生态环境学报 ›› 2024, Vol. 33 ›› Issue (12): 1914-1922.DOI: 10.16258/j.cnki.1674-5906.2024.12.009
收稿日期:
2024-09-21
出版日期:
2024-12-18
发布日期:
2024-12-31
作者简介:
丛鑫(1976年生)女,教授,博士,研究方向为土壤环境化学和生态修复。E-mail: congxin1800@163.com
基金资助:
CONG Xin1(), WANG Xiaobo1, JIANG Jiuning2
Received:
2024-09-21
Online:
2024-12-18
Published:
2024-12-31
摘要:
以环境风险较高的磺胺嘧啶(SD)污染物为研究对象,通过水热合成法制备金属Cu掺杂的Cux-Bi25FeO40铁酸铋复合材料,将其用于活化过硫酸盐(PS)降解水体中SD。该研究系统地分析了Cux-Bi25FeO40/PS体系中铜铁掺杂物质的量比、复合材料投加质量浓度、PS浓度、溶液pH及反应温度等因素对SD降解率的影响。实验结果表明,在反应时间为1 h,铜铁掺杂摩尔比1꞉1条件下,铁酸铋活化PS体系中SD降解效果要优于其余掺杂比例。实验条件下,反应溶液初始pH值由3增长到7,水体中SD的降解率增加了64.1%,降解率的增幅要高于其他3种影响因素。单因素优化实验结果表明,在Cu-Bi25FeO40的投加质量浓度为0.4 g∙L−1、PS浓度为4 mmol·L−1、pH值为5、反应温度为55 ℃的实验条件下,Cu-Bi25FeO40/PS反应体系中SD的降解率最高。为分析各因素及其交互作用对水体中SD降解率的影响,采用Box-Behnken响应面法,建立了以PS浓度、温度和pH值为变量的二次多项式回归模型,通过模型预测得到SD的最佳降解条件为,PS浓度5.1 mmol·L−1、pH值6.6、温度52 ℃,在此条件下SD的降解率达到96.7%。模型预测值与实验验证结果的相对偏差小于5%,证实了模型的可靠性,此模型可以用于对Cu-Bi25FeO40/PS体系中SD降解率的预测。该研究为铁酸铋材料活化过硫酸处理水环境中SD污染提供了理论依据和技术支持。
中图分类号:
丛鑫, 王晓博, 姜久宁. Cux-Bi25FeO40活化过硫酸盐降解水中磺胺嘧啶研究[J]. 生态环境学报, 2024, 33(12): 1914-1922.
CONG Xin, WANG Xiaobo, JIANG Jiuning. Degradation of Sulfadiazine by Cux-Bi25FeO40 Activated Persulfate[J]. Ecology and Environment, 2024, 33(12): 1914-1922.
实验 水平 | 实验因素 | ||
---|---|---|---|
A: PS浓度/(mmol·L−1) | B: 摄氏温度/℃ | C: pH | |
−1 | 2 | 25 | 5 |
0 | 4 | 40 | 7 |
1 | 6 | 55 | 9 |
表1 响应面实验设计
Table 1 Design plan of response surface optimization test
实验 水平 | 实验因素 | ||
---|---|---|---|
A: PS浓度/(mmol·L−1) | B: 摄氏温度/℃ | C: pH | |
−1 | 2 | 25 | 5 |
0 | 4 | 40 | 7 |
1 | 6 | 55 | 9 |
实验序号 | pH | 摄氏温度/℃ | PS浓度/(mmol·L−1) | 降解率/% |
---|---|---|---|---|
1 | 7 | 55 | 6 | 0.966 |
2 | 7 | 40 | 4 | 0.953 |
3 | 7 | 25 | 2 | 0.918 |
4 | 7 | 40 | 4 | 0.959 |
5 | 7 | 25 | 6 | 0.945 |
6 | 7 | 40 | 4 | 0.949 |
7 | 7 | 40 | 4 | 0.954 |
8 | 9 | 40 | 6 | 0.942 |
9 | 5 | 40 | 6 | 0.946 |
10 | 9 | 55 | 4 | 0.949 |
11 | 7 | 55 | 2 | 0.942 |
12 | 9 | 25 | 4 | 0.930 |
13 | 5 | 40 | 2 | 0.910 |
14 | 9 | 40 | 2 | 0.929 |
15 | 5 | 55 | 4 | 0.9544 |
16 | 7 | 40 | 4 | 0.955 |
17 | 5 | 25 | 4 | 0.908 |
表2 响应面实验设计与实验结果
Table 2 Experimental design and experimental results of response surface analysis
实验序号 | pH | 摄氏温度/℃ | PS浓度/(mmol·L−1) | 降解率/% |
---|---|---|---|---|
1 | 7 | 55 | 6 | 0.966 |
2 | 7 | 40 | 4 | 0.953 |
3 | 7 | 25 | 2 | 0.918 |
4 | 7 | 40 | 4 | 0.959 |
5 | 7 | 25 | 6 | 0.945 |
6 | 7 | 40 | 4 | 0.949 |
7 | 7 | 40 | 4 | 0.954 |
8 | 9 | 40 | 6 | 0.942 |
9 | 5 | 40 | 6 | 0.946 |
10 | 9 | 55 | 4 | 0.949 |
11 | 7 | 55 | 2 | 0.942 |
12 | 9 | 25 | 4 | 0.930 |
13 | 5 | 40 | 2 | 0.910 |
14 | 9 | 40 | 2 | 0.929 |
15 | 5 | 55 | 4 | 0.9544 |
16 | 7 | 40 | 4 | 0.955 |
17 | 5 | 25 | 4 | 0.908 |
方差来源 | 模型 | A | B | C | AB | AC | BC | 失拟项 |
---|---|---|---|---|---|---|---|---|
平方和 | 4.56×10−3 | 1.21×10−4 | 1.52×10−3 | 1.29×10−3 | 1.88×10−4 | 1.38×10−4 | 2.72×10−6 | 4.77×10−5 |
自由度 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
均方 | 5.06×10−4 | 1.21×10−4 | 1.52×10−3 | 1.29×10−3 | 1.88×10−4 | 1.38×10−4 | 2.72×10−6 | 1.59×10−5 |
F值 | 35.1 | 8.39 | 106 | 89.6 | 13.0 | 9.58 | 0.189 | 1.20 |
p值 | <0.0001 | 0.0231 | <0.0001 | <0.0001 | 0.0086 | 0.0174 | 0.6768 | 0.4176 |
显著性 | 极显著 | 显著 | 极显著 | 极显著 | 极显著 | 显著 | 不显著 | 不显著 |
表3 回归模型方差分析
Table 3 Variance analysis of the regression model
方差来源 | 模型 | A | B | C | AB | AC | BC | 失拟项 |
---|---|---|---|---|---|---|---|---|
平方和 | 4.56×10−3 | 1.21×10−4 | 1.52×10−3 | 1.29×10−3 | 1.88×10−4 | 1.38×10−4 | 2.72×10−6 | 4.77×10−5 |
自由度 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 3 |
均方 | 5.06×10−4 | 1.21×10−4 | 1.52×10−3 | 1.29×10−3 | 1.88×10−4 | 1.38×10−4 | 2.72×10−6 | 1.59×10−5 |
F值 | 35.1 | 8.39 | 106 | 89.6 | 13.0 | 9.58 | 0.189 | 1.20 |
p值 | <0.0001 | 0.0231 | <0.0001 | <0.0001 | 0.0086 | 0.0174 | 0.6768 | 0.4176 |
显著性 | 极显著 | 显著 | 极显著 | 极显著 | 极显著 | 显著 | 不显著 | 不显著 |
[1] | CHENG M, ZENG G M, HUANG D L, et al., 2018. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system[J]. Water Research, 138: 7-18. |
[2] | GUAN Y H, MA J, LI X C, et al., 2011. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 45(21): 9308-9314. |
[3] | LI L, LIU D, ZHANG Q, et al., 2019. Occurrence and ecological risk assessment of selected antibiotics in the freshwater lakes along the middle and lower reaches of Yangtze River Basin[J]. Journal of Environmental Management, 249: 109396. |
[4] | LI S, WU Y N, ZHENG H S, et al., 2022. High microwave responsivity Co-Bi25FeO40 in synergistic activation of peroxydisulfate for high efficiency pollutants degradation and disinfection: Mechanism of enhanced electron transfer[J]. Chemosphere, 288(Part 2): 132558. |
[5] | LI S, ZHANG G S, ZHANG W, et al., 2017b. Microwave enhanced Fenton-like process for degradation of perfluorooctanoic acid (PFOA) using Pb-BiFeO3/rGO as heterogeneous catalyst [J]. Chemical Engineering Journal, 326: 756-764. |
[6] | LI S, ZHANG G S, ZHENG H S, et al., 2017a. Stability of BiFeO3: nanoparticles via microwave-assisted hydrothermal synthesis in Fenton-like process[J]. Environmental Science and Pollution Research, 24(31): 24400-24408. |
[7] | LIN M Z, CHEN H, CHEN W F, et al., 2014. Effect of single-cation doping and codoping with Mn and Fe on the photocatalytic performance of TiO2 thin films[J]. International Journal of Hydrogen Energy, 39(36): 21500-21511. |
[8] | LIU X Y, HUANG F, YU Y, et al., 2019. Ofloxacin degradation over Cu-Ce tyre carbon catalysts by the microwave assisted persulfate process[J]. Applied Catalysis B: Environmental, 253: 149-159. |
[9] | LIU Y, GUO H G, ZHANG Y L, et al., 2018. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: singlet oxygen generation and degradation for aquatic levofloxacin[J]. Chemical Engineering Journal, 343: 128-137. |
[10] | LIU Z B, REN X, DUAN X Y, et al., 2022. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review[J]. The Science of the Total Environment, 863: 160818. |
[11] | MAO J, QUAN X, WANG J, et al., 2018. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants[J]. Frontiers of Environmental Science & Engineering, 12(6): 1-10. |
[12] | OUYANG M Y, LI X M, XU Q X, et al., 2020. Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation[J]. Journal of Colloid and Interface Science, 566: 33-45. |
[13] | WANG J Q, GUO H G, LIU Y, et al., 2022. Peroxymonosulfate activation by porous BiFeO3 for the degradation of bisphenol AF: Non-radical and radical mechanism[J]. Applied Surface Science, 507: 145097. |
[14] | WANG Y, JI Q J, XU J X, et al., 2021. Activation of peroxydisulfate using N-doped carbon-encapsulated Ni species for efficient degradation of tetracycline[J]. Separation and Purification Technology, 276: 119369. |
[15] | WU Y, LUO H J, JIANG X L, et al., 2014. Facile synthesis of magnetic Bi25FeO40/rGO catalyst with efficient photocatalytic performance for phenolic compounds under visible light[J]. Royal Society of Chemistry Advance, 5(7): 4905-4908. |
[16] | ZHANG H X, CHENG S, LI B, et al., 2018. Fabrication of magnetic Co/BiFeO3 composite and its advanced treatment of pharmaceutical waste water by activation of peroxysulphate[J]. Separation and Purification Technology, 202: 242-247. |
[17] | ZOU Y B, LI W T, YANG L, et al., 2019. Activation of peroxymonosulfate by sp2-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature[J]. Chemical Engineering Journal, 370: 1286-1297. |
[18] | 董欣竹, 钱林波, 龙颖, 等, 2023. 高级氧化技术修复萘污染土壤和地下水研究进展[J]. 土壤, 55(1): 11-20. |
DONG X Z, QIAN L B, LONG Y, et al., 2023. Research progresses on advanced oxidation technologies to remediate naphthalene-contaminated soil and groundwater[J]. Soils, 55(1): 11-20. | |
[19] | 段光相, 2023. 拜耳赤泥基催化剂制备及其高级氧化催化降解抗生素的研究[D]. 南宁: 广西大学. |
DUAN G X, 2023. Preparation of bayer red mud based catalyst and its study in advanced oxidation process of degradation of antibiotics[D]. Nanning: Guangxi University. | |
[20] | 葛永翔, 褚衍玉, 任高峰, 等, 2021. 高海拔矿山井下环境对安全人因指标影响机理研究[J]. 中国安全生产科学技术, 17(7): 110-116. |
GE Y X, CHU Y Y, REN G F, et al., 2021. Study on influence mechanism of underground environment in high-altitude mines on safety human factor indexes[J]. China Safety Science and Technology, 17(7): 110-116. | |
[21] | 韩瑞瑞, 郑瑾, 高春阳, 等, 2023. 碳载铁基双金属活化过硫酸盐降解有机污染物[J]. 环境科学与技术, 46(S1): 102-108. |
HAN R R, ZHENG J, GAO C Y, et al., 2023. Iron-based bimetallic activation of persulfate for degradation of organic pollutants[J]. Environmental Science & Technology, 46(S1): 102-108. | |
[22] | 胡俊生, 李嘉宝, 王海曼, 等, 2024. 基于响应面法的微电解活化过硫酸盐降解苯酚研究[J]. 沈阳建筑大学学报(自然科学版), 40(3): 570-576. |
HU J S, LI J B, WANG H M, et al., 2024. Degradation of phenol by micro-electrolysis activated persulfate based on response surface methodology[J]. Journal of Shenyang Jianzhu University (Natural Science), 40(3): 570-576. | |
[23] | 黄仕元, 林森焕, 董雯, 等, 2023. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 40(2): 1071-1084. |
HUANG S Y, LIN S H, DONG W, et al., 2023. Manganese-nitrogen co-doped rice husk biochar activated peroxydisulfate to degrade acid orange[J]. Acta Materiae Compositae Sinica, 40(2): 1071-1084. | |
[24] | 李宗阳, 张庆福, 张团, 等, 2023. 盐水层CO2溶解埋存潜力确定方法[J]. 油气地质与采收率, 30(2): 174-180. |
LI Z Y, ZHANG Q F, ZHANG T, et al., 2023. Method for determining potential of dissolved CO2 storage in brine layers[J]. Petroleum Geology and Recovery Efficiency, 30(2): 174-180. | |
[25] | 刘博, 高宁, 2023. 响应面法优化真菌CHS3发酵产物中柴胡皂苷d的提取工艺[J]. 化学工程师, 37(12): 90-95, 100. |
LIU B, GAO N, 2023. Optimization of saikosaponin d extraction from CHS3 strain fermentation products by response surface methodology[J]. Chemical Engineer, 37(12): 90-95, 100. | |
[26] | 刘霞, 李硕, 郑永杰, 等, 2023. Mn-Bi25FeO40催化活化过硫酸盐高效降解抗生素磺胺嘧啶的研究[J]. 齐齐哈尔大学学报(自然科学版), 39(2): 76-82. |
LIU X, LI S, ZHENG Y J, et al., 2023. Study on efficient degradation of sulfadiazine by Mn-Bi25FeO40catalytically activated persulfate[J]. Journal of Qiqihar University (Natural Science Edition), 39(2): 76-82 | |
[27] | 刘杨, 张永丽, 周鹏, 2022. 软铋矿铁酸铋活化过一硫酸盐降解环丙沙星机理及产物研究[J]. 工程科学与技术, 54(5): 203-209. |
LIU Y, ZHANG Y L, ZHOU P, 2022. Study on mechanism and products of degradation of ciprofloxacin by sillenite bismuth ferrite-activated persulfate[J]. Engineering Science and Technology, 54(5): 203-209. | |
[28] | 马亚蒙, 2023. 三维电芬顿活化过氧乙酸去除废水中磺胺类抗生素的效能研究[D]. 南京: 南京信息工程大学. |
MA Y M, 2023. Investigation on the efficiency of 3D electro-fenton process for the removal of sulfonamide antibiotics from wastewater using peroxyacetic acid[D]. Nanjing: Nanjing University of Information Science & Technology. | |
[29] | 欧阳磊, 丁耀彬, 朱丽华, 等, 2013. 钴掺杂铁酸铋活化过硫酸盐降解水中四溴双酚A的研究[J]. 环境科学, 34(9): 3507-3512. |
OUYANG L, DING Y B, ZHU L H, et al., 2013. Efficient Degradation of Tetrabromobisphenol A in Water by Co-doped BiFeO3[J]. Environmental Science, 34(9): 3507-3512. | |
[30] | 潘诗婷, 2023. MXene介导的PMS氧化体系中间态活性物种产生机制与降解有机污染物研究[D]. 东莞: 东莞理工学院. |
PAN S T, 2023. The study of intermediate active species production mechanism and organic pollutants degradation in MXene-mediated PMS oxidation system[D]. Dongguan: Dongguan University of Technology. | |
[31] | 王晓云, 付爱民, 2024. Ag掺杂MnFe2O4/UV活化过硫酸盐降解废水中对硝基苯酚[J]. 环境科学学报, 44(9): 245-260. |
WANG X Y, FU A M, 2024. Ag-doped MnFe2O4/UV-activated persulfate degradation of p-Nitrophenol in wastewater[J]. Journal of Environmental Sciences, 44(9): 245-260. | |
[32] | 王振宇, 2021. 铒离子掺杂铁酸铋活化过二硫酸盐降解2,4-二氯苯酚的研究[D]. 衡阳: 南华大学. |
WANG Z Y, 2021. Activation persoxodisulfate by Erbiumion-doped bismuth ferrite for Degradation of 2,4-dichlorophenol[D]. Hengyang: University of South China. | |
[33] | 许苗, 2023. 纳米铁钴基催化剂活化过硫酸盐降解左氧氟沙星的研究[D]. 兰州: 兰州理工大学. |
XU M, 2023. Degradation of Levofloxacin by Activated Persulfate with nanometer iron cobalt based catalysts[D]. Lanzhou: Lanzhou University of Technology. | |
[34] | 闫云涛, 张柯, 程星星, 等, 2021. Fe3O4@MSCe/H2O2多相芬顿体系的分解性能及放热规律研究[J]. 哈尔滨工业大学学报, 53(1): 147-154, 175. |
YAN Y T, ZHANG K, CHENG X X, et al., 2021. Study on degradation performance and exothermic law of Fe3O4@MSCe/H2O2multiphase Fenton system[J]. Journal of Harbin Institute of Technology, 53(1): 147-154, 175. | |
[35] |
杨梦鑫, 王亚静, 刘文佳, 等, 2024. 生物炭活化过硫酸盐工艺去除抗生素研究进展[J]. 现代化工, 44(8): 64-68.
DOI |
YANG M X, WANG Y J, LIU W J, et al., 2024. Research progress on the removal of antibiotics by biochar-activated persulfate process[J]. Modern Chemical Industry, 44(8): 64-68. | |
[36] | 杨威, 王国相, 陈俊楠, 等, 2024. 稻壳生物炭/过硫酸盐降解水中四环素的研究[J]. 应用化工, 53(2): 341-345. |
YANG W, WANG G X, CHEN J N, et al., 2024. Degradation of tetracycline in water by biochar-based rice husk and persulfate[J]. Applied Chemical Industry, 53(2): 341-345. | |
[37] | 岳振, 2020. 原位电芬顿法深度处理畜禽养殖废水中磺胺嘧啶研究[D]. 武汉: 武汉轻工大学. |
YUE Z, 2020. Sulfadiazine removed from livestock and poultry breeding wastewater using an in-situ Electro-Fenton process[D]. Wuhan: Wuhan Polytechnic University. | |
[38] | 张硕, 2024. 铬渣基催化剂在过硫酸盐体系下对有机废水降解性能及机理研究[D]. 重庆: 重庆理工大学. |
ZHANG S, 2024. Degradation performance and mechanism of chromium slag-based catalysts for organic wastewater under persulfate system[D]. Chongqing: Chongqing University of Technology. | |
[39] | 张婷婷, 未碧贵, 赵福正, 等, 2023. 碳材料活化过硫酸盐高级氧化技术降解抗生素的研究进展[J]. 山东化工, 52(23): 113-119. |
ZHANG T T, WEI B G, ZHAO F Z, et al., 2023. Degradation of antibiotics by carbon materials activated persulfate advanced oxidation process[J]. Shandong Chemical Industry, 52(23): 113-119. |
[1] | 赵乐依, 朱雪强, 刘健, 路平. 碳球负载纳米零价铁活化过硫酸盐降解水中恩诺沙星的性能研究[J]. 生态环境学报, 2024, 33(5): 757-770. |
[2] | 丛鑫, 曹平, 王晓博. 生物炭负载纳米铁活化过硫酸盐去除土壤中的五氯联苯[J]. 生态环境学报, 2024, 33(2): 282-290. |
[3] | 王铁铮, 瞿心悦, 刘春香, 李有志. 东江湖水质时空变化规律及其与流域土地利用的关系[J]. 生态环境学报, 2023, 32(4): 722-732. |
[4] | 白海锋, 王怡睿, 宋进喜, 孔飞鹤, 张雪仙, 李琦. 渭河浮游生物群落结构特征及其与环境因子的关系[J]. 生态环境学报, 2022, 31(1): 117-130. |
[5] | 张太平, 肖嘉慧, 胡凤洁. 生物炭固定化微生物技术在去除水中污染物的应用研究进展[J]. 生态环境学报, 2021, 30(5): 1084-1093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||