生态环境学报 ›› 2024, Vol. 33 ›› Issue (9): 1406-1415.DOI: 10.16258/j.cnki.1674-5906.2024.09.008
朱玲(), 魏天兴*(
), 于欢, 王仙, 范德卉, 赵雨琪
收稿日期:
2024-05-13
出版日期:
2024-09-18
发布日期:
2024-10-18
通讯作者:
*魏天兴。E-mail: weitx@bjfu.edu.cn作者简介:
朱玲(1998年生),女,硕士研究生,研究方向为生态环境地理。E-mail: 2211430263@qq.com
基金资助:
ZHU Ling(), WEI Tianxing*(
), YU Huan, WANG Xian, FAN Dehui, ZHAO Yuqi
Received:
2024-05-13
Online:
2024-09-18
Published:
2024-10-18
摘要:
刺槐(Robinia pseudoacacia)抗干旱胁迫能力、生长速率和适应性较强,是黄土丘陵区主要造林树种之一。为探究刺槐根系和根际土对该区常见乔木、灌木和草本植物的化感潜力,以刺槐根系和根际土为实验材料,采用生物测定法,设定根系和根际土浸提液质量浓度为0.5、1.0、3.0、5.0、7.0、10.0 mg∙mL−1,测定不同质量浓度浸提液对冰草(Agropyron cristatum)、侧柏(Platycladus orientalis)、刺槐、胡枝子(Lespedeza bicolor)、绣线菊(Spiraea salicifolia)、油松(Pinus tabuliformis)、紫花苜蓿(Medicago sativa)种子萌发和幼苗生长的影响,分析其化感作用。结果表明,刺槐根系和根际土对受体植物各指标的化感作用受到质量浓度、受体植物种类和化感物质来源,及两两之间交互作用的显著影响。1)刺槐根系和根际土浸提液促进刺槐和绣线菊的种子萌发,促进作用随浸提液质量浓度增加而加强,对绣线菊的促进作用强于刺槐;根际土对刺槐种子萌发的促进作用强于根系,对绣线菊来说则相反。刺槐根系和根际土浸提液对冰草、侧柏、胡枝子、油松、紫花苜蓿种子萌发的化感作用规律一致,呈现“低促高抑”的效应。2)刺槐根系和根际土浸提液对胡枝子、冰草、侧柏、油松、绣线菊和刺槐幼苗生长的化感作用一致,其中根系和根际土浸提液促进胡枝子幼苗生长,促进作用随浸提液质量浓度的增加先增强后减弱,且根系的促进作用强于根际土;对其他5种受体植物均表现为“低促高抑”的效应。刺槐根系和根际土浸提液对紫花苜蓿幼苗生长的化感作用不一致,根系浸提液抑制紫花苜蓿的幼苗生长,根际土浸提液对其呈现“低促高抑”的效应。该研究可为刺槐林的乔灌草复合搭配提供科学依据。
中图分类号:
朱玲, 魏天兴, 于欢, 王仙, 范德卉, 赵雨琪. 刺槐根系和根际土对7种乔灌草植物的化感潜力[J]. 生态环境学报, 2024, 33(9): 1406-1415.
ZHU Ling, WEI Tianxing, YU Huan, WANG Xian, FAN Dehui, ZHAO Yuqi. Allelopathic Potential of Robinia pseudoacacia Root System and Rhizosphere Soil on 7 Species of Arbor, Shrub, and Grass Plants[J]. Ecology and Environment, 2024, 33(9): 1406-1415.
样地编号 | 树种 | 海拔/ m | 坡度/ (°) | 坡向 | 郁闭度/% | 平均胸径/cm | 平均 高度/m |
---|---|---|---|---|---|---|---|
1 | 刺槐 R. pseudoacacia | 1159 | 22 | SE13° | 80 | 7.58 | 8.46 |
2 | 刺槐 R. pseudoacacia | 1148 | 26 | SE32° | 82 | 11.31 | 9.24 |
3 | 刺槐 R. pseudoacacia | 1186 | 23 | NW24° | 85 | 14.53 | 10.15 |
表1 样地基本概况
Table 1 Basic overview of sample plots
样地编号 | 树种 | 海拔/ m | 坡度/ (°) | 坡向 | 郁闭度/% | 平均胸径/cm | 平均 高度/m |
---|---|---|---|---|---|---|---|
1 | 刺槐 R. pseudoacacia | 1159 | 22 | SE13° | 80 | 7.58 | 8.46 |
2 | 刺槐 R. pseudoacacia | 1148 | 26 | SE32° | 82 | 11.31 | 9.24 |
3 | 刺槐 R. pseudoacacia | 1186 | 23 | NW24° | 85 | 14.53 | 10.15 |
影响因素 | 发芽率 | 发芽势 | |||
---|---|---|---|---|---|
F | p | F | p | ||
不同浸提液 | 0.444 | 0.506 | 0.889 | 0.347 | |
质量浓度 | 10.216 | <0.001 | 23.311 | <0.001 | |
受体植物 | 705.233 | <0.001 | 1617.928 | <0.001 | |
不同浸提液×质量浓度 | 0.498 | 0.778 | 7.180 | <0.001 | |
不同浸提液×受体植物 | 6.201 | <0.001 | 23.027 | <0.001 | |
质量浓度×受体植物 | 11.127 | <0.001 | 20.755 | <0.001 | |
不同浸提液×质量浓度×受体植物 | 0.881 | 0.648 | 5.541 | <0.001 |
表2 化感作用对种子萌发影响的三因素方差分析
Table 2 Variance analysis of three factors affecting allelopathy on seed germination
影响因素 | 发芽率 | 发芽势 | |||
---|---|---|---|---|---|
F | p | F | p | ||
不同浸提液 | 0.444 | 0.506 | 0.889 | 0.347 | |
质量浓度 | 10.216 | <0.001 | 23.311 | <0.001 | |
受体植物 | 705.233 | <0.001 | 1617.928 | <0.001 | |
不同浸提液×质量浓度 | 0.498 | 0.778 | 7.180 | <0.001 | |
不同浸提液×受体植物 | 6.201 | <0.001 | 23.027 | <0.001 | |
质量浓度×受体植物 | 11.127 | <0.001 | 20.755 | <0.001 | |
不同浸提液×质量浓度×受体植物 | 0.881 | 0.648 | 5.541 | <0.001 |
图1 刺槐根系和根际土不同质量浓度浸提液对种子萌发的影响 n=3;AC:A. cristatum 冰草;PO:P. orientalis侧柏;RP:R. pseudoacacia刺槐;LB:L. bicolor胡枝;SS:S. salicifolia绣线菊;PT:P. tabuliformis油松;MS:M. sativa紫花苜蓿,下同
Figure 1 Effects of different mass concentrations of extracts from R. pseudoacacia roots and rhizosphere soil on seed germination
影响因素 | 胚芽鲜质量 | |
---|---|---|
F | p | |
不同浸提液 | 0.348 | 0.556 |
质量浓度 | 3.900 | 0.002 |
受体植物 | 121.781 | <0.001 |
不同浸提液×质量浓度 | 0.103 | 0.991 |
不同浸提液×受体植物 | 0.492 | 0.814 |
质量浓度×受体植物 | 1.181 | 0.250 |
不同浸提液×质量浓度×受体植物 | 0.106 | 1.000 |
表3 化感作用对幼苗胚芽鲜质量影响的三因素方差分析
Table 3 Three-factor variance analysis of allelopathy on the fresh weight of seedling germ
影响因素 | 胚芽鲜质量 | |
---|---|---|
F | p | |
不同浸提液 | 0.348 | 0.556 |
质量浓度 | 3.900 | 0.002 |
受体植物 | 121.781 | <0.001 |
不同浸提液×质量浓度 | 0.103 | 0.991 |
不同浸提液×受体植物 | 0.492 | 0.814 |
质量浓度×受体植物 | 1.181 | 0.250 |
不同浸提液×质量浓度×受体植物 | 0.106 | 1.000 |
质量浓度/ (mg∙mL−1) | 胚芽鲜质量/mg | ||||||
---|---|---|---|---|---|---|---|
冰草 A. cristatum | 侧柏 P. orientalis | 刺槐 R. pseudoacacia | 胡枝子 L. bicolor | 绣线菊 S. salicifolia | 油松 P. tabuliformis | 紫花苜蓿 M. sativa | |
0 | 4.26±0.55b | 30.02±3.16ab | 77.22±10.67a | 6.92±0.96b | 12.42±1.71a | 71.13±19.34a | 14.96±2.07ab |
0.5 | 4.46±0.57b | 30.73±3.21ab | 80.01±11.05a | 7.32±1.00ab | 13.60±1.89a | 74.78±20.37a | 15.48±2.14ab |
1.0 | 6.11±0.79a | 33.97±3.54a | 87.61±12.12a | 8.35±1.15ab | 15.32±2.12a | 79.90±21.77a | 16.82±2.33a |
3.0 | 4.86±0.64ab | 31.48±3.29a | 76.82±10.62a | 10.83±1.52a | 13.08±1.81a | 109.78±29.90a | 16.14±2.23ab |
5.0 | 2.90±0.38bc | 28.12±3.07ab | 74.33±10.28a | 10.96±1.51a | 11.84±1.64a | 78.73±21.44a | 13.69±1.89ab |
7.0 | 2.02±0.26c | 25.65±2.79ab | 74.61±10.33a | 9.92±1.37ab | 10.69±1.48a | 63.83±7.38a | 12.00±1.66ab |
10.0 | 1.38±0.18c | 21.84±2.39b | 62.60±8.65a | 9.04±1.25ab | 9.68±1.34a | 54.12±14.73a | 10.46±1.45b |
表4 不同质量浓度浸提液对幼苗胚芽鲜质量的影响
Table 4 Effects of different mass concentrations of extracts on fresh quality of seedling germ
质量浓度/ (mg∙mL−1) | 胚芽鲜质量/mg | ||||||
---|---|---|---|---|---|---|---|
冰草 A. cristatum | 侧柏 P. orientalis | 刺槐 R. pseudoacacia | 胡枝子 L. bicolor | 绣线菊 S. salicifolia | 油松 P. tabuliformis | 紫花苜蓿 M. sativa | |
0 | 4.26±0.55b | 30.02±3.16ab | 77.22±10.67a | 6.92±0.96b | 12.42±1.71a | 71.13±19.34a | 14.96±2.07ab |
0.5 | 4.46±0.57b | 30.73±3.21ab | 80.01±11.05a | 7.32±1.00ab | 13.60±1.89a | 74.78±20.37a | 15.48±2.14ab |
1.0 | 6.11±0.79a | 33.97±3.54a | 87.61±12.12a | 8.35±1.15ab | 15.32±2.12a | 79.90±21.77a | 16.82±2.33a |
3.0 | 4.86±0.64ab | 31.48±3.29a | 76.82±10.62a | 10.83±1.52a | 13.08±1.81a | 109.78±29.90a | 16.14±2.23ab |
5.0 | 2.90±0.38bc | 28.12±3.07ab | 74.33±10.28a | 10.96±1.51a | 11.84±1.64a | 78.73±21.44a | 13.69±1.89ab |
7.0 | 2.02±0.26c | 25.65±2.79ab | 74.61±10.33a | 9.92±1.37ab | 10.69±1.48a | 63.83±7.38a | 12.00±1.66ab |
10.0 | 1.38±0.18c | 21.84±2.39b | 62.60±8.65a | 9.04±1.25ab | 9.68±1.34a | 54.12±14.73a | 10.46±1.45b |
图2 刺槐根系和根际土不同质量浓度浸提液对幼苗胚根鲜质量的影响 n=3;不同小写字母表示不同质量浓度处理的显著差异(p<0.05);D表示不同浸提液,ρ表示质量浓度,O表示受体植物,×表示因素间的交互效应;F表示多因素方差分析中F统计量;*和**表示某因素主效应或因素间交互效应对指标的影响显著(p<0.05)或极显著(p<0.01),不标注则无显著影响,下同
Figure 2 Effects of different mass concentrations of extracts from R. pseudoacacia root and rhizosphere soil on the fresh quality of seedlings radicle
图3 刺槐根系和根际土不同质量浓度浸提液对幼苗株高和根长的影响
Figure 3 Effects of different mass concentrations of extracts from R. pseudoacacia root and rhizosphere soil on seedling height and root length
不同浸提液 | 受体植物 | 综合化感效应指数 (SE) | |||||
---|---|---|---|---|---|---|---|
浸提液质量浓度/(mg∙mL−1) | |||||||
0.5 | 1.0 | 3.0 | 5.0 | 7.0 | 10.0 | ||
根系 | 冰草A. cristatum | 0.092 | 0.211 | 0.174 | −0.050 | −0.083 | −0.363 |
侧柏P. orientalis | 0.085 | 0.336 | 0.170 | −0.086 | −0.158 | −0.605 | |
刺槐 R. pseudoacacia | 0.140 | 0.193 | 0.235 | 0.268 | 0.298 | 0.323 | |
胡枝子L. bicolor | 0.528 | 0.516 | 0.369 | −0.106 | −0.483 | −0.660 | |
绣线菊S. salicifolia | 0.167 | 0.294 | 0.287 | 0.374 | 0.388 | 0.418 | |
油松P. tabuliformis | 0.215 | 0.083 | 0.334 | 0.417 | 0.353 | −0.138 | |
紫花苜蓿M. sativa | 0.032 | 0.127 | 0.106 | −0.022 | −0.099 | −0.178 | |
根际土 | 冰草A. cristatum | 0.268 | 0.406 | 0.346 | 0.160 | −0.203 | −0.333 |
侧柏P. orientalis | 0.270 | 0.452 | 0.031 | 0.257 | 0.174 | −0.605 | |
刺槐 R. pseudoacacia | 0.077 | 0.154 | 0.215 | 0.296 | 0.325 | 0.403 | |
胡枝子L. bicolor | 0.495 | 0.558 | 0.356 | −0.316 | −0.150 | −0.446 | |
绣线菊S. salicifolia | −0.048 | 0.152 | 0.228 | 0.315 | 0.347 | 0.316 | |
油松P. tabuliformis | 0.494 | 0.606 | 0.497 | 0.420 | 0.317 | −0.135 | |
紫花苜蓿M. sativa | 0.047 | 0.122 | −0.034 | −0.073 | −0.153 | −0.480 |
表5 刺槐根系和根际土不同质量浓度浸提液对种子萌发的综合化感效应指数
Table 5 Allelopathic response index of different mass concentrations of extracts from R. pseudoacacia locust roots and rhizosphere soil on seed germination
不同浸提液 | 受体植物 | 综合化感效应指数 (SE) | |||||
---|---|---|---|---|---|---|---|
浸提液质量浓度/(mg∙mL−1) | |||||||
0.5 | 1.0 | 3.0 | 5.0 | 7.0 | 10.0 | ||
根系 | 冰草A. cristatum | 0.092 | 0.211 | 0.174 | −0.050 | −0.083 | −0.363 |
侧柏P. orientalis | 0.085 | 0.336 | 0.170 | −0.086 | −0.158 | −0.605 | |
刺槐 R. pseudoacacia | 0.140 | 0.193 | 0.235 | 0.268 | 0.298 | 0.323 | |
胡枝子L. bicolor | 0.528 | 0.516 | 0.369 | −0.106 | −0.483 | −0.660 | |
绣线菊S. salicifolia | 0.167 | 0.294 | 0.287 | 0.374 | 0.388 | 0.418 | |
油松P. tabuliformis | 0.215 | 0.083 | 0.334 | 0.417 | 0.353 | −0.138 | |
紫花苜蓿M. sativa | 0.032 | 0.127 | 0.106 | −0.022 | −0.099 | −0.178 | |
根际土 | 冰草A. cristatum | 0.268 | 0.406 | 0.346 | 0.160 | −0.203 | −0.333 |
侧柏P. orientalis | 0.270 | 0.452 | 0.031 | 0.257 | 0.174 | −0.605 | |
刺槐 R. pseudoacacia | 0.077 | 0.154 | 0.215 | 0.296 | 0.325 | 0.403 | |
胡枝子L. bicolor | 0.495 | 0.558 | 0.356 | −0.316 | −0.150 | −0.446 | |
绣线菊S. salicifolia | −0.048 | 0.152 | 0.228 | 0.315 | 0.347 | 0.316 | |
油松P. tabuliformis | 0.494 | 0.606 | 0.497 | 0.420 | 0.317 | −0.135 | |
紫花苜蓿M. sativa | 0.047 | 0.122 | −0.034 | −0.073 | −0.153 | −0.480 |
不同浸提液 | 受体植物 | 综合化感效应指数 (SE) | |||||
---|---|---|---|---|---|---|---|
浸提液质量浓度/(mg∙mL−1) | |||||||
0.5 | 1.0 | 3.0 | 5.0 | 7.0 | 10.0 | ||
根系 | 冰草A. cristatum | 0.035 | 0.044 | −0.050 | −0.319 | −0.439 | −0.632 |
侧柏P. orientalis | 0.010 | 0.111 | 0.014 | −0.150 | −0.385 | −0.573 | |
刺槐 R. pseudoacacia | 0.045 | 0.142 | 0.063 | −0.123 | −0.240 | −0.362 | |
胡枝子L. bicolor | 0.357 | 0.475 | 0.599 | 0.595 | 0.567 | 0.495 | |
绣线菊 S. salicifolia | 0.129 | 0.268 | 0.071 | −0.083 | −0.264 | −0.475 | |
油松 P. tabuliformis | 0.002 | 0.126 | 0.267 | −0.075 | −0.227 | −0.442 | |
紫花苜蓿 M. sativa | −0.034 | −0.032 | −0.093 | −0.226 | −0.338 | −0.423 | |
根际土 | 冰草A. cristatum | 0.126 | 0.281 | 0.102 | −0.282 | −0.493 | −0.691 |
侧柏P. orientalis | 0.121 | 0.252 | 0.135 | −0.073 | −0.241 | −0.485 | |
刺槐 R. pseudoacacia | 0.139 | 0.273 | 0.150 | −0.025 | −0.192 | −0.338 | |
胡枝子L. bicolor | 0.085 | 0.326 | 0.535 | 0.453 | 0.337 | 0.089 | |
绣线菊 S. salicifolia | −0.196 | −0.019 | 0.069 | −0.134 | −0.282 | −0.431 | |
油松 P. tabuliformis | 0.113 | 0.248 | 0.298 | 0.047 | −0.198 | −0.347 | |
紫花苜蓿 M. sativa | 0.027 | 0.147 | 0.085 | −0.166 | −0.359 | −0.517 |
表6 刺槐根系和根际土不同质量浓度浸提液对幼苗生长的综合化感效应指数
Table 6 Allelopathic response index of different mass concentrations of extracts from R. pseudoacacia roots and rhizosphere soil on seedling growth
不同浸提液 | 受体植物 | 综合化感效应指数 (SE) | |||||
---|---|---|---|---|---|---|---|
浸提液质量浓度/(mg∙mL−1) | |||||||
0.5 | 1.0 | 3.0 | 5.0 | 7.0 | 10.0 | ||
根系 | 冰草A. cristatum | 0.035 | 0.044 | −0.050 | −0.319 | −0.439 | −0.632 |
侧柏P. orientalis | 0.010 | 0.111 | 0.014 | −0.150 | −0.385 | −0.573 | |
刺槐 R. pseudoacacia | 0.045 | 0.142 | 0.063 | −0.123 | −0.240 | −0.362 | |
胡枝子L. bicolor | 0.357 | 0.475 | 0.599 | 0.595 | 0.567 | 0.495 | |
绣线菊 S. salicifolia | 0.129 | 0.268 | 0.071 | −0.083 | −0.264 | −0.475 | |
油松 P. tabuliformis | 0.002 | 0.126 | 0.267 | −0.075 | −0.227 | −0.442 | |
紫花苜蓿 M. sativa | −0.034 | −0.032 | −0.093 | −0.226 | −0.338 | −0.423 | |
根际土 | 冰草A. cristatum | 0.126 | 0.281 | 0.102 | −0.282 | −0.493 | −0.691 |
侧柏P. orientalis | 0.121 | 0.252 | 0.135 | −0.073 | −0.241 | −0.485 | |
刺槐 R. pseudoacacia | 0.139 | 0.273 | 0.150 | −0.025 | −0.192 | −0.338 | |
胡枝子L. bicolor | 0.085 | 0.326 | 0.535 | 0.453 | 0.337 | 0.089 | |
绣线菊 S. salicifolia | −0.196 | −0.019 | 0.069 | −0.134 | −0.282 | −0.431 | |
油松 P. tabuliformis | 0.113 | 0.248 | 0.298 | 0.047 | −0.198 | −0.347 | |
紫花苜蓿 M. sativa | 0.027 | 0.147 | 0.085 | −0.166 | −0.359 | −0.517 |
[1] | AN G Q, LI J M, LU H F, et al., 2022. Nitrogen-dependent luteolin effect on Microcystis growth and microcystin-pollution risk-Novel mechanism insights unveiled by comparative proteomics and gene expression[J]. Environmental Pollution, 311(10): 119848. |
[2] | ANH L H, QUAN N V, NGHIA L T, et al., 2021. Phenolic allelochemicals: Achievements, limitations, and prospective approaches in weed management[J]. Weed Biology and Management, 21(2): 37-67. |
[3] |
BRUCE WILLIAMSON G, RICHARDSON D, 1988. Bioassays for allelopathy: Measuring treatment responses with independent controls[J]. Journal of Chemical Ecology, 14(1): 181-187.
DOI PMID |
[4] | CHON S, COUTTS J H, NELSON C J, 2000. Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity[J]. Agronomy Journal, 92(4): 715-720. |
[5] | CHON S, NELSON C J, COUTTS J H, 2004. Osmotic and Autotoxic effects of leaf extracts on germination and seedling growth of alfalfa[J]. Agronomy Journal, 96(6): 1673-1679. |
[6] | LI Q, ZHAO G, CAO G, et al., 2020. Non-additive effects of leaf litter mixtures from Robinia pseudoacacia and ten tree species on soil properties[J]. Journal of Sustainable Forestry, 39(8): 771-784. |
[7] | SILVIA M V, ALVARO A, MARIA E P C, et al., 2017. Allelopathic potentials of exotic invasive and native trees over coexisting understory species: The soil as modulator[J]. Plant Ecology, 218(5): 579-594. |
[8] | SHEKARI F, SHEKARI F, NAJAFI J, et al., 2022. Phytotoxic effects of catnip (Nepeta meyeri Benth) on early growth stages development and infection potential of field dodder (Cuscuta campestris Yunck)[J]. Plants-Basel, 11(19): 2629. |
[9] | SU Z X, ZHU X Y, WANG Y B, et al., 2022. Litter C and N losses at different decomposition stages of Robinia pseudoacacia: The weaker effects of soil enzyme activities compared with those of litter quality and the soil environment[J]. Frontiers in Environmental Science, 10(11): 956309. |
[10] | VIATOR R P, Johnson R M, Grimm C C, et al., 2006. Allelopathic, Autotoxic, and Hormetic effects of Postharvest sugarcane Residue[J]. Agronomy Journal, 98(6): 1526-1531. |
[11] | WANG X Q, ZHANG R Q, WANG J X, et al., 2021. The effects of leaf extracts of four tree species on Amygdalus pedunculata seedlings growth[J]. Frontiers in Plant Science, 11(1): 587579. |
[12] | WYMAN C L, WALLER G R, JURZYSTA M, et al., 1991. Biological activity and chemical isolation of root saponins of six cultivars of alfalfa (Medicago sativa L)[J]. Plant and Soil, 135(1): 83-94. |
[13] | ZHANG X X, LIU Z W, ZHU Z H, et al., 2016. Impacts of mixed litter decomposition from Robinia pseudoacacia and other tree species on C loss and nutrient release in the Loess Plateau of China[J]. Journal of Forestry Research, 27(3): 525-532. |
[14] | ZHAO J C, YANG Z Y, ZOU J Q, et al., 2022. Allelopathic effects of sesame extracts on seed germination of moso bamboo and identification of potential allelochemicals[J]. Scientific Reports, 12(1): 6661. |
[15] | ZHAO W Y, WEN M X, ZHAO C T, et al., 2023. Warm temperature increments strengthen the crosstalk between roots and soil in the rhizosphere of soybean seedlings[J]. Plants-Basel, 12(24): 4135. |
[16] | 陈雪冬, 唐明, 张新璐, 等, 2017. 黄土高原刺槐纯林的土壤-菌根关系及随林龄的变化[J]. 林业科学, 53(12): 84-92. |
CHEN X D, TANG M, ZHANG X L, et al., 2017 Variation of the relationships between arbuscular mycorrhizal fungi and soil properties with different stand Age of Robinia pseudoacacia plantations on the loess plateau[J]. Scientla Sylvae Sinicae, 53(12): 84-92. | |
[17] | 段文艳, 李鑫, 李晴, 等, 2023. 黄土高原草地和刺槐根际AM真菌对刺槐和侧柏生长、土壤性质及叶片光合特性的影响[J]. 西北农业学报, 32(9): 1422-1436. |
DUAN W Y, LI X, LI Q, et al., 2023. Effects of AM Fungi in grassland and rhizosphere of black locust on loess plateau on growth status, leaf photosynthesis characteristic sand soil properties of black locust and oriental arborvitae[J]. Acta Agriculturae Boreali-occidentalis Sinica, 32(9): 1422-1436. | |
[18] | 葛杰克, 叶雨蒙, 楼雪怡, 等, 2023. 酚酸化感作用对栝楼生理特性及根际微生态的影响[J]. 水土保持学报, 37(3): 258-266, 272. |
GE J K, YE Y M, LOU X Y, et al., 2023. Effects of phenolic acidification on physiological characteristics and rhizosphere microecology of Trichosanthes kirilowii Maxim[J]. Journal of Soil and Water Conservation, 37(3): 258-266, 272. | |
[19] | 郭钟惠, 李洁明, 张明霞, 2023. 不同类型化感物质抑制蓝藻效益比较及联合抑藻效应评述[J]. 水生生物学报, 47(1): 177-194. |
GUO Z H, LI J M, ZHANG M X, 2023. A review on antialgal effectiveness among distinct allelochemicals and joint inhibitory effects on Cyanobacterial growth[J]. Acta Hydrobiologica Sinica, 47(1): 177-194. | |
[20] | 何斐, 崔鸣, 孙娅, 等, 2021. 刺槐凋落叶腐解液对3种作物的化感效应[J]. 西北林学院学报, 36(2): 116-122. |
HE F, CUI M, SUN Y, et al., 2021. Allelopathic effect of decomposed liquid of Robinia pseudoacacia leaf litter on three crops[J]. Journal of Northwest Forestry University, 36(2): 116-122. | |
[21] | 胡缓, 何松林, 张晋瑞, 等, 2023. 小蓬草水浸液对2种花卉种子萌发及幼苗生长的化感作用[J]. 西北植物学报, 43(9): 1528-1536. |
HU H, HE S L, ZHANG J R, et al., 2023. Allelopathic effects of aqueous extract from Conyza canadensis on seed germination and seedling growth of two herbaceous flower species[J]. Acta Botanica Boreali-Occidentalia Sinica, 43(9): 1528-1536. | |
[22] |
黄良嘉, 刘增文, 朱博超, 等, 2014. 小叶杨和刺槐纯林腐殖质土壤对9种常见灌草植物的化感效应[J]. 草地学报, 22(1): 150-157.
DOI |
HUANG L J, LIU Z W, ZHU B C, et al., 2014. Allelopathic effects of the humus soil of Populus simonii and Robinia pseudoacacia on tested common shrubs and grasses[J]. Acta Agrestia Sinica, 22(1): 150-157. | |
[23] | 计怀峰, 林辰壹, 卓马别克吾塔尼别克, 等, 2024. 丛枝菌根真菌对实葶葱生长及化感作用的影响[J]. 西北农林科技大学学报(自然科学版), 52(6): 1-11. |
JI H F, LIN C Y, ZHUOMABIEKE U, et al., 2024. Effects of arbuscular mycorrhizal fungi on growth and allelopathy of Allium galanthum[J]. Journal of Northwest A & F University (Natural Science Edition), 52(6): 1-11. | |
[24] | 荆蓉, 彭祚登, 李云, 等, 2023. 刺槐林下凋落物浸提液对刺槐种子萌发和胚生长的化感作用[J]. 浙江农林大学学报, 40(1): 97-106. |
JING R, PENG Z D, LI Y, et al., 2023. Allelopathy of the litter extracts from Robinia pseudoacacia forest on its seed germination and embryo growth[J]. Journal of Zhejiang A & F University, 40(1): 97-106. | |
[25] | 孔垂华, 胡飞, 王朋, 2016. 植物化感 (相生相克) 作用[M]. 北京: 高等教育出版社: 3-4. |
KONG C H, HU F, WANG P, 2016. Plant allelopathic effect[M]. Beijing: Higher Education Press: 3-4. | |
[26] | 李轲, 杨柳, 2019. 刺槐根际土壤水浸提液对5种常见园林植物种子萌发及幼苗生长的化感作用[J]. 种子, 38(6): 115-120. |
LI K, YANG L, 2019. Allelopathic effects of aqueous extracts from rhizosphere soil of Robinia pseudoacacia linn on seed germination and seedling growth of five kinds of common garden plants[J]. Seed, 38(6): 115-120. | |
[27] |
李彦飞, 初晓辉, 李嘉懿, 等, 2022. 大狼毒对紫花苜蓿种子萌发及幼苗生长的化感效应研究[J]. 草地学报, 30(2): 394-402.
DOI |
LI Y F, CHU X H, LI J Y, et al., 2022. Allelopathic effects of Euphorbia jolkinii on seed germination and seedling growth of alfalfa[J]. Acta Agrestia Sinica, 30(2): 394-402. | |
[28] | 宋亮, 潘开文, 王进闯, 等, 2006. 酚酸类物质对苜蓿种子萌发及抗氧化物酶活性的影响[J]. 生态学报, 26(10): 3393-3403. |
SONG L, PAN K W, WANG J C, et al., 2006. Effects of phenolic acids on seed germination and seedling antioxidant enzyme activity of alfalfa[J]. Acta Ecologica Sinica, 26(10): 3393-3403. | |
[29] | 汪琼, 辛培尧, 闻永慧, 2023. 两种乔木落叶浸提液对高羊茅幼苗生长和根际土壤酶活性的影响[J]. 草业科学, 40(12): 1-11. |
WANG Q, XIN P Y, WEN Y H, 2023. Effects of two kinds of tree deciduous extracts on Festuca arundinacea growth and enzyme activity in rhizosphere soil[J]. Pratacultural Science, 40(12): 1-11. | |
[30] | 王博恒, 卢佶, 王丹, 等, 2024. 基于熵值法的人工林林木邻体结构优化方法[J]. 西北林学院学报, 41(1): 1-7. |
WANG B H, LU J, WANG D, et al., 2024. Entropy based optimization method of neighborhood structure for the individual plantation tree[J]. Journal of Northwest Forestry University, 41(1): 1-7. | |
[31] | 王仙, 魏天兴, 朱金兆, 等, 2015. 黄土丘陵区油松根系化感效应研究[J]. 北京林业大学学报, 37(4): 82-89. |
WANG X, WEI T X, ZHU J Z, et al., 2015. Allelopathic effect of Pinus tabuliformis root in loess hilly area[J]. Journal of Beijing Forestry University, 37(4): 82-89. | |
[32] | 王小雪, 刘芸, 邵呈龙, 等, 2011. 5种经济植物对幼龄尾巨桉叶片提取液的化感敏感性[J]. 林业科学, 47(11): 188-193. |
WANG X X, LIU Y, SHAO C L, et al., 2011. Allelopathic sensitivity of five economic species to aqueous leaf extract of Eucalyptus urophylla×E. grandis with different ages[J]. Scientia Silvae Sinicae, 47(11): 188-193. | |
[33] | 袁娜, 刘增文, 祝振华, 等, 2012. 黄土高原主要人工林树种对几种豆科牧草的化感作用[J]. 西北农林科技大学学报(自然科学版), 40(1): 87-92. |
YUAN N, LIU Z W, ZHU Z H, et al., 2012. Study on allelopathic effects of main planted forest trees in the Loess Plateau on some legumes[J]. Journal of Northwest A & F University (Natural Science Edition), 40(1): 87-92. | |
[34] | 张静, 温仲明, 李鸣雷, 等, 2018. 外来物种刺槐对土壤微生物功能多样性的影响[J]. 生态学报, 38(14): 4964-4974. |
ZHANG J, WEN Z M, LI M L, et al., 2018. Effects of the exotic black locust on the functional diversity of soil microorganisms[J]. Acta Ecologica Sinica, 38(14): 4964-4974. | |
[35] | 朱美秋, 刘春鹏, 邓明静, 等, 2015. 臭椿根系水浸提液的化感效应[J]. 森林环境学报, 35(3): 284-288. |
ZHU M Q, LIU C P, DENG M J, et al., 2015. Allelopathy of aqueous extracts obtained from roots of Ailanthus altissima[J]. Journal of Forest and Environment, 35(3): 284-288. |
[1] | 李彦林, 陈杨洋, 杨霜溶, 刘菊梅. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371. |
[2] | 林丹丹, 毕华兴, 赵丹阳, 管凝, 韩金丹, 郭艳杰. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征[J]. 生态环境学报, 2024, 33(3): 379-388. |
[3] | 梁燕, 刘家齐, 肖凡, 潘民萍, 韦凯文, 张楚雯, 段敏. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响[J]. 生态环境学报, 2024, 33(2): 192-201. |
[4] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[5] | 秦佳琪, 肖指柔, 明安刚, 朱豪, 滕金倩, 梁泽丽, 陶怡, 覃林. 针阔人工混交林及其纯林对土壤微生物碳循环功能基因丰度的影响[J]. 生态环境学报, 2023, 32(10): 1719-1731. |
[6] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[7] | 杨瑞, 孙蔚旻, 李永斌, 郭丽芳, 焦念元. 尾矿先锋植物根际溶磷菌的分离鉴定与其促生研究[J]. 生态环境学报, 2023, 32(1): 166-174. |
[8] | 李莹, 张洲, 杨高明, 祖艳群, 李博, 陈建军. 湿地植物根系泌氧能力和根表铁膜与根系吸收重金属的关系[J]. 生态环境学报, 2022, 31(8): 1657-1666. |
[9] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
[10] | 喻阳华, 吴银菇, 宋燕平, 李一彤. 不同林龄顶坛花椒林地土壤微生物浓度与生物量化学计量特征[J]. 生态环境学报, 2022, 31(6): 1160-1168. |
[11] | 符裕红, 张代杰, 项蛟, 周焱, 黄宗胜, 喻理飞. 喀斯特不同地下生境剖面植物根系拓扑结构特征[J]. 生态环境学报, 2022, 31(5): 865-874. |
[12] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[13] | 赵隽宇, 黄小芮, 石媛媛, 宋贤冲, 覃祚玉, 唐健. 南亚热带多代连栽桉树人工林根际土壤FTIR特征分析[J]. 生态环境学报, 2022, 31(4): 688-694. |
[14] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[15] | 宋瑞朋, 杨起帆, 郑智恒, 习丹. 3种林下植被类型对杉木人工林土壤有机碳及其组分特征的影响[J]. 生态环境学报, 2022, 31(12): 2283-2291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||