生态环境学报 ›› 2022, Vol. 31 ›› Issue (9): 1765-1772.DOI: 10.16258/j.cnki.1674-5906.2022.09.006
刘桢迪1,2(), 宋艳宇1,*(
), 王宪伟1, 谭稳稳1, 张豪1, 高晋丽1, 高思齐1,2, 杜宇1
收稿日期:
2022-03-24
出版日期:
2022-09-18
发布日期:
2022-11-07
通讯作者:
*E-mail: songyanyu@iga.ac.cn作者简介:
刘桢迪(1998年生),男,硕士研究生,从事湿地土壤生态研究。E-mail: liuzhendi20@mails.ucas.ac.cn
基金资助:
LIU Zhendi1,2(), SONG Yanyu1,*(
), WANG Xianwei1, TAN Wenwen1, ZHANG Hao1, GAO Jinli1, GAO Siqi1,2, DU Yu1
Received:
2022-03-24
Online:
2022-09-18
Published:
2022-11-07
摘要:
全球变暖能够影响植物的生长环境,改变植物生长代谢过程,进而影响植物的养分循环和分配。高纬度冻土区泥炭地植物对气候变化响应更加敏感。基于野外长期开顶箱增温实验(Open-top Chamber,OTC),探究大兴安岭冻土区泥炭地植物生长及养分特征对温度升高的响应。结果表明,泥炭地植物生长对增温的响应具有种间异质性,增温显著增加了柴桦(Betula fruticosa)的高度和重要值以及白毛羊胡子草(Eriophorum vaginatum)的密度和重要值,但显著降低了笃斯越桔(Vaccinium uliginosum)的密度、盖度和重要值。柴桦的地上、地下生物量在增温后显著增加,而笃斯越桔的地上、地下生物量显著降低。增温降低了泥炭地植物物种多样性,并且引起植物组织碳氮特征发生变化。增温导致柴桦、狭叶杜香(Ledum palustre)、甸杜(Cassandra calyculata)和白毛羊胡子草凋落物以及笃斯越桔和狭叶杜香根、叶碳质量分数显著降低,而柴桦茎和笃斯越桔凋落物的碳质量分数显著增加;狭叶杜香根、叶和凋落物以及白毛羊胡子草叶的氮质量分数显著降低,而笃斯越桔茎、甸杜叶以及越桔柳(Salix myrtilloides)叶的氮质量分数显著增加,同时增温也改变了植物体内不同组织的碳氮比。研究表明,增温更有利于冻土区泥炭地高灌木和草本植物生长而不利于低矮灌木生长。气候变暖将改变冻土区泥炭地植物群落组成、养分循环和分配。研究结果为明确全球变暖背景下冻土区泥炭地植物群落结构和功能稳定性维持机制提供了重要参考。
中图分类号:
刘桢迪, 宋艳宇, 王宪伟, 谭稳稳, 张豪, 高晋丽, 高思齐, 杜宇. 冻土区泥炭地植物生长及碳氮特征对模拟增温的响应[J]. 生态环境学报, 2022, 31(9): 1765-1772.
LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland[J]. Ecology and Environment, 2022, 31(9): 1765-1772.
图1 模拟增温对泥炭地植物生长的影响 图中*表示显著性P<0.05,**表示显著性P<0.01。图中误差棒表示标准误差(Mean±SE)。下同 柴桦:Betula fruticosa,笃斯越桔:Vaccinium uliginosum,狭叶杜香:Ledum palustre,甸杜:Cassandra calyculata,越桔柳:Salix myrtilloides,白毛羊胡子草:Eriophorum vaginatum。下同 The same below
Figure 1 Effect of simulated warming on plant growth in peatlands * in the figure indicates significance P<0.05, ** indicates significance P<0.01. The error bar represents the standard error (mean±SE). The same below
植物多样性指数 | 对照 (CK) | 增温 (OTC) |
表1 模拟增温对泥炭地植物多样性的影响
Table 1 Effects of simulated warming on the diversity of plants in peatlands
植物多样性指数 | 对照 (CK) | 增温 (OTC) |
[1] |
AINSWORTH E A, LONG S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy[J]. New Phytologist, 165(2): 351-371.
DOI URL |
[2] |
ALLISON S D, TRESEDER K K, 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 14(12): 2898-2909.
DOI URL |
[3] |
CAO B, BAI C K, XUE Y, et al., 2020. Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change[J]. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2020.138518.
DOI |
[4] |
CHEN H, ZHANG W C, GAO H R, et al., 2018. Climate change and anthropogenic impacts on wetland and agriculture in the Songnen and Sanjiang Plain, Northeast China[J]. Remote Sensing, 10(3): 356.
DOI URL |
[5] | DOU J X, LIU J S, WANG Y, et al., 2010. Experimental soil-warming effects on carbon processes of typical meadow Calamagrostis angustifolia wetland ecosystem in the Sanjiang Plain, northeast China[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 60(4): 361-368. |
[6] |
ENGELHARDT K A M, RITCHIE M E, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services[J]. Nature, 411(6838): 687-689.
DOI URL |
[7] |
GONZALEZ-MELER M A, SILVA L B C, DIAS-DE-OLIVEIRA E, et al., 2017. Experimental air warming of a Stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics[J]. Frontiers in Plant Science, DOI: 10.3389/fpls.2017.00046.
DOI |
[8] |
GUAN B, XIE B H, YANG S S, et al., 2019. Effects of five years' nitrogen deposition on soil properties and plant growth in a salinized reed wetland of the Yellow River Delta[J]. Ecological Engineering, 136: 160-166.
DOI URL |
[9] | HAO X Y, LI P, HAN X, et al., 2016. Effects of free-air CO2 enrichment (FACE) on N, P and K uptake of soybean in northern China[J]. Agricultural and Forest Meteorology, 218: 261-266. |
[10] | IPCC, 2021. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergoveronmental panel on climate change[M]. Cambridge, UK: Cambridge Press. |
[11] |
KLANDERUD K, TOTLAND O, 2005. Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot[J]. Ecology, 86(8): 2047-2054.
DOI URL |
[12] |
LUCHT W, PRENTICE I C, MYNENI R B, et al., 2002. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect[J]. Science, 296(5573): 1687-1689.
PMID |
[13] |
LEE E H, TINGEY D T, BEEDLOW P A, et al., 2007. Relating fine root biomass to soil and climate conditions in the Pacific Northwest[J]. Forest Ecology and Management, 242(2): 195-208.
DOI URL |
[14] |
MAO R, ZENG D H, ZHANG X H, et al., 2015. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China[J]. Scientific Reports, 5: 8097.
DOI PMID |
[15] |
MENG H N, SONG C C, MIAO Y Q, et al., 2014. Response of CH4 emissions to moss removal and N addition in boreal peatland of northeast China[J]. Biogeosciences, 11(17): 4809-4816.
DOI URL |
[16] |
NOMOTO H A, ALEXANDER J M, 2021. Drivers of local extinction risk in alpine plants under warming climate[J]. Ecology Letters, 24(6): 1157-1166.
DOI PMID |
[17] |
NORBY R J, CHILDS J, HANSON P J, et al., 2019. Rapid loss of an ecosystem engineer: Sphagnum decline in an experimentally warmed bog[J]. Ecology and Evolution, 9(22): 12571-12585.
DOI URL |
[18] | PANETTA A M, STANTON M L, HARTE J, 2018. Climate warming drives local extinction: Evidence from observation and experimentation[J]. Science Advances, 4(2): eaaq1819. |
[19] |
PARMESAN C, YOHE G, 2003. A globally coherent fingerprint of climate change impacts across natural system s[J]. Nature, 421(6918): 37-42.
DOI URL |
[20] |
RAHBEK C, BORREGAARD M K, COLWELL R K, et al., 2019. Humboldt's enigma: What causes global patterns of mountain biodiversity?[J]. Science, 365(6458): 1108-1113.
DOI PMID |
[21] |
REICH P B, OLEKSYN J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(30): 11001-11006.
DOI PMID |
[22] |
SCHUUR E A G, MCGUIRE A D, SCHADEL C, et al., 2015. Climate change and the permafrost carbon feedback[J]. Nature, 520(7546): 171-179.
DOI URL |
[23] |
SMITH S J, EDMONDS J, HARLIN C A, et al., 2015. Near-term acceleration in the rate of temperature change[J]. Nature Climate Change, 5(4): 333-336.
DOI URL |
[24] |
SONG S S, ZHANG C, GAO Y, et al., 2020. Responses of wetland soil bacterial community and edaphic factors to two-year experimental warming and Spartina alterniflora invasion in Chongming Island[J]. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2019.119502.
DOI |
[25] |
SONG Y Y, JIANG L, SONG C C, et al., 2021. Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming[J]. Ecological Indicators, DOI: 10.1016/j.ecolind. 2021.107589.
DOI |
[26] |
SONG Y Y, SONG C C, HOU A X, et al., 2018. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland[J]. Catena, 165: 381-389.
DOI URL |
[27] |
VUKICEVIC T, BRASWELL B H, SCHIMEL D, 2001. A diagnostic study of temperature controls on global terrestrial carbon exchange[J]. Tellus Series B-Chemical and Physical Meteorology, 53(2): 150-170.
DOI URL |
[28] |
WEIH M, KARLSSON P S, 2001. Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature?[J]. New Phytologist, 150(1): 147-155.
DOI URL |
[29] | XIAO D R, YAN P F, ZHAN P F, et al., 2019. Temperature variations in simulated warming alter photosynthesis of two emergent plants in plateau wetlands, China[J]. Ecosphere, 10(5): e02729. |
[30] |
ZHANG Q C, SHAMSI I H, XU D T, et al., 2012. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure[J]. Applied Soil Ecology, 57: 1-8.
DOI URL |
[31] |
ZHANG Q F, ZHOU J C, LI X J, et al., 2019. Are the combined effects of warming and drought on foliar C:N:P:K stoichiometry in a subtropical forest greater than their individual effects?[J]. Forest Ecology and Management, 448: 256-266.
DOI URL |
[32] | 卜兆君, 杨允菲, 郎惠卿, 2004. 小兴安岭泥炭沼泽甸杜种群分株的年龄结构与生长分析[J]. 东北师大学报 (自然科学版), 36(4): 98-104. |
BU Z J, YANG Y F, LANG H Q, 2004. Age structure and growth analysis of ramets of Chamaedaphne calyculata populations in a mire of the Xiaoxing'an Mountains[J]. Journal of Northeast Normal University, 36(4): 98-104. | |
[33] | 晁倩, 温静, 杨晓艳, 等, 2019. 云顶山亚高山草甸植物物种多样性对模拟增温的响应[J]. 环境生态学, 1(4): 34-40. |
CHAO Q, WEN J, YANG X Y, et al., 2019. Responses of subalpine meadow species diversity to simulated warming in the Yunding Mountain[J]. Environmental Ecology, 1(4): 34-40. | |
[34] |
江肖洁, 胡艳玲, 韩建秋, 等, 2014. 增温对苔原土壤和典型植物叶片碳、氮、磷化学计量学特征的影响[J]. 植物生态学报, 38(9): 941-948.
DOI |
JIANG X J, HU X L, HAN J Q, et al., 2014. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants[J]. Chinese Journal of Plant Ecology, 38(9): 941-948.
DOI URL |
|
[35] | 姜炎彬, 范苗, 张扬建, 2017. 短期增温对藏北高寒草甸植物群落特征的影响[J]. 生态学杂志, 36(3): 616-622. |
JIANG Y B, FAN M, ZHANG Y J, 2017. Effect of short-term warming on plant community features of alpine meadow in Northern Tibet[J]. Chinese Journal of Ecology, 36(3): 616-622. | |
[36] |
黎磊, 陈家宽, 2014. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 22(5): 549-563.
DOI |
LI L, CHEN J K, 2014. Influence of climate change on wild plants and the conservation strategies[J]. Biodiversity Science, 22(5): 549-563.
DOI |
|
[37] | 刘美, 马志良, 2022. 增温和植物去除对青藏高原东部高寒灌丛土壤不同形态氮的影响[J]. 生态环境学报, 31(3): 470-477. |
LIU M, MA Z L, 2022. Effects of warming and plant removal on soil nitrogen contents in an alpine shrubland of eastern Qinghai-Tibetan Plateau[J]. Ecology and Environmental Sciences, 31(3): 470-477. | |
[38] | 刘石宁, 徐志伟, 张云萍, 等, 2020. 白江河天然和排水泥炭沼泽中4种灌木碳、氮和磷的生态化学计量学特征[J]. 湿地科学, 18(2): 244-250. |
LIU S N, XU Z W, ZHANG Y P, et al., 2020. Characteristics of ecological stoichiometry of carbon, nitrogen and phosphorus in 4 kinds of shrubs in natural and drainage peat bogs in Baijianghe[J]. Wetland Science, 18(2): 244-250. | |
[39] | 任娜, 宋长春, 王宪伟, 等, 2020. 大兴安岭地区不同类型多年冻土区灌丛-薹草沼泽植物群落组成及其物种多样性[J]. 湿地科学, 18(2): 228-236. |
REN N, SONG C C, WANG X W, et al., 2020. Composition of plant communities in shrub-Carex swamps and their species diversity in different types of permafrost zones in Daxinganling region[J]. Wetland Science, 18(2): 228-236. | |
[40] | 汪殿蓓, 暨淑仪, 陈飞鹏, 2001. 植物群落物种多样性研究综述[J]. 生态学杂志, 20(4): 55-60. |
WANG D P, JI S Y, CHEN F P, 2001. A review on the species diversity of plant community[J]. Chinese Journal of Ecology, 20(4): 55-60. | |
[41] | 王姝, 秦纪洪, 谢冰心, 等, 2020. 水分梯度下若尔盖高寒泥炭地土壤可溶性有机质光谱特征[J]. 生态环境学报, 29(4): 676-685. |
WANG S, QIN J H, XIE B X, et al., 2020. Spectroscopic characteristics of dissolved organic matter (DOM) in Zoige alpine peatland soils along a soil moisture gradient[J]. Ecology and Environmental Sciences, 29(4): 676-685. | |
[42] |
魏春雪, 杨璐, 汪金松, 等, 2021. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 45(11): 1203-1212.
DOI |
WEI C X, YANG L, WANG J S, et al., 2021. Effects of experimental warming on root biomass in terrestrial ecosystems[J]. Chinese Journal of Plant Ecology, 45(11): 1203-1212.
DOI URL |
|
[43] |
吴红宝, 高清竹, 干珠扎布, 等, 2019. 放牧和模拟增温对藏北高寒草地植物群落特征及生产力的影响[J]. 植物生态学报, 43(10): 853-862.
DOI |
WU H B, GAO Q Z, GANJURJAV H, et al., 2019. Effects of grazing and simulated warming on plant community structure and productivity of alpine grassland in Northern Xizang, China[J]. Chinese Journal of Plant Ecology, 43(10): 853-862
DOI URL |
|
[44] | 吴树森, 张玉澎, 魏光辉, 等, 2017. 1961-2015年寒温带漠河气候变化特征分析[J]. 黑龙江气象, 34(4): 41-43. |
WU S S, ZHANG Y P, WEI G H, et al., 2017. Analysis on climate change characteristics of Mohe River in cold temperate zone from 1961 to 2015[J]. Heilongjiang Meteorology, 34(4): 41-43. | |
[45] | 杨晓艳, 秦瑞敏, 张世雄, 等, 2020. 山西吕梁山草本群落对模拟增温的响应及与环境因子的关系[J]. 西南农业学报, 33(6): 1291-1300. |
YANG X Y, QIN R M, ZHANG S X, et al., 2020. Response of herb community to simulated warming and its relationship with environmental factors in Lüliang Mountain, Shanxi, China[J]. Southwest China Journal of Agricultural Sciences, 33(6): 1291-1300. | |
[46] | 张慧, 韩冰, 董全民, 等, 2020. AMF及短期增温增雨互作对植物吸收氮磷功能的影响[J]. 草地学报, 28(4): 1034-1042. |
ZHANG H, HAN B, DONG Q M, et al., 2020. Effect of AMF inoculation, short-term warming and increasing precipitation on nitrogen and phosphorus absorption of plant[J]. Acta Agrestia Sinica, 28(4): 1034-1042. | |
[47] | 赵丹丹, 2019. 大兴安岭地区湿地分布变化及对气候变化响应的模拟研究[D]. 长春: 东北师范大学. |
ZHAO D D, 2019. The change of wetland distribution and the simulated response to climatic change in the Great Xing’an Mountains[D]. Changchun: Northeast Normal University. |
[1] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[2] | 姚世庭, 芦光新, 邓晔, 党宁, 王英成, 张海娟, 颜珲璘. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2021, 30(7): 1404-1411. |
[3] | 舒洋, 周梅, 赵鹏武, 张恒, 郭娇宇, 管立娟. 大兴安岭根河雷击火干扰后地表死可燃物负荷及影响因子[J]. 生态环境学报, 2021, 30(12): 2317-2323. |
[4] | 余楚, 李剑锋, 吕敦玉. 大兴安岭南段某矿区河流表层沉积物重金属污染及风险评价[J]. 生态环境学报, 2021, 30(11): 2223-2231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||