生态环境学报 ›› 2024, Vol. 33 ›› Issue (12): 1862-1873.DOI: 10.16258/j.cnki.1674-5906.2024.12.004
袁梦瑶1(), 赖潘民旺1,*(
), 胡渭平2, 王姊煜1, 贺峰1, 张敏1, 万学雅1, 张晨昊1, 张超1, 郭军康1
收稿日期:
2024-04-23
出版日期:
2024-12-18
发布日期:
2024-12-31
通讯作者:
*赖潘民旺。E-mail: laipanminwang@sust.edu.cn作者简介:
袁梦瑶(2000年生),女,硕士研究生,主要研究方向为生态修复与土壤固碳。E-mail: ymy10058@163.com
基金资助:
YUAN Mengyao1(), LAI PAN Minwang1,*(
), HU Weiping2, WANG Ziyu1, HE Feng1, ZHANG Min1, WAN Xueya1, ZHANG Chenhao1, ZHANG Chao1, GUO Junkang1
Received:
2024-04-23
Online:
2024-12-18
Published:
2024-12-31
摘要:
秦岭地区钼矿资源丰富,大规模开发钼矿带来了生态环境问题。增加土壤碳储量或许是矿区生态恢复的关键措施,以此评估矿区本土植物对土壤储碳的贡献或有助于筛选出一批生态恢复能力好,能加速矿区成土过程和维持土壤肥力的本土植被物种。以秦岭某钼尾矿库自然恢复区不同植被为研究对象,通过比较不同植被群落表层和根际土的碳含量,溶解性有机质(DOM)含量,DOM的来源与类型,不同根际土壤的矿物物相组成情况,植被根际土壤CO2呼吸量等,筛选出对土壤有机碳增汇效益高的本土野生植物种群。研究结果表明:植物碳增汇普遍在100%-650%之间,其中芦苇(Phragmites australis)、白茅(Imperata cylindrica)、香青(Anaphalis sinica)、芒草(Miscanthus)等植物对矿区土壤固碳的效果最为突出;从DOM角度看,各植被表层土DOM质量分数为12.35-20.96 g∙kg−1,根际土DOM质量分数为4.52-15.71 g∙kg−1,普遍为裸露区域DOM质量分数的3-12倍,其中芦苇更有利于产生高含量DOM;与其他植物相比,香青根际土壤CO2呼吸量较高,土壤深度为5 cm时可达空气CO2含量的3.5倍。三维荧光检测结果表明,DOM主要来自凋落物、根系分泌物分解等外源输入,其中芦苇表层土中腐殖质含量较高,对土壤腐殖质贡献更大。从矿区土壤恢复碳汇角度分析,认为芦苇、香青、芒草和白茅这几种植物可作为秦岭钼矿生态脆弱区生态恢复的先锋植物,其有助于提高秦岭钼尾矿库生态脆弱区碳汇,达成长效生态固碳和生态恢复协同目标。
中图分类号:
袁梦瑶, 赖潘民旺, 胡渭平, 王姊煜, 贺峰, 张敏, 万学雅, 张晨昊, 张超, 郭军康. 秦岭典型钼矿区不同植物群落对矿区土壤碳汇效应研究[J]. 生态环境学报, 2024, 33(12): 1862-1873.
YUAN Mengyao, LAI PAN Minwang, HU Weiping, WANG Ziyu, HE Feng, ZHANG Min, WAN Xueya, ZHANG Chenhao, ZHANG Chao, GUO Junkang. Effect of Different Plant Communities on Soil Carbon Sequestration in a Typical Mining Area of Qinling Mountains[J]. Ecology and Environment, 2024, 33(12): 1862-1873.
图5 各土样相比于无苔藓无植被区碳增汇比例 1-3 依次代表苔藓生长区、苔藓成熟区、矿砂,Ⅰ-Ⅶ依次代表迷迭香区、苍术区、白茅区、香青区、黄花蒿区、芒草区、芦苇区
Figure 5 Proportion of carbon sink increase in each soil sample compared to the area without moss and vegetation
图6 各土样(非)溶解性有机质质量分数、DOM质量浓度、CDOM质量分数(以吸收系数表示)
Figure 6 Mass fraction of (non-)DOM, DOM mass concentration and CDOM mass fraction (expressed by absorption coefficient) among soil samples
样品名称 | FI | BIX |
---|---|---|
苔藓生长区 | 1.06 | 1.55 |
苔藓成熟区 | 0.98 | 1.15 |
芦苇 (Phragmites australis) 区表层土 | 1.05 | 1.53 |
白茅 (Imperata cylindrica) 区表层土 | 0.96 | 1.04 |
芒草 (Miscanthus) 区表层土 | 1.00 | 1.15 |
表1 各土样荧光指数及生物源指数
Table 1 Fluorescence index and biological index of each soil sample
样品名称 | FI | BIX |
---|---|---|
苔藓生长区 | 1.06 | 1.55 |
苔藓成熟区 | 0.98 | 1.15 |
芦苇 (Phragmites australis) 区表层土 | 1.05 | 1.53 |
白茅 (Imperata cylindrica) 区表层土 | 0.96 | 1.04 |
芒草 (Miscanthus) 区表层土 | 1.00 | 1.15 |
[1] | AERTS R, CHAPIN F S, 1999. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns[J]. Advances in Ecological Research, 30: 1-67. |
[2] |
BAHN M, RODEGHIERO M, ANDERSON-DUNN M., et al., 2008. Soil respiration in European grasslands in relation to climate and assimilate supply[J]. Ecosystems, 11(8): 1352-1367.
DOI PMID |
[3] |
BAI Y, COTRUFO M F, 2022. Grassland soil carbon sequestration: Current understanding, challenges, and solutions[J]. Science, 377(6606): 603-608.
DOI PMID |
[4] | CHANTIGNY M H, 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices[J]. Geoderma, 113(3-4): 357-380. |
[5] | CHEN S T, HUANG Y, ZOU J W, et al., 2010. Modeling interannual variability of global soil respiration from climate and soil properties[J]. Agricultural and Forest Meteorology, 150(4): 590-605. |
[6] |
CHENG W, PARTON W J, GONZALEZMELER M A, et al., 2014. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist, 201(1): 31-44.
DOI PMID |
[7] | DAVIDSON E A, JANSSENS I A, LUO Y, 2006. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10[J]. Global Change Biology, 12(2): 154-164. |
[8] |
DIJKSTRA F A, ZHU B, CHENG W, 2021. Root effects on soil organic carbon: A double-edged sword[J]. New Phytologist, 230(1): 60-65.
DOI PMID |
[9] | ELBASIOUNY H, EL-RAMADY H, ELBEHIRY F, et al., 2022. Plant nutrition under climate change and soil carbon sequestration[J]. Sustainability, 14(2): 914. |
[10] | FANG F, YANG Y, GUO J S, et al., 2011. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County, Three Gorges Reservoir[J]. Frontiers of Environmental Science & Engineering in China, 5(3): 426-434. |
[11] | GAERTNER M, BIGGS R, TE BEEST M, et al., 2014. Invasive plants as drivers of regime shifts: Identifying high-priority invaders that alter feedback relationships[J]. Diversity and Distributions, 20(7): 733-744. |
[12] | GIARDINA C P, RYAN M G, 2002. Total belowground carbon allocation in a fast-growing eucalyptus plantation estimated using a carbon balance approach[J]. Ecosystems, 5: 487-499. |
[13] | GIARDINA C P, RYAN M G, BINKLEY D, et al., 2003. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest[J]. Global Change Biology, 9(10): 1438-1450. |
[14] | GROVER M, MAHESWARI M., DESAI S, et al., 2015. Elevated CO2: Plant associated microorganisms and carbon sequestration[J]. Applied Soil Ecology, 95: 73-85. |
[15] | GUI H J, LI F S, WEI Y F, et al., 2018. Adsorption characteristics of natural organic matter on activated carbons with different pore size distribution[J]. International Journal of Environmental Science and Technology, 15: 1619-1628. |
[16] | HAN L, ZHAI Y, CHEN R, et al., 2023. Characteristics of soil arsenic contamination and the potential of pioneer plants for arsenic remediation in gold mine tailings[J]. Toxics, 11(12): 1025. |
[17] | HUGHES R F, ARCHER S R, ASNER G P, et al., 2006. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna[J]. Global Change Biology, 12(9): 1733-1747. |
[18] | JAFFRAIN J, GéRARD F, MEYER M, et al., 2007. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal, 71(6): 1851-1858. |
[19] | KAISER K, KALBITZ K, 2012. Cycling downwards-dissolved organic matter in soils[J]. Soil Biology and Biochemistry, 52: 29-32. |
[20] | KOMATSU K, ONODERA T, KOHZU A, et al., 2020. Characterization of dissolved organic matter in wastewater during aerobic, anaerobic, and anoxic treatment processes by molecular size and fluorescence analyses[J]. Water Research, 171: 115459. |
[21] | KRAMER T D, WARREN R J, TANG Y, et al., 2012. Grass invasions across a regional gradient are associated with declines in belowground carbon pools[J]. Ecosystems, 15(8): 1271-1282. |
[22] | KUZYAKOV Y, HORWATH W R, DORODNIKOV M, et al., 2019. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: No changes in pools, but increased fluxes and accelerated cycles[J]. Soil Biology and Biochemistry, 128: 66-78. |
[23] | LIANG C, SCHIMEL J P, JASTROW J D, 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 1-6. |
[24] | LIANG J Y, ZHOU Z H, HUO C F, et al., 2018. More replenishment than priming loss of soil organic carbon with additional carbon input[J]. Nature Communications, 9(1): 3175. |
[25] | LIU C, WANG H L, LI P H, et al., 2019. Biochar’s impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls[J]. Science of the Total Environment, 650(Part 2): 1988-1995. |
[26] | LI H Y, WANG X X, HUISHOU Y, et al., 2012. Emplacement ages and petrogenesis of the molybdenum-bearing granites in the Jinduicheng area of East Qinling, China: Constraints from zircon U-Pb ages and Hf isotopes[J]. Acta Geologica Sinica‐English Edition, 86(3): 661-679. |
[27] | LI Q, SONG X Z, CHANG S X, et al., 2019. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a moso bamboo forest[J]. Agricultural and Forest Meteorology, 268: 48-54. |
[28] | LOYDI A, DONATH T, ECKSTEIN R L, et al., 2015. Non-native species litter reduces germination and growth of resident forbs and grasses: Allelopathic, osmotic or mechanical effects?[J]. Biological Invasions, 17: 581-595. |
[29] | MARSCHNER B, KALBITZ K, 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma, 113(3-4): 211-235. |
[30] | QIN X Q, YAO B, JIN L, et al., 2020. Characterizing soil dissolved organic matter in typical soils from China using fluorescence EEM-PARAFAC and UV-visible absorption[J]. Aquatic Geochemistry, 26: 71-88. |
[31] | QIU L J, WU Y P, YU M Z, et al., 2021. Contributions of vegetation restoration and climate change to spatiotemporal variation in the energy budget in the loess plateau of China[J]. Ecological Indicators, 127: 107780. |
[32] | QIU Q Y, WU L F, OUYANG Z, et al., 2015. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations[J]. Applied Soil Ecology, 96: 122-130. |
[33] | RICHARDSON D M, PYŠEK P, 2006. Plant invasions: Merging the concepts of species invasiveness and community invasibility[J]. Progress in Physical Geography, 30(3): 409-431. |
[34] | RYAN M G, LAW B, 2005. Interpreting, measuring, and modeling soil respiration[J]. Progress in Physical Geography, 73: 3-27. |
[35] | SARFRAZ R, HUSSAIN A, SABIR A, et al., 2019. Role of biochar and plant growth promoting rhizobacteria to enhance soil carbon sequestration: A review[J]. Environmental Monitoring and Assessment, 191: 1-13. |
[36] | TONG H, SIMPSON A J, PAUL E A, et al., 2021. Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter[J]. ACS Earth and Space Chemistry, 5(6): 1395-1406. |
[37] |
WARDLE D A, HÖRNBERG G, ZACKRISSON O, et al., 2003. Long-term effects of wildfire on ecosystem properties across an island area gradient[J]. Science, 300(5621): 972-975.
PMID |
[38] | WIESMEIER M, URBANSKI L, HOBLEY E, et al., 2019. Soil organic carbon storage as a key function of soils: A review of drivers and indicators at various scales[J]. Geoderma, 333: 149-162. |
[39] |
XU M, SHANG H, 2016. Contribution of soil respiration to the global carbon equation[J]. Journal of Plant Physiology, 203: 16-28.
DOI PMID |
[40] | YANG W, AN S Q, ZHAO H, et al., 2016. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of Eastern China[J]. Ecological Engineering, 86: 174-182. |
[41] | ZHANG Z P, DING J L, ZHU C M, et al., 2023. Historical and future variation of soil organic carbon in China[J]. Geoderma, 436: 116557. |
[42] | ZHU B, GUTKNECHT J L, HERMAN D J, et al., 2014. Rhizosphere priming effects on soil carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 76: 183-192. |
[43] | 迟雷, 2021. 东秦岭河南钼成矿带辉钼矿标型特征研究[D]. 北京: 中国地质大学:70. |
CHI L, 2021. Study on the molybdenite typolomorphic characteristics of molybdenite in Henan Mo metallogenic belt, East Qinling[D]. Beijing: China University of Geosciences:70. | |
[44] | 戴雅婷, 侯向阳, 闫志坚, 等, 2013. 库布齐沙地不同植被类型下土壤微生物量碳及土壤呼吸的变化[J]. 中国草地学报, 35(5): 92-95. |
DAI Y T, HOU X Y, YAN Z J, et al., 2013. Study on the soil micro-biomass carbon and soil respiration of four kinds of vegetation types in Hobq sandy land[J]. Chinese Journal of Grass Land, 35(5): 92-95. | |
[45] | 冯薇, 2014. 毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响[D]. 北京: 北京林业大学:112. |
FENG W, 2014. Otosythetic carbon fixation of biological soil crusts in MU US deserttheir impact on soil carbon emission[D]. Bejing: Beijing Forestry University:112. | |
[46] | 冯晓琳, 闫雨阳, 张欣然, 等, 2024. 近30年陕西土壤有机碳的时空变化特征及影响因素[J]. 环境科学, 45(10): 5994-6001. |
FENG X L, YAN Y Y, ZHANG X R, et al., 2024. Temporal and spatial variations of soil organic carbon and the influencing factors in Shaanxi Province in recent 30 years[J]. Environmental Science, 45(10): 5994-6001. | |
[47] | 葛楠楠, 2018. 黄土高原退耕地土壤团聚体碳氮来源和稳定性分析评价[D]. 咸阳: 中国科学院水利部水土保持研究所:57. |
GE N N. 2018. Sources and stability of organic carbon and nitrogen in soil aggregates as affected by re-vegetation in the Loess Plateau[D]. Xianyang: Institute of Soil and Water Conservation, CAS & MWR: 57. | |
[48] | 勾昕, 万秀美, 廖昕荣, 等, 2015. 西南地区3种典型人工林土壤有机碳的含量差异[J]. 贵州农业科学, 43(8): 151-155, 159. |
GOU X, WAN X M, LIAO X R, et al., 2015. Difference of organic carbon content in soil of three typical plantations in Southwest China[J]. Guizhou Agricultural Sciences, 43(8): 151-155, 159. | |
[49] | 李明顺, 唐绍清, 张杏辉, 等, 2005. 金属矿山废弃地的生态恢复实践与对策[J]. 矿业安全与环保 (4): 16-18. |
LI M S, TANG S Q, ZHANG X H, et al., 2005. Ecological restoration practice and countermeasures of abandoned land in metal mines[J]. Mining Safety and Environmental Protection (4): 16-18. | |
[50] | 李瑞娟, 周冰, 2021. 安徽铜陵铜尾矿土壤污染评价及综合利用研究[J]. 矿产综合利用 (4): 36-40. |
LI R J, ZHOU B, 2021. Study on soil pollution evaluation and multipurpose utilization of copper tailings in Tongling, Anhui[J]. Multipurpose Utilization of Mineral Resources (4): 36-40. | |
[51] |
刘晨, 白雪冬, 赵海超, 等, 2023. 寒旱区春玉米秸秆还田方式对土壤DOM光谱特征的影响机制[J]. 生态环境学报, 32(8): 1419-1432.
DOI |
LIU C, BAI X D, ZHAO H C, et al., 2023. The effect mechanism of spring maize straw returning method on soil DOM spectral characteristics in cold and arid regions of China[J]. Ecology and Environmental Scienses, 32(8): 1419-1432. | |
[52] | 刘堰杨, 秦纪洪, 刘琛, 等, 2018a. 基于三维荧光及平行因子分析的川西高原河流水体CDOM特征[J]. 环境科学, 39(2): 720-728. |
LIU Y Y, QIN J H, LIU C, et al., 2018. Characteristics of chromophoric dissolved organic matter (CDOM) in rivers of Western Sichuan Plateau based on EEM-PARAFAC analysis[J]. Environmental Science, 39(2): 720-728. | |
[53] | 刘堰杨, 秦纪洪, 孙辉, 等, 2018b. 川西高海拔河流中溶解性有机质(DOM) 紫外-可见光吸收光谱特征[J]. 环境科学学报, 38(9): 3662-3671. |
LIU Y Y, QIN J H, SUN H, et al., 2018a. UV-VIS spectral characteristics of dissolved organic matter (DOM) of the natural alpine rivers in the Western Sichuan Province[J]. Acta Scientiae Circumstantiae, 38(9): 3662-3671. | |
[54] | 马明东, 李强, 罗承德, 等, 2009. 卧龙亚高山主要森林植被类型土壤碳汇研究[J]. 水土保持学报, 23(2): 127-131. |
MA M D, LI Q, LUO C D, et al., 2009. Study on soil labile organic carbon under some main forest types in Wolong Nature Reserve[J]. Journal of Soil and Water Conservation, 23(2): 127-131. | |
[55] | 孟和, 郭月峰, 张美丽, 等, 2019. 小流域梯田土壤有机碳含量及其固碳潜力[J]. 江苏农业科学, 47(4): 237-241. |
MENG H, GUO Y F, ZHANG M L, et al., 2019. Study on organic carbon content and carbon sequestration potential of terraced soil in small watershed[J]. Jiangsu Agricultural Sciences, 47(4): 237-241. | |
[56] | 齐璐, 2018. 陕西省商洛市耕地土壤养分空间变异及其地力评价[D]. 咸阳: 西北农林科技大学:75. |
QI L, 2018. Spatial variability of soil nutrients and evaluation of cultivated land ferrtility in Shangluo City of Shaanxi Province[D]. Xianyang: Northwest Agriculture and Forestry University:75. | |
[57] | 渠晨晨, 任稳燕, 李秀秀, 等, 2022. 重新认识土壤有机质[J]. 科学通报, 67(10): 913-923. |
QU C C, REN W Y, LI X X, et al., 2023. Revisit soil organic matter[J]. Chinese Science Bulletin, 67(10): 913-923. | |
[58] | 申慧彦, 王嘉富, 曹承泽, 等, 2023. 巢湖湖滨带不同土地类型土壤DOM光谱研究[J]. 长江流域资源与环境, 32(4): 729-738. |
SHEN H Y, WANG J F, CAO C Z, et al., 2023. Study on DOM spectra of different soil types in Chaohu lakeside zone[J]. Resources and Environment in the Yangtze Basin, 32(4): 729-738. | |
[59] | 王彤彤, 陈银萍, 陈云, 等, 2024. 基于Meta分析的围栏封育和人工植被建设对北方风沙区植物-土壤碳氮磷化学计量的影响[J]. 草业科学, 41(4): 856-872. |
WANG T T, CHEN Y P, CHEN Y, et al., 2024. Effects of fencing enclosure and artificial vegetation construction on the stoichiometry characteristics of plant-soil carbon, nitrogen, and phosphorus in northern sandy areas based on Meta-analysis[J]. Grassland Science, 41(4): 856-872. | |
[60] | 魏风华, 安广义, 王桂霞, 等, 2009. 北大岭铁矿尾矿库绿化研究[J]. 安徽农业科学, 37(6): 2456-2459, 2490. |
WEI F H, AN G Y, WANG G X, et al., 2009. Study on the greening of Beidaling iron mine's tailings dam[J]. Journal of Anhui Agricultural Sciences, 37(6): 2456-2459, 2490. | |
[61] | 杨刚, 何寻阳, 王克林, 等, 2008. 不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J]. 土壤通报, 39(1): 189-191. |
YANG G, HE X Y, WANG K L, et al., 2008. Effects of vegetation types on soil micro-biomass carbon, nitrogen and soil respiration[J]. Chinese Journal of Soil Science, 39(1): 189-191. | |
[62] |
杨赛兰, 耿庆宏, 许崇华, 等, 2020. 加拿大一枝黄花入侵对杨树人工林土壤呼吸的影响[J]. 南京林业大学学报(自然科学版), 44(5): 117-124.
DOI |
YANG S L, GENG Q H, XU C H, et al., 2020. Effects of Solidago canadensis L. invasion on soil respiration in poplar plantations (Populus deltoides)[J]. Journal of Nanjing Forestry University, 44(5): 117-124. | |
[63] | 杨欣, 吴支行, 叶寅, 等, 2022. 店埠河农业小流域水体溶解性有机质三维荧光光谱的平行因子分析[J]. 光谱学与光谱分析, 42(3): 978-983. |
YANG X, WU Z H, YE Y, et al., 2022. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of DOM in waters of agricultural watershed of Dianbu River[J]. Spectroscopy Spectral Analysls, 42(3): 978-983. | |
[64] | 杨月, 杨华蕾, 李昌达, 等, 2023. 浙南人工红树林土壤呼吸季节变化特征及其对蓝碳功能的影响[J]. 海洋环境科学, 42(6): 825-833. |
YANG Y, YANG H L, LI C D, et al., 2023. Seasonal variations of soil respiration and its effect on blue carbon sink function in the restored mangrove wetland in Southern Zhejiang Province[J]. Marine Environmental Science, 42(6): 825-833. | |
[65] | 张凡, 李长生, 王政, 2006. 耕作措施对陕西耕作土壤碳储量的影响模拟[J]. 第四纪研究, 26(6): 1021-1028. |
ZHANG F, LI C S, WANG Z, et al., 2006. Modeling the impacts of management alternatives on soil carbon storage of farmland in Shaanxi Province[J]. Quaternary Sciences, 26(6): 1021-1028. | |
[66] | 张萌萌, 2019. 陕西黄土台塬近三十年土地利用转变对土壤碳储量的影响[D]. 西安: 西北农林科技大学:68. |
ZHANG M M, 2019. The influence of land use transformation on soil carbon storage in the tableland of the Loess Plateau of Shaanxi Province during the last thirty years[D]. Xianyang: Northwest Agriculture and Forestry University:68. | |
[67] | 张萌萌, 刘梦云, 常庆瑞, 等, 2019. 陕西黄土台塬近三十年耕地动态变化的表层土壤有机碳效应[J]. 生态学报, 39(18): 6785-6793. |
ZHANG M M, LIU M Y, CHANG Q Y, et al., 2019. Effects of topsoil organic carbon on the dynamic change in cultivated land in the tableland of the Loess Plateau in Shaanxi over the last thirty years[J]. Acta Ecologica Sinica, 39(18): 6785-6793. | |
[68] | 郑聚锋, 陈硕桐, 2021. 土壤有机质与土壤固碳[J]. 科学, 73(6): 13-17, 4. |
ZHENG J F, CHEN S T, 2021. Soil organic matter and soil carbon sequestration[J]. Science (kexue), 73(6): 13-17, 4. | |
[69] | 中华人民共和国农业部, 2006. 中国人民共和国农业行业标准: NY/T 1121.6—2006[S]. 北京: 中华人民共和国农业部: 3. |
Ministry of Agriculture of the PRC, 2006. Agricultural industry standard of the PRC: NY/T 1121.6—2006[S]. Beijing: Ministry of Agriculture of the PRC: 3. |
[1] | 崔盼盼, 于洋, 曲波, 苏芳莉. 封育对退化河岸草地植物多样性和植被景观的影响[J]. 生态环境学报, 2024, 33(11): 1708-1716. |
[2] | 谢舒雅, 李香兰. 互花米草入侵对中国滨海湿地土壤碳收支的影响[J]. 生态环境学报, 2024, 33(10): 1516-1524. |
[3] | 陈燕, 杨慧, 宁静, 朱德根, 吴夏, 黄芬, 马洋, 陈伟, Mitja Prelovšek, Nataša Ravbar. 重度干旱条件下典型岩溶区植被恢复过程中植物水分利用来源和效率研究[J]. 生态环境学报, 2024, 33(10): 1534-1543. |
[4] | 张传光, 沈艳, 张珊珊, 李玉文, 陈剑, 杨文忠. 原生与迁地毛枝五针松根际土壤微生物多样性分析[J]. 生态环境学报, 2024, 33(10): 1544-1553. |
[5] | 朱玲, 魏天兴, 于欢, 王仙, 范德卉, 赵雨琪. 刺槐根系和根际土对7种乔灌草植物的化感潜力[J]. 生态环境学报, 2024, 33(9): 1406-1415. |
[6] | 徐佳乐, 杨兴川, 赵文吉, 杨志强, 钟一雪, 师乐颜, 马鹏飞. 气候变化背景下内蒙古中西部植被覆盖度演变特征研究[J]. 生态环境学报, 2024, 33(7): 1008-1018. |
[7] | 杨可明, 彭里顺, 张燕海, 谷新茹, 陈新阳, 江克贵. 淮北矿区多种类型植被地上生物量反演研究[J]. 生态环境学报, 2024, 33(7): 1027-1035. |
[8] | 李成阳, 梁志辉, 李臻明, 蔡敏, 许瑞瑶, 陈秀宇, 丁佳音, 许秋云, 彭飞. 长江源区北麓河流域退化高寒草甸植物群落特征和土壤特性[J]. 生态环境学报, 2024, 33(7): 1063-1071. |
[9] | 汪东川, 李亭蓉, 王康健, 孙苗苗, 俞长锦, 杨菲, 杨琳, 张万恒, 刘云绮, 曾孔鹏. 金沙江观音岩库区植被覆盖度时空差异影响机制分析[J]. 生态环境学报, 2024, 33(7): 997-1007. |
[10] | 潘家响, 朱明飞, 秦念慈, 肖晶, 刘晨, 李秋华. 贵州高原车田河浮游植物功能群时空特征及水环境质量评价[J]. 生态环境学报, 2024, 33(6): 935-945. |
[11] | 李新妹, 吴作航, 王震山, 翁升恒, 孙朝锋, 关辉, 王宏. 基于MODIS遥感数据的福建植被生产力时空分布与干旱响应分析[J]. 生态环境学报, 2024, 33(6): 841-852. |
[12] | 宋小龙, 马明德, 王鹏, 李陇堂, 米文宝, 宋永永. 2000—2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J]. 生态环境学报, 2024, 33(6): 853-868. |
[13] | 杨乐. 基于集合模型预测外来植物反枝苋的入侵趋势[J]. 生态环境学报, 2024, 33(6): 888-899. |
[14] | 王捷纯, 邓玉娇, 朱怀卫, 孔蕴淇. 广东省不同生态系统植被NPP时空变化及对气候因子的响应[J]. 生态环境学报, 2024, 33(6): 831-840. |
[15] | 孙明, 陈燕丽, 谢敏, 莫伟华, 潘良浩. 广西典型沙生红树林总初级生产力变化特征及其对气象因子的响应[J]. 生态环境学报, 2024, 33(5): 665-678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||