生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 54-61.DOI: 10.16258/j.cnki.1674-5906.2024.01.006
袁茜1,2(), 傅开道1,2,*(
), 陶雨晨1,2, 张年1,2, 杨丽莎1,2
收稿日期:
2023-10-19
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*傅开道。E-mail: kdfu@ynu.edu.cn作者简介:
袁茜(1999年生),女,硕士研究生,主要研究方向为水利工程生态环境影响与风险防范。E-mail: yuixan@163.com
基金资助:
YUAN Xi1,2(), FU Kaidao1,2,*(
), TAO Yuchen1,2, ZHANG Nian1,2, YANG Lisha1,2
Received:
2023-10-19
Online:
2024-01-18
Published:
2024-03-19
摘要:
温室气体浓度上升导致全球气候变暖已成为国际社会关注的焦点。氧化亚氮(N2O)作为痕量温室气体,在全球气候变暖过程中扮演着重要的角色。河流和水库被认为是N2O释放的活跃区域,然而目前研究多集中在对单一河流或水库的监测,对大范围河库系统的N2O研究仍相对欠缺。选取澜沧江(云南段)流域作为考察对象,在2022年4月、8月采用悬浮箱采集24个点位的水-气界面的气体样品,并于实验室通过气象色谱仪检测气样氧化亚氮浓度,探究该流域干支流N2O释放通量的时空分布特征;同时,测定了水体水环境参数,解析其时空差异的环境影响因素。结果表明,1)在时间尺度上,澜沧江(云南段)旱季N2O通量均值低于雨季。旱季N2O通量均值为0.10 mg·m−2·d−1,雨季为0.18 mg·m−2·d−1,其中旱季干流均值为0.11 mg·m−2·d−1,支流为0.05 mg·m−2·d−1;雨季干流均值为0.18 mg·m−2·d−1,支流为0.15 mg·m−2·d−1。2)在空间尺度上,N2O通量沿程整体呈现释放量递增的趋势。干流N2O通量均值为0.15 mg·m−2·d−1,支流为0.10 mg·m−2·d−1,干流N2O通量高于支流。水库坝上N2O通量均值为0.02 mg·m−2·d−1,坝下为0.31 mg·m−2·d−1,水库坝下N2O通量值是坝上的15.5倍,水库发电下泄高速水流加速了水-气界面N2O释放。3)澜沧江水-气界面N2O通量与水温(WT)(r=0.561,P=0.000)、氨氮(NH4+)(r=0.377,P=0.015)和流速(r=0.331,P=0.026)呈显著正相关关系,与溶解氧(DO)(r= −0.507,P=0.000)呈显著负相关关系,表明在高WT、低DO、高NH4+和高流速条件下有利于N2O产生与释放。研究结果揭示澜沧江(云南段)河库系统氧化亚氮释放通量时空分布特征以及影响因素,为流域温室气体排放评估提供数据支持和科学依据。
中图分类号:
袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61.
YUAN Xi, FU Kaidao, TAO Yuchen, ZHANG Nian, YANG Lisha. Spatial-temporal Distribution and Influencing Factors of Nitrous Oxide Flux Across the Water-air Interface in Lancang River, China[J]. Ecology and Environment, 2024, 33(1): 54-61.
指标 | WT | pH | DO | TN | NO3− | NH4+ | 流速 | 风速 | N2O |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | 0.214 | −0.368**2) | −0.153 | 0.272* 1) | 0.075 | 0.184 | −0.189 | 0.341** |
pH | 1 | 0.083 | −0.363** | 0.164 | −0.369** | 0.077 | −0.093 | 0.180 | |
DO | 1 | 0.064 | −0.409** | −0.226 | −0.290* | 0.111 | −0.420** | ||
TN | 1 | 0.447** | 0.114 | 0.039 | 0.201 | −0.136 | |||
NO3− | 1 | −0.101 | 0.227 | −0.145 | 0.212 | ||||
NH4+ | 1 | −0.044 | 0.189 | 0.384** | |||||
流速 | 1 | 0.054 | 0.283* | ||||||
风速 | 1 | −0.003 | |||||||
N2O | 1 |
表1 N2O释放通量与环境指标Pearson相关分析
Table 1 N2O release flux and environmental indicator Pearson correlation analysis
指标 | WT | pH | DO | TN | NO3− | NH4+ | 流速 | 风速 | N2O |
---|---|---|---|---|---|---|---|---|---|
WT | 1 | 0.214 | −0.368**2) | −0.153 | 0.272* 1) | 0.075 | 0.184 | −0.189 | 0.341** |
pH | 1 | 0.083 | −0.363** | 0.164 | −0.369** | 0.077 | −0.093 | 0.180 | |
DO | 1 | 0.064 | −0.409** | −0.226 | −0.290* | 0.111 | −0.420** | ||
TN | 1 | 0.447** | 0.114 | 0.039 | 0.201 | −0.136 | |||
NO3− | 1 | −0.101 | 0.227 | −0.145 | 0.212 | ||||
NH4+ | 1 | −0.044 | 0.189 | 0.384** | |||||
流速 | 1 | 0.054 | 0.283* | ||||||
风速 | 1 | −0.003 | |||||||
N2O | 1 |
[1] |
BAULCH H, DILLON P, MARANGER R, et al., 2012. Night and day: Short-term variation in nitrogen chemistry and nitrous oxide emissions from streams[J]. Freshwater Biology, 57(3): 509-525
DOI URL |
[2] |
BEAULIEU J, NIETCH C, YOUNG J, 2015. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[J]. Journal of Geophysical Research: Biogeosciences, 120(10): 1995-2010.
DOI URL |
[3] |
CHEN J S, CAO W Z, CAO D, et al., 2015. Nitrogen loading and nitrous oxide emissions from a river with multiple hydroelectric reservoirs[J]. Bulletin of Environmental Contamination and Toxicology, 94(5): 633-639.
DOI PMID |
[4] |
CHEN N W, CHEN Z H, WU Y Q, et al., 2014. Understanding gaseous nitrogen removal through direct measurement of dissolved N2 and N2O in a subtropical river-reservoir system[J]. Ecological Engineering, 70: 56-67.
DOI URL |
[5] |
CHENG F, ZHANG H M, ZHANG G L, et al., 2019. Distribution and emission of N2O in the largest river-reservoir system along the Yellow River[J]. Science of the Total Environment, 666: 1209-1219.
DOI URL |
[6] |
CLOUGH T, BUCKTHOUGHT L E, KELLIHER F M, et al., 2007. Diurnal fluctuationsof dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissionsfrom a spring-fed river: Implications for IPCC methodology[J]. Global Change Biology, 13(5): 1016-1027.
DOI URL |
[7] |
COLE J J, CARACO N F, 2001. Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson River, New York[J]. Environmental Science & Technology, 35(6): 991-996.
DOI URL |
[8] |
DEEMER B R, HARRISON J A, LI S Y, et al., 2016. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis[J]. Bioscience, 66(11): 949-964.
DOI PMID |
[9] |
DESCLOUX S, CHANUDET V, SERCA D, et al., 2017. Methane and nitrous oxide annual emissions from an old eutrophic temperate reservoir[J]. Science of the Total Environment, 598: 959-972.
DOI URL |
[10] |
DUCHEMIN E, LUCOTTE M, CANUEL R, 1999. Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies[J]. Environmental Science & Technology, 33(2): 350-357.
DOI URL |
[11] | GARCIARUIZ R, PATTINSON S N, WHITTON B A, 1998. Denitrification and nitrous oxide production in sediments of the Wiske, a lowland eutrophic river[J]. Science of the Total Environment, 210(1-6): 307-320. |
[12] |
GRIFFIS T J, CHEN Z C, BAKER J M, et al., 2017. Nitrous oxide emissions are enhanced in a warmer and wetter world[J]. Proceedings of the National Academy of Sciences of the United States of America, 114(45): 12081-12085.
DOI PMID |
[13] | GUéRIN F, ABRIL G, TREMBLAY A, et al., 2008. Nitrous oxide emissions from tropical hydroelectric reservoirs[J] Geophysical Research Letters, 35(6): L06404-1-L06404-6. |
[14] |
HARRISON J, MATSON P, FENDORF S, 2005. Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream[J]. Aquatic Sciences, 67(3): 308-315.
DOI URL |
[15] |
HE C Q, QI R, FENG H Y, et al., 2023. Spatiotemporal variations and dominated environmental parameters of nitrous oxide (N2O) concentrations from cascade reservoirs in southwest China[J]. Environmental Science and Pollution Research, 30(46): 102547-102559.
DOI |
[16] |
HENDZEL L L, MATTHEWS C J D, VENKITESWARAN J J, et al., 2005. Nitrous oxide fluxes in three experimental boreal forest reservoirs[J]. Environmental Science & Technology, 39(12): 4353-4360.
DOI URL |
[17] | IPCC, 2021. Climate Change 2021: The Physical Science Basis[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. |
[18] |
KUMAR A, YANG T, SHARMA M, 2019. Greenhouse gas measurement from Chinese freshwater bodies: A review[J]. Journal of Cleaner Production, 233: 368-378.
DOI |
[19] |
LAURSEN A E, SEITZINGER S P, 2004. Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale[J]. Freshwater Biology, 49(11): 1448-1458.
DOI URL |
[20] |
LI D, SHI L, GUO S, et al., 2022. Characteristics of N2O release from polluted creeks in the Taihu Lake Basin: sources and microbial population[J]. Aquatic Sciences, 84(3): 37. 1-37.11.
DOI |
[21] |
LIU X L, LIU C Q, LI S L, et al., 2011. Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China[J]. Atmospheric Environmental, 45(31): 5458-5468.
DOI URL |
[22] |
MA P, LI X Y, CHEN F, et al., 2019. The isotopomer ratios of N2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N2O in the heavy ammonia polluted rivers[J]. Science of the Total Environment, 687: 1315-1326.
DOI URL |
[23] |
MUSENZE R, GRINHAM A, WERNER U, et al., 2014. Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs[J]. Environmental Science & Technology, 48(24): 14499-14507.
DOI URL |
[24] |
SHI W Q, CHEN Q W, ZHANG J Y, et al., 2020. Nitrous oxide emissions from cascade hydropower reservoirs in the upper Mekong River[J]. Water Research, 173: 115582.
DOI URL |
[25] |
STOW C A, WALKER J T, CARDOCH L, et al., 2005. N2O emissions from streams in the Neuse River Watershed, North Carolina[J]. Environmental Science & Technology, 39(18): 6999-7004.
DOI URL |
[26] |
VENKITESWARAN J J, ROSAMOND M S, SCHIFF S L, 2014. Nonlinear response of riverine N2O fluxes to oxygen and temperature[J]. Environmental Science & Technology, 48(3): 1566-1573.
DOI URL |
[27] | WANG D Q, CHEN Z L, SUN W W, et al., 2009. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net[J]. Science in China (Series B: Chemistry), 52(5): 652-661. |
[28] |
WANG J W, WU W, ZHOU X D, et al., 2021. Nitrous oxide (N2O) emissions from the high dam reservoir in longitudinal range-gorge regions on the Lancang-Mekong River, southwest China[J]. Journal of environmental management, 295: 113027.
DOI URL |
[29] |
WU W, WANG J W, ZHOU X D, et al., 2020. Spatiotemporal distribution of nitrous oxide (N2O) emissions from cascade reservoirs in Lancang-Mekong River Yunnan section, Southwestern China[J]. River Research and Applications, 37(8): 1055-1069.
DOI URL |
[30] |
WUEBBLES D J, 2009. Nitrous oxide: No laughing matter[J]. Science, 326(5949): 56-57.
DOI URL |
[31] |
XIA L, TAO X, LI J X, et al., 2023. Control of the hydraulic load on nitrous oxide emissions from Cascade Reservoirs[J]. Environmental Science & Technology, 53(20): 11745-11754.
DOI URL |
[32] |
XIA Y Q, LI Y F, LI X B, et al., 2013. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river[J]. Chemosphere, 92(4): 421-428.
DOI PMID |
[33] |
YAN Q Y, BI Y H, DENG Y, et al., 2015. Impacts of the Three Gorges Dam on microbial structure and potential function[J]. Scientific Reports, 5(1): 8605.
DOI |
[34] |
YU Z J, DENG H G, WANG D Q, et al., 2013. Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology[J]. Global Change Biology, 19(10): 2999-3010.
DOI PMID |
[35] | ZHAO B J, ZHANG Q F, 2021. N2O emission and its influencing factors in subtropical streams, China[J]. Ecological Processes, 10(1): 735-748. |
[36] |
ZHANG B Y, DING W, XU B, et al., 2020. Spatial characteristics of total phosphorus loads from different sources in the Lancang River Basin[J]. Science of The Total Environment, 722: 137863.
DOI URL |
[37] |
ZHU D, CHEN H, YUAN X, et al., 2013. Nitrous oxide emissions from the surface of the Three Gorges Reservoir[J]. Ecological Engineering, 60: 150-154.
DOI URL |
[38] | 程芳, 丁帅, 刘素美, 等, 2019. 三峡库区及其下游溶解氧化亚氮 (N2O) 分布和释放[J]. 环境科学, 40(9): 4230-4237. |
CHENG F, DING S, LIU S M, et al., 2019. Distribution and emissions of Nitrous oxide (N2O) in Three Gorges Reservoir and Downstream River[J]. Environmental Science, 40(9): 4230-4237. | |
[39] | 高蝶, 陈赛男, 李思亮, 等, 2020. 峡谷型水库温度分层期关键界面N2O的产生和释放机理[J]. 生态学杂志, 39(8): 2737-2747. |
GAO D, CHEN S N, LI S L, et al., 2020. Nitrous oxide production and emission mechanisms in key interfaces of canyon-reservoirs during stratification period[J]. Journal of Ecology, 39(8): 2737-2747. | |
[40] | 郭俏利, 2017. 基于涡度相关法SWI的N2O通量及其水动力影响研究[D]. 重庆: 重庆大学. |
GUO Q L, 2017. Study on N2O flux and hydrodynamic influence of SWI based on the eddy covariance method[D]. Chongqing: Chongqing University. | |
[41] | 刘婷婷, 王晓锋, 袁兴中, 等, 2019. 湖、库水体N2O排放研究进展[J]. 湖泊科学, 31(2): 319-335. |
LIU T T, WANG X F, YUAN X Z, et al., 2019. Review on N2O emission from lakes and reservoirs[J]. Lake Science, 31(2): 319-335. | |
[42] | 刘小龙, 汪福顺, 白莉, 等, 2015. 河流梯级开发对乌江中上游水体溶存N2O释放的影响[J]. 上海大学学报, 21(3): 1007-1261. |
LIU X L, WANG F S, BAI L, et al., 2015. Impact of cascade reservoir development on N2O emissions in the Wujiang River[J]. Journal of Shanghai University (Natural Science), 21(3): 1007-1261. | |
[43] | 王亮, 王雨春, 段玉杰, 等, 2012. 三峡水库香溪河库湾水-气界面N2O通量特征[J]. 三峡大学学报(自然科学版), 34(1): 14-18. |
WANG L, WANG Y C, DUAN Y J, et al., 2012. Characteristics of nitrous oxide flux across water-air interface of Xiangxi River Bay of Three-Gorges Reservoir[J]. Journal of China Three Gorges University (Natural Science), 34(1): 14-18. |
[1] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[2] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[5] | 吴雅睿, 王美景, 王涛, 杨梅焕. 新冠疫情下NO2时空变化特征——以陕西省为例[J]. 生态环境学报, 2023, 32(3): 514-524. |
[6] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[7] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[8] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[9] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[10] | 周永康, 余圣品, 李佳乐, 董一慧, 王萌, 赵齐灵, 李烨余. 土壤中抗生素的吸附行为与机理研究进展[J]. 生态环境学报, 2023, 32(11): 2072-2082. |
[11] | 杨晓莉, 毛佳璇, 马露冉, 徐其静, 刘雪. 纳米材料固定化植酸酶的制备及其催化效率与影响因素综述[J]. 生态环境学报, 2023, 32(10): 1889-1900. |
[12] | 孙正, 曹亚非, 王德彩, 刘峰, 宋效东, 张甘霖, 吴华勇. 近30年京津冀电镀场地时空演变特征及趋势预测[J]. 生态环境学报, 2023, 32(1): 183-194. |
[13] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[14] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[15] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||