生态环境学报 ›› 2024, Vol. 33 ›› Issue (5): 771-780.DOI: 10.16258/j.cnki.1674-5906.2024.005.010
于方明1,2, 袁月1,2, 曾梦1,2, 唐舒婷3, 李艺1,2,*()
收稿日期:
2024-02-11
出版日期:
2024-05-18
发布日期:
2024-06-27
通讯作者:
* 李艺。E-mail: liyi412@mailbox.gxnu.edu.cn作者简介:
于方明(1975年生),男,教授,博士,主要从事环境污染生物修复研究。
基金资助:
YU Fangming1,2, YUAN Yue1,2, ZENG Meng1,2, TANG Shuting3, LI Yi1,2,*()
Received:
2024-02-11
Online:
2024-05-18
Published:
2024-06-27
摘要:
矿业活动导致矿区土壤养分流失、土地退化,土壤生态系统敏感且脆弱,恢复过程复杂。其中土壤氮素缺乏是限制该生态系统恢复的主要因子之一。为探讨矿区土壤氮素恢复机制,以广西柳州泗顶矿区重金属污染土壤为研究对象,通过土壤培养实验,采用高通量测序结合荧光定量PCR技术,系统研究了氯化铵(38.114 g∙m−1∙a−1 (高浓度)、9.54 g∙m−1∙a−1 (低浓度))和尿素(21.43 g∙m−1∙a−1(高浓度)、5.36 g∙m−1∙a−1(低浓度))在不同添加频次(添加12次∙年−1(高频率)和2次∙年−1(低频率))下,对土壤氨氧化古菌(AOA)和氨氧化细菌(AOB)丰度、多样性和群落组成的影响。结果表明,各施氮模式下,amoA-AOB基因丰度显著高于amoA-AOA基因丰度,其丰度范围为 (1.56×107±0.01×107)-(3.58×107±0.03×107) copies·g−1(氯化铵)和 (5.31×107±0.02×107)-(14.85×107±0.04×107) copies·g−1(尿素)。AOA群落的ACE、Shannon和Simpson指数均值分别是AOB群落的13.2、1.41和0.627倍,AOA的α-多样性更容易受到不同施氮处理的影响。AOA在门水平上的优势菌门为奇古菌门(Thaumarchaeota)和泉古菌门(Crenarchaeota);在属水平上的优势菌属为亚硝基球菌属(Nitrososphaera)。AOB在门水平上的优势菌门为变形菌门(Proteobacteria);在属水平上的优势菌属为亚硝化螺菌属(Nitrosospira)和亚硝化弧菌属(Nitrosovibrio)。相关性分析表明土壤有效磷是影响amoA-AOB基因丰度的关键因素(p<0.01)。冗余分析表明,微生物量氮是引起AOA群落组成改变的主要因子;而土壤脲酶活性是引起AOB群落组成改变的主要因子。添加氯化铵和尿素使土壤氨氧化潜势和总硝化潜势增加,分别是对照的1.15-3.03倍和2.15-8.55倍,AOB主导土壤中的氨氧化和硝化过程。研究为明确矿区土壤氮循环变化规律,重建矿区土壤氮库提供了理论依据。
中图分类号:
于方明, 袁月, 曾梦, 唐舒婷, 李艺. 氮源添加对重金属污染土壤氨氧化微生物的影响[J]. 生态环境学报, 2024, 33(5): 771-780.
YU Fangming, YUAN Yue, ZENG Meng, TANG Shuting, LI Yi. Variations on the Ammonia Oxidizers under Different Nitrogen Fertilization Regimes in Heavy Metal-contaminated Soil[J]. Ecology and Environment, 2024, 33(5): 771-780.
图1 氮添加对土壤氨氧化微生物的amoA基因丰度和α-多样性的影响 不同小写字母代表同一氮肥施用下,同一时间各处理组间差异显著(p<0.05)
Figure 1 Effect of N fertilization on the amoA gene abundance and α-diversity of soil ammonia-oxidizers
时间 (年-月) | 处理 | TNP/ (mg·kg−1·d−1) | NP-AOB/ (mg·kg−1·d−1) | NP-AOA/ (mg·kg−1·d−1) | NP-AOB占TNP比例/% |
---|---|---|---|---|---|
2021-09 | 对照 | 1.58±0.01b | 0.06±0.00fg | 0.13±0.01b | 34.2 |
AC-HH | 0.96±0.01h | 0.13±0.01bc | 0.02±0.02d | 56.8 | |
AC-HL | 1.15±0.01e | 0.05±0.02g | 0.08±0.02c | 63.0 | |
AC-LH | 1.47±0.02c | 0.16±0.01b | 0.02±0.01d | 57.9 | |
AC-LL | 1.34±0.01d | 0.20±0.00a | 0.21±0.01a | 67.2 | |
对照 | 1.58±0.01b | 0.06±0.00fg | 0.13±0.01b | 34.2 | |
U-HH | 1.87±0.01a | 0.14±0.01bc | 0.09±0.00bc | 28.2 | |
U-HL | 0.96±0.01g | 0.08±0.01ef | 0.07±0.02a | 43.9 | |
U-LH | 1.06±0.01f | 0.12±0.01cd | 0.11±0.01bc | 56.8 | |
U-LL | 0.88±0.01i | 0.10±0.01de | 0.01±0.01d | 50.7 | |
2021-12 | 对照 | 44.8±0.02d | 0.48±0.01i | 0.88±0.01f | 6.42 |
AC-HH | 40.6±0.01e | 1.83±0.01b | 1.45±0.01c | 16.4 | |
AC-HL | 26.1±0.03i | 1.27±0.02f | 0.83±0.02g | 20.8 | |
AC-LH | 71.0±0.01a | 1.72±0.01c | 1.42±0.01c | 9.44 | |
AC-LL | 29.8±0.01h | 0.90±0.01h | 0.47±0.01h | 9.76 | |
对照 | 44.8±0.02d | 0.48±0.01i | 0.88±0.01f | 16.6 | |
U-HH | 46.3±0.01c | 3.39±0.01a | 2.62±0.01a | 6.42 | |
U-HL | 32.2±0.03g | 1.48±0.01e | 1.06±0.02e | 27.1 | |
U-LH | 48.8±0.02b | 1.66±0.01d | 1.62±0.01b | 18.8 | |
U-LL | 34.7±0.01f | 1.13±0.01g | 1.34±0.00d | 14.7 | |
2022-06 | 对照 | 10.2±0.00i | 0.10±0.01i | 0.04±0.01i | 0.96 |
AC-HH | 27.1±0.00f | 1.43±0.00e | 0.17±0.00h | 5.28 | |
AC-HL | 22.3±0.01g | 0.78±0.01g | 0.37±0.01f | 3.52 | |
AC-LH | 27.7±0.01d | 1.97±0.00d | 0.28±0.00g | 7.12 | |
AC-LL | 22.0±0.01h | 0.34±0.01h | 0.61±0.01e | 1.56 | |
对照 | 10.2±0.00i | 0.10±0.01i | 0.04±0.01i | 0.96 | |
U-HH | 63.7±0.01c | 4.78±0.00b | 6.88±0.06a | 7.50 | |
U-HL | 45.3±0.01b | 3.34±0.01c | 2.74±0.01c | 7.36 | |
U-LH | 87.4±0.01a | 5.12±0.01a | 3.59±0.01b | 5.85 | |
U-LL | 27.2±0.00e | 1.03±0.00f | 2.29±0.01d | 3.80 |
表1 氮添加对土壤硝化潜势的影响
Table 1 Effect of N fertilization on the soil potential nitrification
时间 (年-月) | 处理 | TNP/ (mg·kg−1·d−1) | NP-AOB/ (mg·kg−1·d−1) | NP-AOA/ (mg·kg−1·d−1) | NP-AOB占TNP比例/% |
---|---|---|---|---|---|
2021-09 | 对照 | 1.58±0.01b | 0.06±0.00fg | 0.13±0.01b | 34.2 |
AC-HH | 0.96±0.01h | 0.13±0.01bc | 0.02±0.02d | 56.8 | |
AC-HL | 1.15±0.01e | 0.05±0.02g | 0.08±0.02c | 63.0 | |
AC-LH | 1.47±0.02c | 0.16±0.01b | 0.02±0.01d | 57.9 | |
AC-LL | 1.34±0.01d | 0.20±0.00a | 0.21±0.01a | 67.2 | |
对照 | 1.58±0.01b | 0.06±0.00fg | 0.13±0.01b | 34.2 | |
U-HH | 1.87±0.01a | 0.14±0.01bc | 0.09±0.00bc | 28.2 | |
U-HL | 0.96±0.01g | 0.08±0.01ef | 0.07±0.02a | 43.9 | |
U-LH | 1.06±0.01f | 0.12±0.01cd | 0.11±0.01bc | 56.8 | |
U-LL | 0.88±0.01i | 0.10±0.01de | 0.01±0.01d | 50.7 | |
2021-12 | 对照 | 44.8±0.02d | 0.48±0.01i | 0.88±0.01f | 6.42 |
AC-HH | 40.6±0.01e | 1.83±0.01b | 1.45±0.01c | 16.4 | |
AC-HL | 26.1±0.03i | 1.27±0.02f | 0.83±0.02g | 20.8 | |
AC-LH | 71.0±0.01a | 1.72±0.01c | 1.42±0.01c | 9.44 | |
AC-LL | 29.8±0.01h | 0.90±0.01h | 0.47±0.01h | 9.76 | |
对照 | 44.8±0.02d | 0.48±0.01i | 0.88±0.01f | 16.6 | |
U-HH | 46.3±0.01c | 3.39±0.01a | 2.62±0.01a | 6.42 | |
U-HL | 32.2±0.03g | 1.48±0.01e | 1.06±0.02e | 27.1 | |
U-LH | 48.8±0.02b | 1.66±0.01d | 1.62±0.01b | 18.8 | |
U-LL | 34.7±0.01f | 1.13±0.01g | 1.34±0.00d | 14.7 | |
2022-06 | 对照 | 10.2±0.00i | 0.10±0.01i | 0.04±0.01i | 0.96 |
AC-HH | 27.1±0.00f | 1.43±0.00e | 0.17±0.00h | 5.28 | |
AC-HL | 22.3±0.01g | 0.78±0.01g | 0.37±0.01f | 3.52 | |
AC-LH | 27.7±0.01d | 1.97±0.00d | 0.28±0.00g | 7.12 | |
AC-LL | 22.0±0.01h | 0.34±0.01h | 0.61±0.01e | 1.56 | |
对照 | 10.2±0.00i | 0.10±0.01i | 0.04±0.01i | 0.96 | |
U-HH | 63.7±0.01c | 4.78±0.00b | 6.88±0.06a | 7.50 | |
U-HL | 45.3±0.01b | 3.34±0.01c | 2.74±0.01c | 7.36 | |
U-LH | 87.4±0.01a | 5.12±0.01a | 3.59±0.01b | 5.85 | |
U-LL | 27.2±0.00e | 1.03±0.00f | 2.29±0.01d | 3.80 |
土壤指标 | amoA-AOA基因丰度 | amoA-AOB基因丰度 |
---|---|---|
土壤含水率 | 0.226 | −0.453* |
pH | −0.010 | −0.187 |
电导率 | −0.327 | −0.113 |
有效态Cd | −0.217 | 0.227 |
有效态Pb | −0.190 | −0.460* |
总氮 | −0.573** | −0.020 |
微生物氮 | 0.277 | 0.849** |
总碳 | 0.052 | 0.283 |
微生物碳 | −0.004 | 0.283 |
总磷 | −0.176 | 0.537** |
有效磷 | 0.344 | 0.651** |
纤维素梅 | 0.240 | 0.647** |
蔗糖酶 | 0.110 | 0.322 |
淀粉酶 | 0.104 | 0.379 |
脲酶 | 0.135 | 0.694** |
蛋白酶 | 0.185 | 0.469* |
酸性磷酸酶 | 0.093 | 0.519** |
PAO | 0.368 | 0.983** |
表2 土壤指标与amoA基因丰度的相关性分析
Table 2 Correlation analysis of soil indicators and the amoA genes abundance
土壤指标 | amoA-AOA基因丰度 | amoA-AOB基因丰度 |
---|---|---|
土壤含水率 | 0.226 | −0.453* |
pH | −0.010 | −0.187 |
电导率 | −0.327 | −0.113 |
有效态Cd | −0.217 | 0.227 |
有效态Pb | −0.190 | −0.460* |
总氮 | −0.573** | −0.020 |
微生物氮 | 0.277 | 0.849** |
总碳 | 0.052 | 0.283 |
微生物碳 | −0.004 | 0.283 |
总磷 | −0.176 | 0.537** |
有效磷 | 0.344 | 0.651** |
纤维素梅 | 0.240 | 0.647** |
蔗糖酶 | 0.110 | 0.322 |
淀粉酶 | 0.104 | 0.379 |
脲酶 | 0.135 | 0.694** |
蛋白酶 | 0.185 | 0.469* |
酸性磷酸酶 | 0.093 | 0.519** |
PAO | 0.368 | 0.983** |
[1] | BAI X, HU X J, LIU J J, et al., 2022. Ammonia oxidizing bacteria dominate soil nitrification under different fertilization regimes in black soils of northeast China[J]. European Journal of Soil Biology, 111: 103410. |
[2] | CHAUDHARY A K, PANDIT R, BURTON M, 2021. Effect of socioeconomic and institutional factors and sustainable land management practices on soil fertility in smallholder farms in the Mahottari District, Nepal[J]. Land Degradation & Development, 33(2): 269-281. |
[3] | DAI X L, GUO Q K, SONG D L, et al., 2021. Long-term mineral fertilizer substitution by organic fertilizer and the effect on the abundance and community structure of ammonia-oxidizing archaea and bacteria in paddy soil of south China[J]. European Journal of Soil Biology, 103(10): 103288. |
[4] | DINCĂ L C, GRENNI P, ONET C, et al., 2022. Fertilization and soil microbial community: A review[J]. Applied Sciences, 12(3): 1198. |
[5] | DOBSON A P, BRADSHAW A D, BAKER A J M, 1997. Hopes for the future: restoration ecology and conservation biology[J]. Sicence, 277(5325): 515-522. |
[6] | DUAN P P, ZHANG Q Q, XIONG Z Q, 2020. Temperature decouples ammonia and nitrite oxidation in greenhouse vegetable soils[J]. Science of The Total Environment, 733: 139391. |
[7] | FAN D W, WANG S Y, GUO Y H, et al., 2021. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition: The role of background Cd contamination and time as additional factors[J]. Science of the Total Environment, 757: 143771. |
[8] | GAN C D, CUI S F, WU Z Z, et al., 2022. Multiple heavy metal distribution and microbial community characteristics of vanadium-titanium magnetite tailing profiles under different management modes[J]. Journal of Hazardous Materials, 429: 128032. |
[9] | GONZALEZ-ALCARAZ M N, VAN GESTEL C A M, 2016. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content[J]. Science of the Total Environment, 573: 203-211. |
[10] | GREENFIELD L M, PUISSANT J, JONES D L, 2021. Synthesis of methods used to assess soil protease activity[J]. Soil Biology and Biochemistry, 158: 108277. |
[11] | LI Y Y, CHAPMAN S J, NICOL G W, et al., 2018. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 116: 290-301. |
[12] | LIMA H S, CAVALCANTE J P C M, SILVA L C F, et al., 2022. Structure and putative function of a soil microbial community impacted by the deposition of tailings and subsequent revegetation after the rupture of the Fundao Dam[J]. Land Degradation & Development, 33(8): 1235-1248. |
[13] | LIU H Y, QIN S Y, LI Y, et al., 2023. Comammox Nitrospira and AOB communities are more sensitive than AOA community to different fertilization strategies in a fluvo-aquic soil[J]. Agriculture, Ecosystems & Environment, 342: 108224. |
[14] | LIU L, LI D Z, SUN Y M, et al., 2021. Pattern of soil extracellular enzyme activities along a tidal wetland with mosaic vegetation distributions in Chongming Island, China[J]. Journal of Cleaner Production, 315(1): 127991. |
[15] | MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al., 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 461: 976-982. |
[16] | MARX M C, WOOD M, JARVIS S C, 2011. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology and Biochemistry, 33(12-13): 1633-1640. |
[17] | MENG F B, YANG X D, DUAN L C, et al., 2019. Influence of pH, electrical conductivity and ageing on the extractability of benzo[a]pyrene in two contrasting soils[J]. Science of the Total Environment, 690: 647-653. |
[18] |
NEMATI K, ABU BAKAR N K, ABAS M R, et al., 2011. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 192(1): 402-410.
DOI PMID |
[19] | OUYANG Y, NORTON J M, STARK J M, et al., 2016. Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology and Biochemistry, 96: 4-15. |
[20] | QIAO L K, LIU X X, ZHANG S, et al., 2021. Distribution of the microbial community and antibiotic resistance genes in farmland surrounding gold tailings: A metagenomics approach[J]. Science of the Total Environment, 779: 146502. |
[21] |
SIMON J, KLOTZ M G, 2013. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta, 1827: 114-135.
DOI PMID |
[22] | SINGH A N, KUMAR A, 2022. Comparative soil restoration potential of exotic and native woody plantations on coal mine spoil in a dry tropical environment of India: A case study[J]. Land Degradation & Development, 33(12): 1971-1984. |
[23] | SUN R B, GUO X S, WANG D Z, et al., 2015. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 95: 171-178. |
[24] | TANG S T, RAO Y, HUANG S L, et al., 2023. Impact of environmental factors on the ammonia-oxidizing and denitrifying microbial community and functional genes along soil profiles from different ecologically degraded areas in the Siding mine[J]. Journal of Environmental Management, 326(Part A): 116641. |
[25] | TAYLOR A E, ZEGLIN L H, WANZEK T A, et al., 2012. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials[J]. The ISME Journal, 6(11): 2024-2032. |
[26] | VERHAMME D T, PROSSER J I, NICOL G W, 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms[J]. The ISME Journal, 5(6): 1067-1071. |
[27] | WANG J C, WANG J L, RHODE G, et al., 2019. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling[J]. Science of the Total Environment, 668: 224-233. |
[28] | WANG J C, ZHANG L, LU Q, et al., 2014. Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes[J]. Applied Soil Ecology, 84: 38-44. |
[29] | WESSÉN E, NYBERG K, JANSSON J K, et al., 2010. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management[J]. Applied Soil Ecology, 45(3): 193-200. |
[30] | YANG K N, LUO S W, HU L G, et al., 2020. Responses of soil ammonia-oxidizing bacteria and archaea diversity to N, P and NP fertilization: Relationships with soil environmental variables and plant community diversity[J]. Soil Biology and Biochemistry, 145: 107795. |
[31] | YANG W H, HU H, RU M, et al., 2013. Changes of microbial properties in (near-) rhizosphere soils after phytoextraction by Sedum alfredii H: A rhizobox approach with an artificial Cd-contaminated soil[J]. Applied Soil Ecology, 72: 14-21. |
[32] | YING J Y, LI X X, WANG N N, et al., 2017. Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem[J]. Soil Biology and Biochemistry, 107: 10-18. |
[33] | YU G R, JIA Y L, HE N P, et al., 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 12: 424-429. |
[34] | ZHANG L M, HU H W, SHEN J P, et al., 2012. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 6: 1032-1045. |
[35] | ZHANG L X, GUAN Y T, JIANG S C, 2021. Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis[J]. Science of The Total Environment, 777: 146091. |
[36] | ZHANG N L, WAN S Q, LI L H, et al., 2008. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China[J]. Plant and Soil, 311: 19-28. |
[37] | ZHENG H J, MEI Z L, 2013. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 40: 98-108. |
[38] | ZOU W X, LANG M, ZHANG L, et al., 2022. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil[J]. Science of The Total Environment, 811: 151402. |
[39] | 郭俊杰, 朱晨, 刘文波, 等, 2021. 不同施肥模式对土壤氮循环功能微生物的影响[J]. 植物营养与肥料学报, 27(5): 751-759. |
GUO J J, ZHU C, LIU W B, et al., 2021. Effects of different fertilization managements on functional microorganisms involved in nitrogen cycle[J]. Journal of Plant Nutrition and Fertilizers, 27(5): 751-759. | |
[40] | 金兰淑, 郑佳, 徐慧, 等, 2009. 施氮及灌溉方式对玉米地土壤硝化潜势及微生物量碳的影响[J]. 水土保持学报, 23(4): 218-220. |
JIN L S, ZHENG J, XU H, et al., 2009. Effect of different nitrogen condition for soil microbial biomass carbon and potential nitrification rate of corn[J]. Journal of Soil and Water Conservation, 23(4): 218-220. | |
[41] | 李晨华, 贾仲君, 唐立松, 等, 2012. 不同施肥模式对绿洲农田土壤微生物群落丰度与酶活性的影响[J]. 土壤学报, 49(3): 567-574. |
LI C H, JIA Z J, TANG L S, et al., 2012. Effect of model of fertilization on microbial abundance and enzyme activity in oasis farmland soil[J]. Acta Pedologica Sinica, 49(3): 567-574. | |
[42] | 鲁如坤, 1999. 土壤农业化学分析方法[M]. 中国农业科技出版社. |
LU R K, 1999. Soil agrochemical analysis methods[M]. China Agricultural Science and Technology Press. | |
[43] | 赵晶, 冯文强, 秦鱼生, 等, 2010. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报, 47(5): 953-961. |
ZHAO J, FENG W Q, QIN Y S, et al., 2010. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Sinica, 47(5): 953-961. |
[1] | 姜晓静, 谢嘉慧, 马凯, 高丽. 天鹅湖沉积物中解磷菌的解磷能力及其对硬毛藻生长的影响[J]. 生态环境学报, 2024, 33(4): 633-644. |
[2] | 刘菁华, 张玉平, 陈雪婷. 一株红霉素降解菌Penicillium sp. ERY-1的筛选、降解特性及其应用研究[J]. 生态环境学报, 2024, 33(4): 607-616. |
[3] | 丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211. |
[4] | 李嘉惠, 童辉, 陈曼佳, 刘承帅, 姜琪, 易秀. 微氧生物亚铁氧化及其重金属固定效应研究进展[J]. 生态环境学报, 2024, 33(2): 310-320. |
[5] | 蓝浚, 陈冠虹, 张俊涛, Hemmat-Jou Mohammad Hossein, 舒小华, 方利平, 李芳柏. 电子穿梭体介导土壤锑还原成矿的微生物机制[J]. 生态环境学报, 2024, 33(2): 272-281. |
[6] | 马媛, 田路露, 吕杰, 柳沛, 张旭, 李二阳, 张清航. 天山北坡雪岭云杉森林土壤微生物群落及影响因素研究[J]. 生态环境学报, 2024, 33(1): 1-11. |
[7] | 杨正桥, 邹奇, 韦行, 周凯, 陈志良. 金属尾矿微生物对尾矿环境的适应与调控机制研究进展[J]. 生态环境学报, 2024, 33(1): 156-166. |
[8] | 袁佳宝, 宋艳宇, 刘桢迪, 朱梦圆, 程小峰, 马秀艳, 陈宁, 李晓宇. 松嫩平原芦苇湿地土壤酶活性剖面分布特征及其微生物养分限制指示作用[J]. 生态环境学报, 2023, 32(12): 2141-2153. |
[9] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[10] | 李璇, 钱秀雯, 黄娟, 王鸣宇, 肖君. 纳米氧化镍暴露下人工湿地运行性能及微生物群落的响应[J]. 生态环境学报, 2023, 32(10): 1833-1841. |
[11] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[12] | 唐志伟, 翁颖, 朱夏童, 蔡洪梅, 代雯慈, 王捧娜, 郑宝强, 李金才, 陈翔. 秸秆还田下中国农田土壤微生物生物量碳变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(9): 1552-1562. |
[13] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[14] | 姜懿珊, 孙迎韬, 张干, 罗春玲. 中国不同气候类型森林土壤微生物群落结构及其影响因素[J]. 生态环境学报, 2023, 32(8): 1355-1364. |
[15] | 朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||