生态环境学报 ›› 2025, Vol. 34 ›› Issue (1): 156-166.DOI: 10.16258/j.cnki.1674-5906.2025.01.017
• 综述 •
上一篇
收稿日期:
2024-04-27
出版日期:
2025-01-18
发布日期:
2025-01-21
通讯作者:
* 张寅清。E-mail: yinqing.zhang@nankai.edu.cn作者简介:
尤琪(1999生),女,硕士研究生,研究方向为纳米材料环境行为。E-mail: youqlyn@163.com
基金资助:
YOU Qi(), YANG Yi, ZHANG Yinqing*(
), ZHU Lingyan
Received:
2024-04-27
Online:
2025-01-18
Published:
2025-01-21
摘要:
纳米银是目前世界上应用最广的纳米材料,其具有多种形态与尺寸。因其具有诸多优点而被广泛用于众多技术领域,纳米银的大量生产与使用导致其在使用的各个过程中会不可避免地进入天然水环境中,并产生相应的风险,其中纳米银颗粒的应用最为广泛。天然水环境成分复杂,一旦进入水环境,纳米银颗粒将受到水物理化学以及水生生物的影响,其形态与性能将发生改变。纳米银在水环境中积累、转化并可能引起水生生态系统中微生物的扰动,进而产生复杂的毒理效应。因此,对纳米银颗粒在水环境中环境行为的研究具有十分重要的意义。该文综述了水环境中纳米银颗粒的来源以及纳米银颗粒在水环境中可能发生的转化行为,重点阐述了纳米银颗粒在水环境中的化学转化行为,包括水环境中纳米银颗粒的氧化溶解、硫化、氯化等化学转化的过程,以及纳米银自身理化性质和不同的环境因素对纳米银颗粒不同类型化学转化的影响机制的研究现状。其中纳米银颗粒的氧化溶解是其在水环境中最常见的化学转化过程,这个过程与纳米银的浓度相关,一般可分为快速与慢速两个阶段。而纳米银的硫化与氯化转化过程更复杂,其主要与水环境中的S/Ag与Cl/Ag相关,并且对纳米银颗粒的毒性效应起到关键作用。纳米银在实际环境中的化学转化受到多种因素的共同影响机制有待深入研究。
中图分类号:
尤琪, 杨艺, 张寅清, 祝凌燕. 纳米银颗粒在水环境中的化学转化及影响因素[J]. 生态环境学报, 2025, 34(1): 156-166.
YOU Qi, YANG Yi, ZHANG Yinqing, ZHU Lingyan. Chemical Transformation and Influencing Factors of Silver Nanoparticles in Aquatic Environments[J]. Ecology and Environment, 2025, 34(1): 156-166.
包覆材料 | 影响方式 | 参考文献 |
---|---|---|
柠檬酸盐 | 通过静电作用减缓氧化溶解 | Dobias et al., |
PVP | 通过配位作用减缓氧化溶解 | Dobias et al., |
PVA | 通过配位作用减缓氧化溶解 | Yin et al., |
表面活性剂 | 通过空间位阻作用减缓氧化溶解 | Li et al., |
蛋白质 | 带电性不同,影响具有差异 | Boehmler et al., |
硫醇类物质 | 通过络合作用减缓氧化溶解 | Malakar et al., |
表1 不同包覆材料对纳米银的氧化溶解的影响研究
Table 1 Impacts of surface coatings on the oxidative dissolution of nanosilver
包覆材料 | 影响方式 | 参考文献 |
---|---|---|
柠檬酸盐 | 通过静电作用减缓氧化溶解 | Dobias et al., |
PVP | 通过配位作用减缓氧化溶解 | Dobias et al., |
PVA | 通过配位作用减缓氧化溶解 | Yin et al., |
表面活性剂 | 通过空间位阻作用减缓氧化溶解 | Li et al., |
蛋白质 | 带电性不同,影响具有差异 | Boehmler et al., |
硫醇类物质 | 通过络合作用减缓氧化溶解 | Malakar et al., |
[1] | ABBAS Q, YOUSAF B, AMINA, et al., 2020. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review[J]. Environment International, 138:105646. |
[2] | ALFIERI A, ANANTHARAMAN S B, ZHANG H, et al., 2023. Nanomaterials for quantum information science and engineering[J]. Advanced Materials, 35(27):e2109621. |
[3] | AMDE M, LIU J F, TAN Z Q, et al., 2017. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments: A review[J]. Environmental Pollution, 230:250-267. |
[4] |
AXSON J L, STARK D I, BONDY A L, et al., 2015. Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid[J]. Journal of Physical Chemistry C, 119(35):20632-20641.
DOI PMID |
[5] | AZIZI S, AHMAD M B, NAMVAR F, et al., 2014. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract[J]. Materials Letters, 116:275-277. |
[6] | BAALOUSHA M, ARKILL K P, ROMER I, et al., 2015. Transformations of citrate and tween coated silver nanoparticles reacted with Na2S[J]. Science of The Total Environment, 502:344-353. |
[7] | BAALOUSHA M, YANG Y, VANCE M E, et al., 2016. Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study[J]. Science of The Total Environment, 557-558:740-753. |
[8] | BADAWY A M E, LUXTON T P, SILVA R G, et al., 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions[J]. Environmental Science & Technology, 44(4):1260-1266. |
[9] | BANU A N, KUDESIA N, RAUT A M, et al., 2021. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review[J]. Environmental Chemistry Letters, 19(6):4275-4296. |
[10] |
BOEHMLER D J, O’DELL Z J, CHUNG C, et al., 2020. Bovine serum albumin enhances silver nanoparticle dissolution kinetics in a size- and concentration-dependent manner[J]. Langmuir, 36(4):1053-1061.
DOI PMID |
[11] | CAO M M, HUANG X T, WANG F, et al., 2021. Transcriptomics and metabolomics revealed the biological response of chlorella pyrenoidesa to single and repeated exposures of AgNPs at different concentrations[J]. Environmental Science & Technology, 55(23):15776-15787. |
[12] | CARDOSO-AVILA P E, PICHARDO MOLINA J L, 2018. Demonstrating the photochemical transformation of silver nanoparticles[J]. Journal of Chemical Education, 95(11):2034-2040. |
[13] | CERVANTES-AVILÉS P, HUANG Y X, KELLER A A, 2019. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater[J]. Water Research, 166:115072. |
[14] | COLLIN B, TSYUSKO O V, STARNES D L, et al., 2016. Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans[J]. Environmental Science: Nano, 3(4):728-736. |
[15] | DAI X H, QI Y R, LUO H X, et al., 2022. Leachability and anti-mold efficiency of nanosilver on poplar wood surface[J]. Polymers, 14(5):884. |
[16] | DESHMUKH S P, PATIL S M, MULLANI S B, et al., 2019. Silver nanoparticles as an effective disinfectant: A review[J]. Materials Science & Engineering C-Materials for Biological Applications, 97:954-965. |
[17] | DING R, LI L, YANG P, et al., 2019. Assessing the environmental occurrence and risk of nano-silver in Hunan, China using probabilistic material flow modeling[J]. Science of The Total Environment, 658:1249-1255. |
[18] | DOBIAS J, BERNIER-LATMANI R, 2013. Silver release from silver nanoparticles in natural waters[J]. Environmental Science & Technology, 47(9):4140-4146. |
[19] | DONG B, LIU G F, ZHOU J T, et al., 2020. Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J]. Journal of Hazardous Materials, 383:121190. |
[20] |
DOOLETTE C L, MCLAUGHLIN M J, KIRBY J K, et al., 2015. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake[J]. Journal of Hazardous Materials, 300:788-795.
DOI PMID |
[21] | DU T T, SHI G L, LIU F F, et al., 2019. Sulfidation of Ag and ZnO nanomaterials significantly affects protein Corona composition: implications for human exposure to environmentally aged nanomaterials[J]. Environmental Science & Technology, 53(24):14296-14307. |
[22] |
FLETCHER N D, LIEB H C, MULLAUGH K M, 2019. Stability of silver nanoparticle sulfidation products[J]. Science of The Total Environment, 648:854-860.
DOI |
[23] | GARDEA-TORRESDEY J L, GOMEZ E, PERALTA-VIDEA J R, et al., 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles[J]. Langmuir, 19(4):1357-1361. |
[24] | GARG S, RONG H, MILLER C J, et al., 2016. Oxidative dissolution of silver nanoparticles by chlorine: Implications to silver nanoparticle fate and toxicity[J]. Environmental Science & Technology, 50(7):3890-3896. |
[25] | GHASEMZADEH G, MOMENPOUR M, OMIDI F, et al., 2014. Applications of nanomaterials in water treatment and environmental remediation[J]. Frontiers of Environmental Science & Engineering, 8(4):471-482. |
[26] |
HAMILTON R F, BUCKINGHAM S, HOLIAN A, 2014. The effect of size on Ag nanosphere toxicity in macrophage cell models and lung epithelial cell lines is dependent on particle dissolution[J]. International Journal of Molecular Sciences, 15(4):6815-6830.
DOI PMID |
[27] | HE D, GARG S, WANG Z M, et al., 2019. Silver sulfide nanoparticles in aqueous environments: formation, transformation and toxicity[J]. Environmental Science: Nano, 6(6):1674-1687. |
[28] | HOCHELLA M F JR, MOGK D W, RANVILLE J, et al., 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system[J]. Science, 363 (6434):eaau8299. |
[29] |
HONG A M, TANG Q, KHAN A U, et al., 2021. Identification and speciation of nanoscale silver in complex solid matrices by sequential extraction coupled with inductively coupled plasma optical emission spectrometry[J]. Analytical Chemistry, 93(4):1962-1968.
DOI PMID |
[30] | HOSSAIN F, PERALES-PEREZ O J, HWANG S, et al., 2014. Antimicrobial nanomaterials as water disinfectant: Applications, limitations and future perspectives[J]. Science of The Total Environment, 466-467:1047-1059. |
[31] | HOU W C, STUART B, HOWES R, et al., 2013. Sunlight-driven reduction of silver ions by natural organic matter: Formation and transformation of silver nanoparticles[J]. Environmental Science & Technology, 47(14):7713-7721. |
[32] | INAMDAR A K, RAJENIMBALKAR R S, HULSURE N R, et al., 2023. A review on environmental applications of metal oxide nanoparticles through waste water treatment[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.05.527. |
[33] | ISLAM M A, JACOB M V, ANTUNES E, 2021. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar[J]. Journal of Environmental Management, 281:111918. |
[34] |
JORGE DE SOUZA T A, ROSA SOUZA L R, FRANCHI L P, 2019. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity[J]. Ecotoxicology and Environmental Safety, 171:691-700.
DOI PMID |
[35] |
KAEGI R, VOEGELIN A, ORT C, et al., 2013. Fate and transformation of silver nanoparticles in urban wastewater systems[J]. Water Research, 47(12):3866-3877.
DOI PMID |
[36] | KEDIR W M, DERESA E M, DIRIBA T F, 2022. Pharmaceutical and drug delivery applications of pectin and its modified nanocomposites[J]. Heliyon, 8(9):e10654. |
[37] | KENT R D, OSER J G, VIKESLAND P J, 2014. Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant[J]. Environmental Science & Technology, 48(15):8564-8572. |
[38] | KENT R D, VIKESLAND P J, 2012. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy[J]. Environmental Science & Technology, 46(13):6977-6984. |
[39] |
KHODASHENAS B, GHORBANI H R, 2019. Synthesis of silver nanoparticles with different shapes[J]. Arabian Journal of Chemistry, 12(8):1823-1838.
DOI |
[40] | LEVARD C, HOTZE E M, COLMAN B P, et al., 2013a. Sulfidation of silver nanoparticles: Natural antidote to their toxicity[J]. Environmental Science & Technology, 47(23):13440-13448. |
[41] | LEVARD C, HOTZE E M, LOWRY G V, et al., 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity[J]. Environmental Science & Technology, 46(13):6900-6914. |
[42] | LEVARD C, MITRA S, YANG T, et al., 2013b. Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli[J]. Environmental Science & Technology, 47(11):5738-5745. |
[43] | LEVARD C, REINSCH B C, MICHEL F M, et al., 2011. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: Impact on dissolution rate[J]. Environmental Science & Technology, 45(12):5260-5266. |
[44] | LI L X, WANG Y W, LIU Q, et al., 2016. Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: Photoinduced transformation of Ag2S-NPs in the presence of Fe(III)[J]. Environmental Science & Technology, 50(1):188-196. |
[45] |
LI P H, SU M, WANG X D, et al., 2020. Environmental fate and behavior of silver nanoparticles in natural estuarine systems[J]. Journal of Environmental Sciences, 88:248-259.
DOI PMID |
[46] |
LI X, LENHART J J, WALKER H W, 2010. Dissolution-accompanied aggregation kinetics of silver nanoparticles[J]. Langmuir, 26(22):16690-16698.
DOI PMID |
[47] |
LI X, LENHART J J, WALKER H W, 2012. Aggregation kinetics and dissolution of coated silver nanoparticles[J]. Langmuir, 28(2):1095-1104.
DOI PMID |
[48] | LIU H F, HE L M, KUZMANOVIĆ M, et al., 2023. Advanced nanomaterials in medical 3D printing[J]. Small Methods, 8(3):e2301121. |
[49] | LIU J Y, HURT R H, 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids[J]. Environmental Science & Technology, 44(6):2169-2175. |
[50] | LIU J Y, PENNELL K G, HURT R H, 2011. Kinetics and mechanisms of nanosilver oxysulfidation[J]. Environmental Science & Technology, 45(17):7345-7353. |
[51] |
LIU X L, HERSAM M C, 2019. 2D materials for quantum information science[J]. Nature Reviews Materials, 4(10):669-684.
DOI |
[52] | LIU Y J, LI C, LUO S, et al., 2021. Inter-transformation between silver nanoparticles and Ag+ induced by humic acid under light or dark conditions[J]. Ecotoxicology, 30(7):1376-1385. |
[53] | LOWRY G V, ESPINASSE B P, BADIREDDY A R, et al., 2012. Long-term transformation and fate of manufactured ag nanoparticles in a simulated large scale freshwater emergent wetland[J]. Environmental Science & Technology, 46(13):7027-7036. |
[54] | MALAKAR A, KANEL S R, RAY C, et al., 2021. Nanomaterials in the environment, human exposure pathway, and health effects: A review[J]. Science of The Total Environment, 759:143470. |
[55] | MARCHIONI M, GALLON T, WORMS I, et al., 2018. Insights into polythiol-assisted AgNP dissolution induced by bio-relevant molecules[J]. Environmental Science: Nano, 5(8):1911-1920. |
[56] |
MARTIN M N, ALLEN A J, MACCUSPIE R I, et al., 2014. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles[J]. Langmuir, 30(38):11442-11452.
DOI PMID |
[57] | METREVELI G, DAVID J, SCHNEIDER R, et al., 2020. Morphology, structure, and composition of sulfidized silver nanoparticles and their aggregation dynamics in river water[J]. Science of The Total Environment, 739:139989. |
[58] | MOLLEMAN B, HIEMSTRA T, 2017. Time, pH, and size dependency of silver nanoparticle dissolution: The road to equilibrium[J]. Environmental Science: Nano, 4(6):1314-1327. |
[59] | NA-PHATTHALUNG W, KEAONABORN D, JAICHUEDEE J, et al., 2022. Effect of silver nanoparticles and chlorine reaction time on the regulated and emerging disinfection by-products formation[J]. Environmental Pollution, 292:118400. |
[60] |
NAWAZ W, XU S J, LI Y L, et al., 2020. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy[J]. Acta Biomaterialia, 109:21-36.
DOI PMID |
[61] | PERETYAZHKO T S, ZHANG Q, COLVIN V L, 2014. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: Kinetics and size changes[J]. Environmental Science & Technology, 48(20):11954-11961. |
[62] | PETERS R J B, VAN BEMMEL G, MILANI N B L, et al., 2018. Detection of nanoparticles in Dutch surface waters[J]. Science of The Total Environment, 621:210-218. |
[63] | REINSCH B C, LEVARD C, LI Z, et al., 2012. Sulfidation of silver nanoparticles decreases escherichia coli growth inhibition[J]. Environmental Science & Technology, 46(13):6992-7000. |
[64] | SHEVLIN D, O'BRIEN N, CUMMINS E, 2018. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes[J]. Science of The Total Environment, 621:1033-1046. |
[65] |
SHI J P, XU B, SUN X, et al., 2013. Light induced toxicity reduction of silver nanoparticles to tetrahymena pyriformis: effect of particle size[J]. Aquat Toxicol, 132-133:53-60.
DOI PMID |
[66] | SHIN J D, LEE D H, HWANG T M, et al., 2018. Oxidation kinetics of algal-derived taste and odor compounds during water treatment with ferrate (VI)[J]. Chemical Engineering Journal, 334:1065-1073. |
[67] | SINGH A, HOU W C, LIN T F, 2021. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa[J]. Chemosphere, 272:129825. |
[68] | SUN T Y, BORNHOFT N A, HUNGERBUHLER K, et al., 2016. Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials[J]. Environmental Science & Technology, 50(9):4701-4711. |
[69] |
SYAFIUDDIN A, SALMIATI S, HADIBARATA T, et al., 2018. Silver nanoparticles in the water environment in malaysia: Inspection, characterization, removal, modeling, and future perspective[J]. Scientific Reports, 8(1):986.
DOI PMID |
[70] | SZCZUKA A, HORTON J, EVANS K J, et al., 2022. Chloride enhances DNA reactivity with chlorine under conditions relevant to water treatment[J]. Environmental Science & Technology, 56:13347-13356. |
[71] | TALEBIAN S, RODRIGUES T, DAS NEVES J, et al., 2021. Facts and figures on materials science and nanotechnology progress and investment[J]. ACS Nano, 15(10):15940-15952. |
[72] | THALMANN B, VOEGELIN A, MORGENROTH E, et al., 2016. Effect of humic acid on the kinetics of silver nanoparticle sulfidation[J]. Environmental Science: Nano, 3(1):203-212. |
[73] | THALMANN B, VOEGELIN A, SINNET B, et al., 2014. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides[J]. Environmental Science & Technology, 48(9):4885-4892. |
[74] | TORTELLA G R, RUBILAR O, DURAN N, et al., 2020. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment[J]. Journal of Hazardous Materials, 390:121974. |
[75] | TRIPATHI A, BONILLA-CRUZ J, 2023. Review on healthcare biosensing nanomaterials[J]. ACS Applied Nano Materials, 6(7):5042-5074. |
[76] | WANG P, MENZIES N W, DENNIS P G, et al., 2016b. Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability[J]. Environmental Science & Technology, 50(15):8274-8281. |
[77] | WANG S S, LÜ J, MA J Y, et al., 2016a. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii[J]. Nanotoxicology, 10(8):1129-1135. |
[78] |
WANG X, JI Z, CHANG C H, et al., 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential[J]. Small, 10(2):385-398.
DOI PMID |
[79] | WEN R X, HU L G, QU G B, et al., 2016. Exposure, tissue biodistribution, and biotransformation of nanosilver[J]. NanoImpact, 2:18-28. |
[80] | XIAO B W, YANG R Y, CHEN P Y, et al., 2022. Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain[J]. Science of The Total Environment, 804:150228. |
[81] | XIU Z M, ZHANG Q B, PUPPALA H L, et al., 2012. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 12(8):4271-4275. |
[82] | XU L N, XU M, WANG R X, et al., 2020. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials[J]. Small, 16(36):e2003691. |
[83] | YAN H, 2004. Nucleic acid nanotechnology[J]. Science, 306(5704):2048-2049. |
[84] | YIN W, LIU M X, ZHAO T L, et al., 2020. Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application[J]. Environmental Research, 187:109699. |
[85] |
YIN Y G, LIU J F, JIANG G B, 2012. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter[J]. ACS Nano, 6(9):7910-7919.
PMID |
[86] | YU S J, YIN Y G, CHAO J B, et al., 2013. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: Chemical and morphology change induced by oxidation of Ag0 and reduction of Ag+[J]. Environmental Science & Technology, 48(1):403-411. |
[87] | YU S J, YIN Y G, ZHOU X X, et al., 2016. Transformation kinetics of silver nanoparticles and silver ions in aquatic environments revealed by double stable isotope labeling[J]. Environmental Science: Nano, 3(4):883-893. |
[88] | ZENG R Q, LÜ C Y, WANG C, et al., 2021. Bionanomaterials based on protein self-assembly: Design and applications in biotechnology[J]. Biotechnology Advances, 52:107835. |
[89] | ZHANG C Q, HU Z Q, DENG B L, 2016b. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms[J]. Water Research, 88:403-427. |
[90] | ZHANG W C, KE S, SUN C Y, et al., 2019. Fate and toxicity of silver nanoparticles in freshwater from laboratory to realistic environments: A review[J]. Environmental Science and Pollution Research, 26(8):7390-7404. |
[91] | ZHANG W C, LIU X W, BAO S P, et al., 2016c. Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio[J]. Journal of Nanoparticle Research, 18(12):372. |
[92] |
ZHANG W C, XIAO B D, FANG T, 2018. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity[J]. Chemosphere, 191:324-334.
DOI PMID |
[93] | ZHANG Y Q, XIA J C, LIU Y L, et al., 2016a. Impacts of morphology, natural organic matter, cations, and ionic strength on sulfidation of silver nanowires[J]. Environmental Science & Technology, 50(24):13283-13290. |
[94] | ZHANG Y Q, XU J L, YANG Y, et al., 2020. Impacts of proteins on dissolution and sulfidation of silver nanowires in an aquatic environment: Importance of surface charges[J]. Environmental Science & Technology, 54(9):5560-5568. |
[95] | ZHANG Z, YANG X Y, SHEN M H, et al., 2015. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna[J]. Journal of Environmental Sciences-China, 35:62-68. |
[96] | ZHAO J, WANG X J, HOANG S A, et al., 2021. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods[J]. Journal of Hazardous Materials, 418:126368. |
[97] | ZHAO Z Y, LI P J, XIE R S, et al., 2022. Biosynthesis of silver nanoparticle composites based on hesperidin and pectin and their synergistic antibacterial mechanism[J]. International Journal of Biological Macromolecules, 214:220-229. |
[98] |
ZHOU S, LI J H, GILROY K D, et al., 2016. Facile synthesis of silver nanocubes with sharp corners and edges in an aqueous solution[J]. ACS Nano, 10(11):9861-9870.
PMID |
[99] | ZHOU X X, JIANG L W, WANG D J, et al., 2020. Speciation analysis of Ag2S and ZnS nanoparticles at the ng/L level in environmental waters by cloud point extraction coupled with LC-ICPMS[J]. Analytical Chemistry, 92(7):4765-4770. |
[100] | 卢雪蓉, 冯晓丽, 刘朝莹, 等, 2018. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 13(5):49-57. |
LU X R, FENG X L, LIU Z Y, et al., 2018. Impact of migration and transformation of AgNPs on its toxicity towards environmental microorganism[J]. Asian Journal of Ecotoxicology, 13(5):49-57. | |
[101] | 蒲高忠, 王柯懿, 陈霞霞, 等, 2021. 水环境中人工合成纳米银颗粒的来源、转化和生态毒性研究进展[J]. 广西科学, 28(4):363-372. |
PU G Z, WANG K Y, CHEN X X, et al., 2021. Transformation and eco-toxicological effects of silver nanoparticles in aquatic environements: A review[J]. Guangxi Science, 28(4):363-372. | |
[102] | 许海燕, 郭花, 2016. 纳米银材料的安全性评价与管理规范现状初探[J]. 中国材料进展, 35(1):36-39, 48. |
XU H Y, GUO H, 2016. Current status of the safety evaluation and regulation for nanosilver-containing materials[J]. Materials China, 35(1):36-39, 48. | |
[103] | 于素娟, 阴永光, 刘景富, 2017. 水环境中纳米银的生成与转化研究[J]. 中国科学, 47(9):1102-1113. |
YU S J, YIN Y G, LIU J F, 2017. Natural formation and transformation of silver nanoparticles in the aquatic enviroment[J]. Scientia Sinica Chimica, 47(9):1102-1113. |
[1] | 张维琛, 王惺琪, 王博杰. 塔布河流域生态系统服务时空格局及影响因素分析[J]. 生态环境学报, 2024, 33(7): 1142-1152. |
[2] | 李程, 程志鹏, 刘育金, 姚义鸣, 李春雷. 全(多)氟烷基化合物生态风险及其管控政策研究[J]. 生态环境学报, 2024, 33(6): 980-996. |
[3] | 于方明, 袁月, 曾梦, 唐舒婷, 李艺. 氮源添加对重金属污染土壤氨氧化微生物的影响[J]. 生态环境学报, 2024, 33(5): 771-780. |
[4] | 梁燕, 刘家齐, 肖凡, 潘民萍, 韦凯文, 张楚雯, 段敏. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响[J]. 生态环境学报, 2024, 33(2): 192-201. |
[5] | 罗小玲, 刘军, 王琦, 刘同旭, 梁耀杰, 谢志宜, 王中伟, 陈多宏. 2016年以来广东省不同土地利用类型土壤pH和有机质时空变化及其影响因素分析[J]. 生态环境学报, 2024, 33(12): 1849-1861. |
[6] | 丛鑫, 王晓博, 姜久宁. Cux-Bi25FeO40活化过硫酸盐降解水中磺胺嘧啶研究[J]. 生态环境学报, 2024, 33(12): 1914-1922. |
[7] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[8] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[9] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[10] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[11] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[12] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[13] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[14] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[15] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||