[1] |
AHN J, LEE S A, KIM J M, et al., 2016. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices[J]. Journal of Microbiology, 54(11): 724-731.
DOI
URL
|
[2] |
AKBARI F, FALLAH S, DAHMARDEN M, et al., 2020. Interaction effects of nitrogen and phosphorus fertilizer on nitrogen mineralization of wheat residues in a calcareous soil[J]. Journal of Plant Nutrition, 43(1-4): 1-12.
DOI
URL
|
[3] |
ASHRAF M N, HU C, WU L, et al., 2020. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization[J]. Journal of Soils and Sediments, 20(8): 3103-3113.
DOI
|
[4] |
BOOTH M S, STARK J M, RASTETTER E, 2005. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data[J]. Ecological Monographs, 75(2): 139-157.
DOI
URL
|
[5] |
ELSER J J, BRACKEN M E S, CLELAND E E, et al., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 10(12): 1135-1142.
DOI
PMID
|
[6] |
ENWALL K, PHILIPPOT L, HALLIN S, 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization[J]. Applied and Environmental Microbiology, 71(12): 8335-8343.
PMID
|
[7] |
KADER M A, SLEUTEL S, BEGUM S A, et al., 2013. Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents[J]. European Journal of Soil Science, 64(1): 47-57.
DOI
URL
|
[8] |
KADER M A, YEASMIN S, SOLAIMAN Z M, et al., 2017. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils[J]. European Journal of Soil Biology, 80: 27-34.
DOI
URL
|
[9] |
KHORSANDI N, NOURBAKHSH F, 2007. Effect of amendment of manure and corn residues on soil N mineralization and enzyme activity[J]. Agronmy for Sustainable Development, 27(2): 139-143.
|
[10] |
LI X F, HOU L J, LIU M, et al., 2015. Primary effects of extracellular enzyme activity and microbial community on carbon and nitrogen mineralization in estuarine and tidal wetlands[J]. Applied Microbiology and Biotechnology, 99(6): 2895-2909.
DOI
PMID
|
[11] |
MARSCHNER P, KANDELER E, MARSCHNER B, 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment[J]. Soil Biology and Biochemistry, 35(3): 453-461.
DOI
URL
|
[12] |
MOHANTY M, REDDY S K, PROBERT M E, et al., 2011. Modelling N mineralization from green manure and farmyard manure from a laboratory incubation study[J]. Ecological Modelling, 222(3): 719-726.
DOI
URL
|
[13] |
MONTAGNINI F, BUSCHBACHER R, 1989. Nitrification rates in two undisturbed tropical rain forests and three slash[J]. And-burn sites of the Venezuelan Amazon[J]. Biotropica, 21(1): 9-14.
DOI
URL
|
[14] |
OUYANG Y, NORTON J M, 2020. Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil[J]. Applied and Environmental Microbiology, 86(5): e02278-19.
|
[15] |
ROBERTSON G P, VITOUSEK M, 1981. Nitrification potentials in primary and secondary succession[J]. Ecology, 62(2): 376-386.
DOI
URL
|
[16] |
TABATABAI M A, EKENLER M, SENWO Z N, 2010. Significance of enzyme activities in soil nitrogen mineralization[J]. Communications in Soil Science and Plant Analysis, 41(5): 595-605.
DOI
URL
|
[17] |
TANG H M, LI C, SHI L H, et al., 2021. Effect of different long-term fertilizer managements on soil nitrogen fixing bacteria community in a double-cropping rice paddy field of southern China[J]. PLoS ONE, 16(9): e0256754.
DOI
URL
|
[18] |
TANG H M, XIAO X P, TANG W G, et al., 2018. Long-term effects of NPK fertilizers and organic manures on soil organic carbon and carbon management index under a double-cropping rice system in Southern China[J]. Communications in Soil Science and Plant Analysis, 49(16): 1976-1989.
DOI
URL
|
[19] |
鲍士旦, 2005. 土壤农化分析[M]. 北京: 中国农业出版社:23-107.
|
|
BAO S D, 2005. Soil agrochemical analysis[M]. Beijing: China Agricultural Press:23-107.
|
[20] |
王祎, 杨文浩, 毛艳玲, 等, 2019. 水稻生育期对不同施肥条件下黄泥田土壤无机氮及细菌群落的影响[J]. 应用与环境生物学报, 25(6): 1352-1358.
|
|
WANG Y, YANG W H, MAO Y L, et al., 2019. Effect of the phenological stage of rice growth on soil-soluble inorganic nitrogen and bacterial communities in a yellow clayey soil under different fertilization patterns[J]. Chinese Journal of Applied and Environmental Biology, 25(6): 1352-1358.
|
[21] |
王雪, 郭雪莲, 郑荣波, 等, 2018. 放牧对滇西北高原纳帕海沼泽化草甸湿地土壤氮转化的影响[J]. 生态学报, 38(7): 2308-2314.
|
|
WANG X, GUO X L, ZHENG R B, et al., 2018. Effects of grazing on nitrogen transformation in swamp meadow wetland soils in Napahai of Northwest Yunnan[J]. Acta Ecologica Sinica, 38(7): 2308-2314.
|
[22] |
许光辉, 郑洪元, 1986. 土壤微生物分析方法手册[M]. 北京: 中国农业出版社:102-136.
|
|
XU G F, ZHENG H Y, 1986. Handbook of Soil Microbiological Analysis Methods[M]. Beijing: China Agricultural Press:102-136.
|
[23] |
徐一兰, 唐海明, 肖小平, 等, 2016. 长期施肥对双季稻田土壤微生物学特性的影响[J]. 生态学报, 36(18): 5847-5855.
|
|
XU Y L, TANG H M, XIAO X P, et al., 2016. Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field[J]. Acta Ecologica Sinica, 36(18): 5847-5855.
|