生态环境学报 ›› 2022, Vol. 31 ›› Issue (5): 1015-1023.DOI: 10.16258/j.cnki.1674-5906.2022.05.017
施建飞1,2(), 靳正忠2, 周智彬2,*(
), 王鑫1,2
收稿日期:
2021-12-21
出版日期:
2022-05-18
发布日期:
2022-07-12
通讯作者:
* 周智彬,E-mail: zhouzb2008@yahoo.com.cn作者简介:
施建飞(1998年生),男,硕士研究生,主要从事土壤重金属污染评价及修复研究。E-mail: shijianfei201@mails.ucas.ac.cn
基金资助:
SHI Jianfei1,2(), JIN Zhengzhong2, ZHOU Zhibin2,*(
), WANG Xin1,2
Received:
2021-12-21
Online:
2022-05-18
Published:
2022-07-12
摘要:
为了解额尔齐斯河流域典型尾矿库区周边土壤中8种重金属元素(Cr、Ni、Cu、Zn、Cd、Pb、Mn、As)的富集特征,采用调查分析方法,以额尔齐斯河流域土壤背景值和国家土壤环境Ⅱ级标准作为参比值,利用单因子污染指数(Contamination Factor,CF)、污染负荷指数(Pollution Load Index,PLI)、潜在生态风险指数(Potential Ecological Risk Index,RI)和生态风险预警指数(Ecological Risk Warning Index,IER)对尾矿库区周边土壤重金属污染程度以及生态风险进行评价,旨在保护尾矿库区周边土壤环境安全,为土壤环境污染治理提供科学依据。结果表明,(1)尾矿库区周边土壤中Cr、Ni、Cu、Zn、Cd、Pb、Mn和As的含量平均值分别超出该区域土壤背景值的7.53、36.08、31.45、0.68、35.32、1.76、0.76和0.65倍。其中,Cd、Ni、Cu和Cr属于重度污染,Pb、Mn、Zn和As属于轻度污染。(2)尾矿库区周边土壤中重金属元素Ni、Cu和Zn主要来自于尾矿库区,Cr、Cd和Pb与交通运输以及矿业生产活动有关,As和Mn主要受土壤地球化学作用的控制。(3)以额尔齐斯河流域土壤背景作为参比值,研究区土壤PLI平均值为4.04,呈现重度污染,土壤RI平均值为1511.40,呈现很强生态风险态势;土壤IER平均值为115.02,属于重度预警水平。(4)基于国家土壤环境Ⅱ级标准,研究区内调查样点处于强度生态风险和很强生态风险的占比分别为18.52%、81.48%,处于重度预警水平的样点占比为100%。因此,从污染程度和恢复时间的角度来看,尾矿堆存都造成了巨大的环境足迹,急需针对尾矿库周边的土壤重金属污染采取修复措施。
中图分类号:
施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023.
SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin[J]. Ecology and Environment, 2022, 31(5): 1015-1023.
项目Item | 重金属 Heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
w(Cr)/(mg∙kg-1) | w(Ni)/(mg∙kg-1) | w(Cu)/(mg∙kg-1) | w(Zn)/(mg∙kg-1) | w(Cd)/(mg∙kg-1) | w(Pb)/(mg∙kg-1) | w(Mn)/(mg∙kg-1) | w(As)/(mg∙kg-1) | |
平均值 Mean | 593.8 | 1358.3 | 1139.1 | 120.7 | 6.9 | 47.74 | 1609.0 | 14.6 |
最小值 Minimum | 238.7 | 395.4 | 248.3 | 94.8 | 3.6 | 18.5 | 1050.0 | 5.7 |
最大值 Maximum | 1260.1 | 6523.5 | 5424.5 | 181.9 | 15.6 | 99.3 | 2893.0 | 35.4 |
变异系数 Coefficient of variance/% | 45.45 | 97.17 | 112.71 | 15.66 | 47.83 | 52.79 | 21.45 | 43.84 |
流域土壤背景值 Watershed soil background value | 69.64 | 36.63 | 35.10 | 71.75 | 0.19 | 17.27 | 913.31 | 8.84 |
国家土壤环境Ⅱ级标准 National soil environment quality standard (GradeⅡ) (pH<6.5) | 150 | 40 | 50 | 200 | 0.3 | 250 | — | 40 |
表1 尾矿库区周边土壤重金属质量分数统计
Table 1 Statistics of heavy metal content in the soil around the tailing reservoir area
项目Item | 重金属 Heavy metal | |||||||
---|---|---|---|---|---|---|---|---|
w(Cr)/(mg∙kg-1) | w(Ni)/(mg∙kg-1) | w(Cu)/(mg∙kg-1) | w(Zn)/(mg∙kg-1) | w(Cd)/(mg∙kg-1) | w(Pb)/(mg∙kg-1) | w(Mn)/(mg∙kg-1) | w(As)/(mg∙kg-1) | |
平均值 Mean | 593.8 | 1358.3 | 1139.1 | 120.7 | 6.9 | 47.74 | 1609.0 | 14.6 |
最小值 Minimum | 238.7 | 395.4 | 248.3 | 94.8 | 3.6 | 18.5 | 1050.0 | 5.7 |
最大值 Maximum | 1260.1 | 6523.5 | 5424.5 | 181.9 | 15.6 | 99.3 | 2893.0 | 35.4 |
变异系数 Coefficient of variance/% | 45.45 | 97.17 | 112.71 | 15.66 | 47.83 | 52.79 | 21.45 | 43.84 |
流域土壤背景值 Watershed soil background value | 69.64 | 36.63 | 35.10 | 71.75 | 0.19 | 17.27 | 913.31 | 8.84 |
国家土壤环境Ⅱ级标准 National soil environment quality standard (GradeⅡ) (pH<6.5) | 150 | 40 | 50 | 200 | 0.3 | 250 | — | 40 |
项目 Item | Cr | Ni | Cu | Zn | Cd | Pb | Mn |
---|---|---|---|---|---|---|---|
Ni | 0.25 | ||||||
Cu | 0.36 | 0.86** | |||||
Zn | 0.16 | 0.67** | 0.72** | ||||
Cd | 0.81** | 0.30 | 0.42* | 0.34 | |||
Pb | 0.78** | 0.55* | 0.71** | 0.42* | 0.82** | ||
Mn | -0.38* | 0.05 | -0.15 | -0.04 | -0.21 | -0.23 | |
As | -0.11 | 0.02 | -0.19 | -0.31 | -0.15 | -0.13 | 0.35 |
表2 研究区土壤重金属元素之间相关系数
Table 2 Correlation coefficient of heavy metal elements in soil
项目 Item | Cr | Ni | Cu | Zn | Cd | Pb | Mn |
---|---|---|---|---|---|---|---|
Ni | 0.25 | ||||||
Cu | 0.36 | 0.86** | |||||
Zn | 0.16 | 0.67** | 0.72** | ||||
Cd | 0.81** | 0.30 | 0.42* | 0.34 | |||
Pb | 0.78** | 0.55* | 0.71** | 0.42* | 0.82** | ||
Mn | -0.38* | 0.05 | -0.15 | -0.04 | -0.21 | -0.23 | |
As | -0.11 | 0.02 | -0.19 | -0.31 | -0.15 | -0.13 | 0.35 |
主成分 Principal Component | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | 特征值 Eigenvalues | 累积方差贡献率 Cumulative variance contribution rate/% |
---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.08 | 0.12 | 0.90 | 0.89 | 0.87 | -0.19 | 0.21 | 0.45 | 2.66 | 33 |
PC2 | 0.93 | -0.34 | 0.21 | 0.32 | 0.08 | 0.05 | 0.88 | 0.85 | 2.63 | 66 |
PC3 | -0.15 | 0.73 | 0.16 | -0.09 | -0.20 | 0.87 | -0.09 | -0.06 | 1.40 | 84 |
表3 土壤重金属元素因子载荷
Table 3 Factor matrix of heavy metal elements of soil
主成分 Principal Component | Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | 特征值 Eigenvalues | 累积方差贡献率 Cumulative variance contribution rate/% |
---|---|---|---|---|---|---|---|---|---|---|
PC1 | 0.08 | 0.12 | 0.90 | 0.89 | 0.87 | -0.19 | 0.21 | 0.45 | 2.66 | 33 |
PC2 | 0.93 | -0.34 | 0.21 | 0.32 | 0.08 | 0.05 | 0.88 | 0.85 | 2.63 | 66 |
PC3 | -0.15 | 0.73 | 0.16 | -0.09 | -0.20 | 0.87 | -0.09 | -0.06 | 1.40 | 84 |
污染级别 Pollution level | 单因子污染指数 Contamination factor | 污染负荷指数 Pollution load index | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | Cd | Pb | Mn | As | ||
无污染 No pollution | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.81 | 0 |
轻度污染 Light pollution | 0 | 0 | 0 | 100 | 0 | 62.96 | 96.30 | 81.48 | 0 |
中度污染 Moderate pollution | 33.33 | 0 | 0 | 0 | 0 | 37.04 | 3.70 | 3.71 | 0 |
重度污染 High pollution | 66.67 | 100 | 100 | 0 | 100 | 0 | 0 | 0 | 100 |
表4 不同污染级别样点数占比
Table 4 Proportion of samples with different pollution levels %
污染级别 Pollution level | 单因子污染指数 Contamination factor | 污染负荷指数 Pollution load index | |||||||
---|---|---|---|---|---|---|---|---|---|
Cr | Ni | Cu | Zn | Cd | Pb | Mn | As | ||
无污染 No pollution | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.81 | 0 |
轻度污染 Light pollution | 0 | 0 | 0 | 100 | 0 | 62.96 | 96.30 | 81.48 | 0 |
中度污染 Moderate pollution | 33.33 | 0 | 0 | 0 | 0 | 37.04 | 3.70 | 3.71 | 0 |
重度污染 High pollution | 66.67 | 100 | 100 | 0 | 100 | 0 | 0 | 0 | 100 |
生态风险级别 Potential ecological risks | Cr | Ni | Cu | Zn | Cd | Pb | Mn | As |
---|---|---|---|---|---|---|---|---|
轻微生态风险 Light ecological risk | 100 | 0 | 7.41 | 100 | 0 | 100 | 100 | 96.30 |
中等生态风险 Moderate ecological risk | 0 | 25.93 | 33.33 | 0 | 0 | 0 | 0 | 3.70 |
较强生态风险 Highly ecological risk | 0 | 33.33 | 33.33 | 0 | 0 | 0 | 0 | 0 |
很强生态风险 High ecological risk | 0 | 25.93 | 18.52 | 0 | 0 | 0 | 0 | 0 |
极强生态风险 Serious ecological risk | 0 | 14.81 | 7.41 | 0 | 100 | 0 | 0 | 0 |
表5 基于流域土壤背景值的不同生态风险等级比重
Table 5 Proportion of different risk levels based on the background value %
生态风险级别 Potential ecological risks | Cr | Ni | Cu | Zn | Cd | Pb | Mn | As |
---|---|---|---|---|---|---|---|---|
轻微生态风险 Light ecological risk | 100 | 0 | 7.41 | 100 | 0 | 100 | 100 | 96.30 |
中等生态风险 Moderate ecological risk | 0 | 25.93 | 33.33 | 0 | 0 | 0 | 0 | 3.70 |
较强生态风险 Highly ecological risk | 0 | 33.33 | 33.33 | 0 | 0 | 0 | 0 | 0 |
很强生态风险 High ecological risk | 0 | 25.93 | 18.52 | 0 | 0 | 0 | 0 | 0 |
极强生态风险 Serious ecological risk | 0 | 14.81 | 7.41 | 0 | 100 | 0 | 0 | 0 |
生态风险级别 Potential ecological risks | Cr | Ni | Cu | Zn | Cd | Pb | As |
---|---|---|---|---|---|---|---|
轻微生态风险 Light ecological risk | 100 | 0 | 18.52 | 100 | 0 | 100 | 100 |
中等生态风险 Moderate ecological risk | 0 | 25.93 | 33.33 | 0 | 0 | 0 | 0 |
较强生态风险 Highly ecological risk | 0 | 37.03 | 25.93 | 0 | 0 | 0 | 0 |
很强生态风险 High ecological risk | 0 | 25.93 | 14.81 | 0 | 0 | 0 | 0 |
极强生态风险 Serious ecological risk | 0 | 11.11 | 7.41 | 0 | 100 | 0 | 0 |
表6 基于国家土壤标准的不同生态风险等级比重
Table 6 Proportion of different risk levels based on national standards %
生态风险级别 Potential ecological risks | Cr | Ni | Cu | Zn | Cd | Pb | As |
---|---|---|---|---|---|---|---|
轻微生态风险 Light ecological risk | 100 | 0 | 18.52 | 100 | 0 | 100 | 100 |
中等生态风险 Moderate ecological risk | 0 | 25.93 | 33.33 | 0 | 0 | 0 | 0 |
较强生态风险 Highly ecological risk | 0 | 37.03 | 25.93 | 0 | 0 | 0 | 0 |
很强生态风险 High ecological risk | 0 | 25.93 | 14.81 | 0 | 0 | 0 | 0 |
极强生态风险 Serious ecological risk | 0 | 11.11 | 7.41 | 0 | 100 | 0 | 0 |
[1] |
ALVAREZ J, MONTERO A A, NH JIMÉNEZ, et al., 2001. Nuclear and related analytical methods applied to the determination of Cr, Ni, Cu, Zn, Cd and Pb in a red ferralitic soil and Sorghum samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 247(3): 479-486.
DOI URL |
[2] | CHAKRABORTY B, BERA B, ROY S, et al., 2021. Assessment of non-carcinogenic health risk of heavy metal pollution: Evidences from coal mining region of eastern India[J]. Environmental Science and Pollution Research, 193(582): 1-19. |
[3] |
BORUVKA L, VACEK O I, JEHLIKA J, 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma, 128(3-4): 289-300.
DOI URL |
[4] |
DIAMI S M, KUSIN F M, MADZIN Z, 2016. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia[J]. Environmental Science and Pollution Research, 23(20): 21086-21097.
DOI URL |
[5] |
HAKANSON L, 1980. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 14(8): 975-1001.
DOI URL |
[6] |
BHUIYAN M A H, PARVEZ L, ISLAM M A, et al., 2010. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh[J]. Journal of Hazardous Materials, 173(1-3): 384-392.
DOI URL |
[7] |
LIU H Q, ZHANG Y, YUAN Z J, et al., 2021. Risk assessment concerning the heavy metals in sediment around Taihu Lake, China[J]. Water Environment Research: A research publication of the Water Environment Federation, 93(11): 2795-2806.
DOI URL |
[8] | LENKA D, JÚLIUS Á, LENKA B, et al., 2017. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia)[J]. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 52(5): 1-12. |
[9] |
LI X, POON C S, LIU P S, 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry, 16(11): 1361-1368.
DOI URL |
[10] |
QIN F X, WEI C F, ZHONG S Q, et al., 2016. Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China[J]. Journal of Central South University, 23(9): 2205-2213.
DOI URL |
[11] |
RAPANT S, KORDÍK J, 2003. An environmental risk assessment map of the Slovak Republic: Application of data from geochemical atlases[J]. Environmental Geology, 44(4): 400-407.
DOI URL |
[12] |
RASMUSSEN P E, SUBRAMANIAN K S, JESSIMAN B J, 2001. A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada[J]. Science of the Total Environment, 267(1): 125-140.
DOI URL |
[13] |
SHAHID M, PINELLI E, DUMAT C, 2012. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands[J]. Journal of Hazardous Materials, 219-220: 1-12.
DOI URL |
[14] |
WU J S, SONG J, LI W F, et al., 2016. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China[J]. Environmental Science and Pollution Research, 23(2): 1428-1440.
DOI URL |
[15] |
LI X T, WU P X, DELANG C O, et al., 2021. Spatial-temporal variation, ecological risk, and source identification of nutrients and heavy metals in sediments in the peri-urban riverine system[J]. Environmental Science and Pollution Research International, 28: 64739-64756.
DOI URL |
[16] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750.
DOI URL |
[17] | 陈丹丹, 谭璐, 聂紫萌, 等, 2021. 湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J]. 环境化学, 40(9): 2667-2679. |
CHEN D D, TAN L, NIE Z M, et al., 2021. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environment Chemisry, 40(9): 2667-2679. | |
[18] | 陈璐, 文方, 程艳, 等, 2017. 铅锌尾矿中重金属形态分布与毒性浸出特征研究[J]. 干旱区资源与环境, 31(3): 89-94. |
CHEN L, WEN F, CHENG Y, et al., 2017. Characteristics of speciation distribution and toxicity leaching of heavy metals in Pb-Zn tailings[J]. Journal of Arid Land Resources and Environment, 31(3): 89-94. | |
[19] |
陈世宝, 王萌, 李杉杉, 等, 2019. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 26(6): 35-41.
DOI |
CHEN S B, WANG M, LI B B, et al., 2019. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 26(6): 35-41. | |
[20] | 陈雅丽, 翁莉萍, 马杰, 等, 2019. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 38(10): 2219-2238. |
CHEN Y L, WENG L P, MA J, et al., 2019. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro-Environment Science, 38(10): 2219-2238. | |
[21] | 迪娜·吐尔生江, 李典鹏, 胡毅, 等, 2018. 新疆奴拉赛铜矿周边土壤理化特征和重金属污染生态风险评价[J]. 农业资源与环境学报, 35(1): 17-23. |
DINA T, LI D P, HU Y, et al., 2018. Physicochemical characteristics and ecological risk assessment of heavy metals contaminated soils in copper mining of Nulasai, Xinjiang, China[J]. Journal of Agricultural Resources and Environment, 35(1): 17-23. | |
[22] | 董连慧, 刘德权, 唐延龄, 等, 2016. 新疆矿产资源种类及特点初步研究[J]. 新疆地质, 34(4): 463-475. |
DONG L H, LIU D Q, TANG Y L, et al., 2016. Preliminary study on the characteristics and types of mineral resources in Xinjiang[J]. Xinjiang Geology, 34(4): 463-475. | |
[23] | 杜立宇, 梁成华, 刘桂琴, 2008. 红透山铜尾矿重金属分布及其对土壤重金属污染的影响[J]. 土壤通报, 39(4): 938-941. |
DU L Y, LIANG C H, LIU G Q, 2008. The Distribution Characteristics of Heavy Metals in Cu Mine Tailing and Effects of Heavy Metals on Pollution of Soils in the Areas of HongTou Mountains[J]. Chinese Journal of Soil Science, 39(4): 938-941. | |
[24] | 郭伟, 孙文惠, 赵仁鑫, 等, 2013. 呼和浩特市不同功能区土壤重金属污染特征及评价[J]. 环境科学, 34(4): 1561-1567. |
GUO W, SUN W H, ZHAO R X, et al., 2013. Characteristic and evaluation of soil pollution by heavy metal in different functional zones of Honhot[J]. Environment Science, 34(4): 1561-1567. | |
[25] | 胡国成, 张丽娟, 齐剑英, 等, 2015. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 24(5): 879-885. |
HU G C, ZHANG L J, QI J Y, et al., 2015. Contaminant Characteristics and Risk Assessment of Heavy Metals in Soils from Wanshan Mercury Mine Area, Guizhou Province[J]. Ecology and Environmental Sciences, 24(5): 879-885. | |
[26] | 黄小娟, 江长胜, 郝庆菊, 2014. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征[J]. 生态学报, 34(15): 4201-4211. |
HUANG X J, JIANG C S, HAO Q J, 2014. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi manganese mineland of Chongqing[J]. Acta Ecologica Sinica, 34(15): 4201-4211. | |
[27] | 黄钟霆, 易盛炜, 陈贝贝, 等. 2022. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价[J]. 环境科学, 43(2): 975-984. |
HUANG Z T, YI S W, CHEN B B, et al., 2022. Pollution Properties and Ecological Risk Assessment of Heavy Metals in Farmland Soils and Crops Around a Typical Manganese Mining Area[J]. Environment science, 43(2): 975-984.
DOI URL |
|
[28] | 雷国建, 陈志良, 刘千钧, 等, 2013. 广州郊区土壤重金属污染程度及潜在生态危害评价[J]. 中国环境科学, 33(S1): 49-53. |
LEI G J, CHEN Z L, LIU Q J, et al., 2013. The assessments of polluted degree and potential ecological hazards of heavy metals in suburban soil of Guangzhou city[J]. China Environmental Science, 33(S1): 49-53. | |
[29] | 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 2018. 新疆焉耆盆地辣椒地土壤重金属污染及生态风险预警[J]. 生态学报, 38(3): 1075-1086. |
MAMATTURSUN E, AJIGUL M, ANWAR M, 2018. Soil heavy metal pollution and ecological risk warning assessment of pepper field in Yanqi Basin, Xinjiang[J]. Acta Ecologica Sinica, 38(3): 1075-1086. | |
[30] | 米晓军, 任雯, 雒琼, 等, 2019. 新疆准噶尔盆地未开垦盐碱地土壤重金属评价及其来源[J]. 干旱区研究, 36(4): 824-834. |
MI X J, REN W, LUO Q, et al., 2019. Evaluation and their sources of heavy metals in uncultivated saline-alkaline soil in the Junggar Basin, Xinjiang[J]. Arid Zone Research, 36(4): 824-834. | |
[31] | 秦旭芝, 罗志祥, 季文兵, 等, 2021. 桂西北地质高背景区有色金属冶炼对周边土壤重金属污染与生态风险评价[J]. 生态学杂志, 40(8): 2324-2333. |
QIN X Z, LUO Z X, JI W B, et al., 2021. Pollution and ecological risk assessment of heavy metals in surrounding soil by nonferrous metal smelting with high geological background in northwest Guangxi[J]. Chinese Journal of Ecology, 40(8): 2324-2333. | |
[32] | 秦鱼生, 喻华, 冯文强, 等, 2013. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报, 33(19): 6335-6344. |
QIN Y S, YU H, FENG W Q, et al., 2013. Assessment on heavy metal pollution status in paddy soils in the northern Chendu plain and their potential ecological risk[J]. Acta Ecologica Sinica, 33(19): 6335-6344.
DOI URL |
|
[33] | 中华人民共和国环境保护部, 中华人民共和国国土资源部, 2014. 全国土壤污染状况调查公报[J]. 中国环保产业 (5): 10-11. |
Ministry of Environmental Protection of the People's Republic of China, Ministry of Land and Resources of the People's Republic of China, 2014. National soil pollution survey bulletin[J]. China Environmental Protection Industry (5): 10-11. | |
[34] | 王德厚, 徐艳华, 1997. 阿勒泰地区土壤微量元素环境背景值分布特征[J]. 干旱环境监测, 11(4): 230-233. |
WANG D H, XU Y H, 1997. Distribution characteristics of environmental background value of trace element in soil of Altai prefecture[J]. Arid Enviro. Monitoring, 11(4): 230-233. | |
[35] | 王冠, 辛倩, 马丽娟, 等, 2021. 金川矿区表土金属空间污染特征及磁学响应[J]. 中国环境科学, 41(9): 10. |
WANG G, XIN Q, MA L J, et al., 2021. Spatial pollution characteristics and magnetic response of surface soil heavy metals in Jinchuan copper-nickel mining area[J]. China Environment Science, 41(9): 10. | |
[36] | 王海东, 方凤满, 谢宏芳, 等, 2010. 芜湖市区土壤重金属污染评价及来源分析[J]. 城市环境与城市生态, 23(4): 36-40. |
WANG H D, FANG F M, XIE H F, et al., 2010. Pollution evaluation and source analysis of heavy metal in urban soil of Wuhu city[J]. Urban Environment & Urban Ecology, 23(4): 36-40. | |
[37] | 王军, 陈振楼, 王初, 等, 2007. 上海崇明岛蔬菜地土壤重金属含量与生态风险预警评估[J]. 环境科学, 28(3): 647-653. |
WANG J, CHEN Z L, WANG C, et al., 2007. Heavy metal content and ecological risk warning assessment of vegetable soils in Chongming Island, Shanghai City[J]. Environment Science, 28(3): 647-653. | |
[38] | 赵仁鑫, 郭伟, 包玉英, 等, 2012. 内蒙古草原白乃庙铜矿区土壤重金属污染特征研究[J]. 土壤通报, 43(2): 496-500. |
ZHAO R X, GUO W, BAO Y Y, et al., 2012. Characteristics of heavy metals in soils from Bainaimiao copper mining area of grassland ecosystem in Inner Mongolia[J]. Chinese Journal of Soil Science, 43(2): 496-500. | |
[39] | 中华人民共和国生态环境部, 2015. 土壤和沉积物无机元素的测定波长色散X射线荧光光谱法(HJ 780—2015) [S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People's Republic of China, 2015. Soil and sediment-Determination of inorganic element- Wavelength dispersive X-ray fluorescence spectrometry (HJ 780—2015)[S]. Beijing: China Environmental Science Press. | |
[40] | 中华人民共和国生态环境部, 2019. 土壤环境质量农用地土壤污染风险管控标准 (试行) (GB 15618—2018) [S]. 北京: 中国环境科学出版社. |
Ministry of Ecology and Environment of the People's Republic of China, 2019. Soil environmental quality Risk control standard for soil contamination of agricultural land (GB 15618—2018)[S]. Beijing: China Environmental Press. | |
[41] | 周会程, 姚玉娇, 梁婷, 等, 2020. 天祝不同退化梯度高寒草甸土壤重金属污染及风险评价[J]. 生态环境学报, 29(10): 2102-2109. |
ZHOU H C, YAO Y J, LIANG T, et al., 2020. Risk of heavy metal pollution in soil of alpine meadow with different degradation gradients in Tianzhu county[J]. Ecology and Environmental Sciences, 29(10): 2102-2109. |
[1] | 杜丹丹, 高瑞忠, 房丽晶, 谢龙梅. 旱区盐湖盆地土壤重金属空间变异及对土壤理化因子的响应[J]. 生态环境学报, 2023, 32(6): 1123-1132. |
[2] | 李传福, 朱桃川, 明玉飞, 杨宇轩, 高舒, 董智, 李永强, 焦树英. 有机肥与脱硫石膏对黄河三角洲盐碱地土壤团聚体及其有机碳组分的影响[J]. 生态环境学报, 2023, 32(5): 878-888. |
[3] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[4] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[5] | 许肖云, 饶芝菡, 蒋红斌, 张巍, 陈超, 杨永安, 胡艳丽, 魏海川. 遂宁工业园区夏季VOCs污染特征及其对O3、SOA生成潜势研究[J]. 生态环境学报, 2023, 32(5): 956-968. |
[6] | 周沁苑, 董全民, 王芳草, 刘玉祯, 冯斌, 杨晓霞, 俞旸, 张春平, 曹铨, 刘文亭. 放牧方式对高寒草地瑞香狼毒根际土壤团聚体及有机碳特征的影响[J]. 生态环境学报, 2023, 32(4): 660-667. |
[7] | 潘昱伶, 璩向宁, 李琴, 王磊, 王筱平, 谭鹏, 崔庚, 安雨, 佟守正. 黄河宁夏段典型滩涂湿地土壤理化因子空间分布特征及其对微地形的响应[J]. 生态环境学报, 2023, 32(4): 668-677. |
[8] | 赵维彬, 唐丽, 王松, 刘玲玲, 王树凤, 肖江, 陈光才. 两种生物炭对滨海盐碱土的改良效果[J]. 生态环境学报, 2023, 32(4): 678-686. |
[9] | 冯树娜, 吕家珑, 何海龙. KI淋洗对黄绵土汞污染的去除效果及土壤理化性状的影响[J]. 生态环境学报, 2023, 32(4): 776-783. |
[10] | 陈敏毅, 朱航海, 佘伟铎, 尹光彩, 黄祖照, 杨巧玲. 珠三角某遗留造船厂场地土壤重金属人体健康风险评估及源解析[J]. 生态环境学报, 2023, 32(4): 794-804. |
[11] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[12] | 秦浩, 李蒙爱, 高劲, 陈凯龙, 张殷波, 张峰. 芦芽山不同海拔灌丛土壤细菌群落组成和多样性研究[J]. 生态环境学报, 2023, 32(3): 459-468. |
[13] | 唐海明, 石丽红, 文丽, 程凯凯, 李超, 龙泽东, 肖志武, 李微艳, 郭勇. 长期施肥对双季稻田根际土壤氮素的影响[J]. 生态环境学报, 2023, 32(3): 492-499. |
[14] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[15] | 樊慧琳, 张佳敏, 李欢, 王艳玲. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 2023, 32(2): 283-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||