Ba | 0.29±0.09Aa | 44.88±14.56Aa | 7.87±0.60Aa |
20‒40 | 5.12±0.14BCa | 25.12±2.66ABa | 1.44±0.09Bab | 15.81±2.52Ba | 1.40±0.35Ba | 10.13±4.6ABa | 0.25±0.08Aa | 27.96±8.5Ba | 4.57±0.93Ba | |
40‒60 | 5.27±0.14ABa | 25.18±1.71ABa | 1.50±0.03ABab | 13.85±3.86BCa | 1.28±0.32Ba | 11.65±5.46ABa | 0.27±0.08Aa | 26.26±6.06Ba | 3.88±0.15Ba | |
60‒80 | 5.39±0.22Aa | 24.99±3.01ABa | 1.52±0.06ABb | 11.66±3.47BCa | 1.22±0.18Ba | 13.13±4.6ABa | 0.29±0.08Aa | 25.10±4.83Ba | 4.55±1.95Ba | |
80‒100 | 5.41±0.18Aa | 24.26±3.36Ba | 1.56±0.08Ab | 10.99±2.14Cab | 1.24±0.25Ba | 15.77±4.39Aa | 0.24±0.04Aa | 26.19±4.63Ba | 4.08±1.06Ba | |
红锥纯林 Pure C. hystrix plantations | 0‒20 | 4.55±0.10ABb | 25.82±0.93Aab | 1.22±0.05Cb | 33.95±3.43Aa | 2.29±0.09Aa | 2.16±0.96Ab | 0.31±0.06Aa | 50.61±21.57Aa | 5.31±0.70Ab |
20‒40 | 4.34±0.05Cc | 23.12±2.54Aa | 1.33±0.06BCb | 18.90±3.05Ba | 1.21±0.32Ba | 2.73±1.22Ab | 0.36±0.24Aa | 22.86±15.83Ba | 3.20±0.59Bb | |
40‒60 | 4.47±0.10Bc | 23.33±2.31Aa | 1.40±0.07ABb | 12.06±4.39Ca | 0.83±0.14Cb | 3.06±1.22Ab | 0.25±0.01Aa | 15.71±12.26Ba | 2.97±0.56Bab | |
60‒80 | 4.57±0.11ABb | 23.61±3.12Aa | 1.39±0.15ABb | 8.98±2.71Ca | 0.83±0.13Cb | 3.19±1.23Ab | 0.24±0.03Aa | 13.06±10.54Bb | 2.86±0.49Bb | |
80‒100 | 4.60±0.09Ac | 24.30±3.00Aa | 1.47±0.07Ab | 11.93±7.86Ca | 0.79±0.15Cb | 3.30±1.30Ab | 0.25±0.05Aa | 10.61±6.79Bb | 2.75±0.72Bb |
图3 林下植被物种多样性与土壤因子和生物量的冗余度分析(a)及影响因子的方差分解(b、c) HAB,草本层地上部分生物量;TAB,乔木层地上部分生物量;SBB,灌木层地下部分生物量;TN,土壤全氮含量;AK,土壤速效钾含量;pH,土壤pH值;C:N,土壤碳氮比;N:P,土壤氮磷比;R_c,林下植物群落物种丰富度指数;R_s,灌木层物种丰富度指数;R_h,草本层物种丰富度指数;H_c,林下植物群落香农威纳指数;H_s,灌木层香农威纳指数;H_h,草本层香农威纳指数;D_c,林下植物群落Simpson指数;D_s,灌木层Simpson指数;D_h,草本层Simpson指数;J_c,林下植物群落均匀度指数;J_s,灌木层均匀度指数;J_h,草本层均匀度指数。下同
Figure 3 Redundancy analysis of understory species diversity, soil factors and biomass (a) and variance partitioning of the influencing factors (b, c) HAB, Herb aboveground biomass; TAB, Tree aboveground biomass; SBB, Shrub belowground biomass; TN, Soil total nitrogen; AK, Available potassium; pH, Soil pH; C:N, Soil C/N ratio; N:P, Soil N/P ratio; R_c, Species richness index of understory plant community; R_s, Species richness index of shrub layer; R_h, Species richness index of herb layer; H_c, Shannon-Wiener index of understory plant community; H_s, Shannon-Wiener index of shrub layer; H_h, Shannon-Wiener index of herb layer; D_c, Simpson index of understory plant community; D_s, Simpson index of shrub layer; D_h, Simpson index of herb layer; J_c, Pielou’s evenness index of understory plant community; J_s, Pielou’s evenness index of shrub layer; J_h, Pielou’s evenness index of herb layer
变量 Variables | RDA1 | RDA2 | r2 | P |
---|---|---|---|---|
灌木层地下部分生物量 Shrub belowground biomass | -0.756 | 0.655 | 0.715 | 0.001 |
草本层地上部分生物量 Herb aboveground biomass | 0.992 | -0.126 | 0.644 | 0.002 |
乔木层地上部分生物量 Tree aboveground biomass | -1.000 | 0.009 | 0.565 | 0.001 |
土壤碳氮比 Soil C:N ratio | 0.779 | -0.627 | 0.640 | 0.003 |
土壤全氮含量 Soil total nitrogen content | -0.988 | 0.153 | 0.534 | 0.014 |
土壤氮磷比 Soil N:P ratio | -0.922 | 0.388 | 0.412 | 0.039 |
土壤pH值 Soil pH | -0.905 | -0.426 | 0.383 | 0.046 |
土壤速效钾含量 Soil available potassium content | -0.948 | 0.319 | 0.337 | 0.088 |
表3 土壤及生物量因子与排序轴的相关性
Table 3 Correlation between soil, biomass factors and ordinate axes
变量 Variables | RDA1 | RDA2 | r2 | P |
---|---|---|---|---|
灌木层地下部分生物量 Shrub belowground biomass | -0.756 | 0.655 | 0.715 | 0.001 |
草本层地上部分生物量 Herb aboveground biomass | 0.992 | -0.126 | 0.644 | 0.002 |
乔木层地上部分生物量 Tree aboveground biomass | -1.000 | 0.009 | 0.565 | 0.001 |
土壤碳氮比 Soil C:N ratio | 0.779 | -0.627 | 0.640 | 0.003 |
土壤全氮含量 Soil total nitrogen content | -0.988 | 0.153 | 0.534 | 0.014 |
土壤氮磷比 Soil N:P ratio | -0.922 | 0.388 | 0.412 | 0.039 |
土壤pH值 Soil pH | -0.905 | -0.426 | 0.383 | 0.046 |
土壤速效钾含量 Soil available potassium content | -0.948 | 0.319 | 0.337 | 0.088 |
[1] |
DIXON P, 2003. A package of R functions for community ecology[J]. Journal of Vegetation Science, 14(6): 927-930.
DOI URL |
[2] |
FORRESTER D I, BAUHUS J, COWIE A L, 2005. On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii[J]. Forest Ecology and Management, 209(1-2):147-155.
DOI URL |
[3] |
FORRESTER D I, 2013. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions[J]. Forest Ecology and Management, 310: 336-347.
DOI URL |
[4] |
HUANG X M, LIU S R, WANG H, et al., 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 73: 42-48.
DOI URL |
[5] |
CATFORD J A, DAEHLER C C, MURPHY H T, et al., 2012. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management[J]. Perspectives in Plant Ecology, Evolution and Systematics, 14(3): 231-241.
DOI URL |
[6] |
LAI J S, ZOU Y, ZHANG J L, et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package[J]. Methods in Ecology and Evolution, 13(4): 782-788.
DOI URL |
[7] |
LEVICK, SHAUN, RATCLIFFE, et al., 2015. Tree neighbourhood matters-tree species composition drives diversity-productivity patterns in a near-natural beech forest[J]. Forest Ecology and Management, 335: 225-234.
DOI URL |
[8] |
RIVAIE A A, 2014. The effects of understory vegetation on P availability in Pinus radiate forest stands: A review[J]. Journal of Forestry Research, 25(3): 489-500.
DOI URL |
[9] |
ROTHE A, BINKLEY D, 2001. Nutritional interactions in mixed species forests: a synthesis[J]. Canadian Journal of Forest Research, 31(11): 1855-1870.
DOI URL |
[10] |
SAGAR R, RAGHUBANSHI A S, SINGH J S, 2003. Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India[J]. Forest Ecology and Management, 186(1): 61-71.
DOI URL |
[11] |
TURNBULL, J W, 1999. Eucalypt plantations[J]. New Forests, 17: 37-52.
DOI URL |
[12] |
TRAN V C, THANG N T, HA D T T, et al., 2013. Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam[J]. Forest Ecology and Management, 310: 213-218.
DOI URL |
[13] |
WEN Y G, DUO Y, CHEN F, et al., 2010. The changes of understory plant diversity in continuous cropping system of Eucalyptus plantations, South China[J]. Journal of Forest Research, 15(4): 252-258.
DOI URL |
[14] |
WU J P, LIU Z F, WANG X L, et al., 2011. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China[J]. Functional Ecology, 25(4): 921-931.
DOI URL |
[15] |
ZHOU X G, ZHU H G, WEN Y G, et al., 2020. Intensive management and declines in soil nutrients lead to serious exotic plant invasion in Eucalyptus plantations under successive short-rotation regimes[J]. Land Degradation & Development, 31(3): 297-310.
DOI URL |
[16] | 鲍士旦, 2018. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社:1-120. |
BAO S D, 2018. Soil and agricultural chemistry analysis[M]. 3rd edition. Beijing: China Agriculture Press: 1-120. | |
[17] | 陈科屹, 张会儒, 雷相东, 等, 2017. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 30(5): 718-726. |
CHEN K Y, ZHANG H R, LEI X D, et al., 2017. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 30(5): 718-726. | |
[18] | 陈秋海, 周晓果, 朱宏光, 等, 2022. 桉树与红锥混交对土壤养分及林下植物功能群的影响[J]. 广西植物, 42(4): 556-568. |
CHEN Q H, ZHOU X G, ZHU H G, et al., 2022. Effects of a mixture of Eucalyptus and Castanopsis hystrix on soil nutrients and understory plant functional groups[J]. Guihaia, 42(4): 556-568. | |
[19] | 董玉梁, 余胜, 卫芯宇, 等, 2018. 川西平原香樟林和香椿林中小型土壤动物群落结构特征[J]. 四川农业大学学报, 36(3): 344-349. |
DONG Y L, YU S, WEI R Y, et al., 2018. Meso-micro soil fauna community structure in Cinnamomum camphora and Toona sinensis plantations in Western Sichuan plain[J]. Journal of Sichuan Agricultural University, 36(3): 344-349. | |
[20] | 耿玉清, 孙向阳, 亢新刚, 等, 1999. 长白山林区不同森林类型下土壤肥力状况的研究[J]. 北京林业大学学报, 21(6): 97-101. |
GEN Y Q, SUN X Y, KANG X G, et al., 1999. Soil fertility of different forest types in the Changbai Mountains[J]. Journal of Beijing Forestry University, 21(6): 97-101. | |
[21] | 国家林业和草原局, 2019. 中国森林资源报告 (2014-2018)[R]. 北京: 中国林业出版社. |
National Forestry and Grassland Administration, 2019. China forest resources report (2014-2018)[R]. Beijing: China Forestry Press. | |
[22] | 黄宇, 冯宗炜, 汪思龙, 等, 2005. 杉木、火力楠纯林及其混交林生态系统C、N贮量[J]. 生态学报, 25(12): 3146-3154. |
HUANG Y, FENG Z Y, WANG S L, et al., 2005. C and N stocks under three plantation forest ecosystems of Chinese-fir, Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 25(12): 3146-3154. | |
[23] | 李朝婷, 周晓果, 温远光, 等, 2019. 桉树高代次连栽对林下植物、土壤肥力和酶活性的影响[J]. 广西科学, 26(2): 176-187. |
LI C T, ZHOU X G, WEN Y G, et al., 2019. Effects of high-generation rotations of Eucalyptus on understory, soil fertility and enzyme activities[J]. Guangxi Sciences, 26(2): 176-187. | |
[24] | 李茂金, 闫文德, 李树战, 等, 2012. 改变碳源输入对针阔叶混交林土壤氮矿化的影响[J]. 中南林业科技大学学报, 32(5): 108-112. |
LI M J, YAN W D, LI S Z, et al., 2012. Effects of controlling carbon input on nitrogen mineralization in soils of broadleaved-needle mixed forest plantation[J]. Journal of Central South University of Forestry & Technology, 32(5): 108-112. | |
[25] | 邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响[J]. 广西植物, 42(4): 543-555. |
SHAO W Z, ZHOU X G, WEN Y G, et al., 2022. Effects of mixing Castanopsis Hystrix and Eucalyptus on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry[J]. Guihaia, 42(4): 543-555. | |
[26] | 舒韦维, 卢立华, 李华, 等, 2021. 林分密度对杉木人工林林下植被和土壤性质的影响[J]. 生态学报, 41(11): 4521-4530. |
SHU W W, LU L H, LI H, et al., 2021. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceloata plantation[J]. Acta Ecologica Sinica, 41(11): 4521-4530. | |
[27] | 孙冬婧, 温远光, 罗应华, 等, 2015. 近自然化改造对杉木人工林物种多样性的影响[J]. 林业科学研究, 28(2): 202-208. |
SUN D J, WEN Y G, LUO Y H, et al., 2015. Effect of close-to-nature management on species diversity in a Cunninglamia lanceolate plantation[J]. Forest Research, 28(2): 202-208. | |
[28] | 汪殿蓓, 暨淑仪, 陈飞鹏, 2001. 植物群落物种多样性研究综述[J]. 生态学杂志, 20(4): 55-60. |
WANG D B, JI S Y, CHEN F P, et al., 2001. A review on the species diversity of plant community[J]. Chinese Journal of Ecology, 20(4): 55-60. | |
[29] | 王慧敏, 张峰, 庞春花, 等, 2013. 汾河流域中下游植物群落物种多样性与土壤因子的关系[J]. 西北植物学报, 33(10): 2077-2085. |
WANG H M, ZHANG F, PANG C H, et al., 2013. Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River[J]. Acta Botanica Boreali-Occidentalia Sinica, 33(10): 2077-2085. | |
[30] | 王丽美, 姜永涛, 郭广猛, 2020. 森林生物量的根冠分配特征及其影响因子分析[J]. 南阳师范学院学报, 19(1): 44-50. |
WANG L M, JIANG Y T, GUO G M, 2020. Biomass allocation between root and shoot and its impact factors of forest ecosystems[J]. Journal of Nanyang Normal University, 19(1): 44-50. | |
[31] | 温晶, 张秋良, 李嘉悦, 等, 2019. 间伐强度对兴安落叶松林林下植被多样性及生物量的影响[J]. 中南林业科技大学学报, 39(5): 95-100. |
WEN J, ZHANG Q L, LI J Y, et al., 2019. Effects of thinning intensity on diversity of undergrowth vegetation and biomass in Larix gmelini forest[J]. Journal of Central South University of Forestry & Technology, 39(5): 95-100. | |
[32] | 温远光, 2008. 桉树生态、社会问题与科学发展[M]. 北京: 中国林业出版社: 1-136. |
WEN Y G, 2008. Eucalyptus ecology, social issues and scientific development[M]. Beijing: China Forestry Press: 1-136. | |
[33] | 温远光, 陈放, 刘世荣, 等, 2008. 广西桉树人工林物种多样性与生物量关系[J]. 林业科学, 44(4): 14-19. |
WEN Y G, CHEN F, LIU S R, et al., 2008. Relationship between species diversity and biomass of Eucalyptus plantation in Guangxi[J]. Scientia Silvae Sinicae, 44(4): 14-19. | |
[34] | 温远光, 刘世荣, 陈放, 2005. 连栽对桉树人工林下物种多样性的影响[J]. 应用生态学报, 16(9): 1667-1671. |
WEN Y G, LIU S R, CHEN F, 2005. Effects of continuous cropping on understory species diversity in Eucalypt plantations[J]. Chinese Journal of Applied Ecology, 16(9): 1667-1671. | |
[35] | 温远光, 张祖峰, 周晓果, 等, 2020a. 珍贵乡土树种与桉树混交对生态系统生物量和碳储量的影响[J]. 广西科学, 27(2): 111-119. |
WEN Y G, ZHANG Z F, ZHOU X G, et al., 2020. Effects of mixing precious indigenous tree species and Eucalyptus on ecosystem biomass and carbon stocks[J]. Guangxi Sciences, 27(2):111-119. | |
[36] | 温远光, 周晓果, 喻素芳, 等, 2018. 全球桉树人工林发展面临的困境与对策[J]. 广西科学, 25(2): 107-116. |
WEN Y G, ZHOU X G, YU S F, et al., 2018. The predicament and countermeasures of development of global Eucalyptus plantations[J]. Guangxi Sciences, 25(2):107-116. | |
[37] | 温远光, 周晓果, 朱宏光, 2020b. 桉树生态营林理论、技术与实践[M]. 北京: 科学出版社: 1-254. |
WEN Y G, ZHOU X G, ZHU H G, 2020. Theory, technology and practice of Eucalyptus ecological forestry[M]. Beijing: Science Press: 1-254. | |
[38] | 中国林学会, 2016. 桉树科学发展问题调研报告[R]. 北京: 中国林业出版社. |
Chinese Society of Forestry, 2016. Investigation report on scientific development of Eucalyptus [R]. Beijing: China Forestry Press. | |
[39] | 周晓果, 2016. 林下植物功能群丧失对桉树人工林土壤生态系统多功能性的影响[D]. 南宁: 广西大学. |
ZHOU X G, 2016. Effects of understory plant functional groups loss on soil ecosystem multifunctionality in Eucalyptus plantations[D]. Nanning: Guangxi University. |
[1] | 王雪梅, 杨雪峰, 赵枫, 安柏耸, 黄晓宇. 基于机器学习算法的干旱区绿洲地上生物量估算[J]. 生态环境学报, 2023, 32(6): 1007-1015. |
[2] | 陈科屹, 林田苗, 王建军, 何友均, 张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响[J]. 生态环境学报, 2023, 32(6): 1016-1025. |
[3] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[4] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[5] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[6] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[7] | 李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55. |
[8] | 黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89. |
[9] | 王洁, 单燕, 马兰, 宋延静, 王向誉. 秸秆/生物质炭协同还田措施对黄河三角洲盐碱土壤的改良效果研究[J]. 生态环境学报, 2023, 32(1): 90-98. |
[10] | 陈科屹, 王建军, 何友均, 张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9): 1725-1734. |
[11] | 刘桢迪, 宋艳宇, 王宪伟, 谭稳稳, 张豪, 高晋丽, 高思齐, 杜宇. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772. |
[12] | 陈乐, 卫伟. 西北旱区典型流域土地利用与生境质量的时空演变特征[J]. 生态环境学报, 2022, 31(9): 1909-1918. |
[13] | 王礼霄, 刘晋仙, 柴宝峰. 华北亚高山土壤细菌群落及氮循环对退耕还草的响应[J]. 生态环境学报, 2022, 31(8): 1537-1546. |
[14] | 李婷婷, 侯梦丹, 邓欣妍, 周徐平, 王顺莉, 黄丹, 曾芷若, 彭涛. 贵州习水国家级自然保护区4种植被类型树附生苔藓植物多样性研究[J]. 生态环境学报, 2022, 31(8): 1556-1565. |
[15] | 花莉, 成涛之, 梁智勇. 固定化混合菌对陕北黄土地区石油污染土壤的修复效果[J]. 生态环境学报, 2022, 31(8): 1610-1615. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||