生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 841-852.DOI: 10.16258/j.cnki.1674-5906.2024.06.002
李新妹1,2(), 吴作航1,3, 王震山4, 翁升恒1,3, 孙朝锋5, 关辉6, 王宏1,3,7,*(
)
收稿日期:
2023-11-10
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 王宏。E-mail: wh1575@163.com作者简介:
李新妹(1988年生),女,中级工程师,主要从事陆地生态系统碳循环方面研究。E-mail: lixinmei88@126.com
基金资助:
LI Xinmei1,2(), WU Zuohang1,3, WANG Zhenshan4, WENG Shengheng1,3, SUN Chaofeng5, GUAN Hui6, WANG Hong1,3,7,*(
)
Received:
2023-11-10
Online:
2024-06-18
Published:
2024-07-30
摘要:
全球升温导致干旱发生的范围和强度增加,但干旱对生态系统碳循环的影响还不明确。基于MODIS遥感数据,采用Sen趋势分析及Mann-Kendall检验、Pearson相关性分析等方法,通过干旱对植被生产力标准化异常的影响等信号,分析了2001—2021年福建省植被总初级生产力(Gross Primary Productivity,GPP)、净初级生产力(Net Primary Productivity,NPP)的时空变化特征与干旱对其的影响及累积/滞后效应。结果表明,1)空间上,福建省植被GPP、NPP多年平均空间分布均呈现“东南高,西北低”的特征,区域平均差异分别为37.4%、65.1%;近21年以来,有近80.8%的区域GPP呈现增长趋势,主要分布在福建省南部、东南部少部分地区,主要指被类型为农田,多为热带经济水果种植的集中区域;另外,超过59.7%的区域NPP呈现下降趋势,主要出现在福建省中部及内陆山区的常绿阔叶林地和稀树草原。2)时间上,植被GPP年际波动明显,总体呈现弱增长趋势[4.86 g∙m−2∙a−2(以C计,下同),p=0.130],空间上,6.7%的区域年增速显著超过15 g∙m−2∙a−2;而NPP年际变化总体呈现弱下降趋势(−1.05 g∙m−2∙a−2,p=0.396),4.9%的区域年降速显著超过6 g∙m−2∙a−2。3)研究时段内福建省出现的干旱过程主要以中等干旱为主(52.5%),其次是轻旱(34.0%)。植被GPP、NPP年标准化异常指数与干旱指数(SPEI)存在显著的负相关关系,相关系数分别为−0.624(p=0.002)、−0.531(p=0.013),说明旱情越严重的年份GPP、NPP越高,而旱情较轻或无旱的年份GPP、NPP较低。干旱对GPP最明显的影响主要发生在干旱当月,累积/滞后效应时间较短;干旱事件对GPP的影响是“先增-后缓-再减”,干旱发生初期GPP呈增加趋势,而随着干旱的持续发展,GPP的增加幅度明显减弱,甚至出现负效果。
中图分类号:
李新妹, 吴作航, 王震山, 翁升恒, 孙朝锋, 关辉, 王宏. 基于MODIS遥感数据的福建植被生产力时空分布与干旱响应分析[J]. 生态环境学报, 2024, 33(6): 841-852.
LI Xinmei, WU Zuohang, WANG Zhenshan, WENG Shengheng, SUN Chaofeng, GUAN Hui, WANG Hong. Spatio-temporal Dynamics of Vegetation Productivity and Drought Impacts in Fujian Province Using MODIS Data[J]. Ecology and Environment, 2024, 33(6): 841-852.
图2 2001—2021年福建省植被GPP、NPP空间年变化及趋势检验 红色虚线框代表主要下降区域,蓝色虚线框代表主要上升区域
Figure 2 Annual trend analyses and significance tests of vegetation GPP and NPP in Fujian Province from 2001 to 2021
图6 2001—2021年间福建省植被GPP、NPP与SPEI-12标准化异常变化
Figure 6 Changes in standardization anomalies of vegetation GPP, NPP, and SPEI-12 in Fujian Province from 2001 to 2021
图7 福建省植被GPP、NPP区域年均值与SPEI-12标准化异常相关性分析
Figure 7 Correlation analysis between regional annual mean of GPP and NPP and SPEI-12 standardized anomalies in Fujian Province
指标 | SPEI-01 | SPEI-02 | SPEI-03 | SPEI-04 | SPEI-05 | SPEI-06 | SPEI-07 | SPEI-08 | SPEI-09 | SPEI-10 | SPEI-11 | SPEI-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGPP | −0.543** | −0.348** | −0.327** | −0.312** | −0.292** | −0.252** | −0.226** | −0.180** | −0.152* | −0.120 | −0.096 | −0.069 |
表1 不同时间尺度的SPEI与AGPP的相关系数
Table 1 Correlation coefficients between SPEI of different timescales and AGPP
指标 | SPEI-01 | SPEI-02 | SPEI-03 | SPEI-04 | SPEI-05 | SPEI-06 | SPEI-07 | SPEI-08 | SPEI-09 | SPEI-10 | SPEI-11 | SPEI-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGPP | −0.543** | −0.348** | −0.327** | −0.312** | −0.292** | −0.252** | −0.226** | −0.180** | −0.152* | −0.120 | −0.096 | −0.069 |
指标 | SPEI-01 | SPEI-02 | SPEI-03 | SPEI-04 | SPEI-05 | SPEI-06 | SPEI-07 | SPEI-08 | SPEI-09 | SPEI-10 | SPEI-11 | SPEI-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGPP | −0.0004 | −0.0060 | −0.0156 | −0.0317 | −0.0343 | −0.0454 | −0.0448 | −0.0392 | −0.0244 | −0.0014 | 0.0233 | 0.0483 |
表2 不同尺度的SPEI与AGPP(GOSIF-GPP_v2)的相关系数
Table 2 Correlation coefficient between SPEI of different scales and AGPP (GOSIF-GPP_v2)
指标 | SPEI-01 | SPEI-02 | SPEI-03 | SPEI-04 | SPEI-05 | SPEI-06 | SPEI-07 | SPEI-08 | SPEI-09 | SPEI-10 | SPEI-11 | SPEI-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AGPP | −0.0004 | −0.0060 | −0.0156 | −0.0317 | −0.0343 | −0.0454 | −0.0448 | −0.0392 | −0.0244 | −0.0014 | 0.0233 | 0.0483 |
指标 | AGPP | AGPP-1 | AGPP-2 | AGPP-3 | AGPP-4 | AGPP-5 | AGPP-6 | AGPP-7 | AGPP-8 | AGPP-9 | AGPP-10 | AGPP-11 | AGPP-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI-01 | −0.543** | −0.009 | −0.117 | −0.129 | −0.038 | −0.032 | 0.017 | 0.091 | 0.059 | 0.059 | 0.102 | 0.083 | 0.068 |
表3 1个月尺度SPEI与滞后0—12个月AGPP的相关系数
Table 3 Correlation coefficients between one month scale SPEI and AGPP with lags of 0?12 months
指标 | AGPP | AGPP-1 | AGPP-2 | AGPP-3 | AGPP-4 | AGPP-5 | AGPP-6 | AGPP-7 | AGPP-8 | AGPP-9 | AGPP-10 | AGPP-11 | AGPP-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI-01 | −0.543** | −0.009 | −0.117 | −0.129 | −0.038 | −0.032 | 0.017 | 0.091 | 0.059 | 0.059 | 0.102 | 0.083 | 0.068 |
指标 | AGPP | AGPP-1 | AGPP-2 | AGPP−3 | AGPP-4 | AGPP-5 | AGPP-6 | AGPP-7 | AGPP-8 | AGPP-9 | AGPP-10 | AGPP-11 | AGPP-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI-01 | −0.0004 | −0.0050 | −0.0298 | −0.0561 | −0.0317 | −0.0187 | 0.0289 | 0.0389 | 0.0527 | 0.0752 | 0.0714 | 0.0678 | 0.0291 |
表4 1个月尺度SPEI与滞后0—12个月AGPP(GOSIF-GPP_v2)的相关系数
Table 4 Correlation coefficients between one month scale SPEI and AGPP (GOSIF-GPP_ v2) with lags of 0-12 months
指标 | AGPP | AGPP-1 | AGPP-2 | AGPP−3 | AGPP-4 | AGPP-5 | AGPP-6 | AGPP-7 | AGPP-8 | AGPP-9 | AGPP-10 | AGPP-11 | AGPP-12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPEI-01 | −0.0004 | −0.0050 | −0.0298 | −0.0561 | −0.0317 | −0.0187 | 0.0289 | 0.0389 | 0.0527 | 0.0752 | 0.0714 | 0.0678 | 0.0291 |
[1] |
BASLAM M, MITSUI T, HODGES M, et al., 2020. Photosynthesis in a changing global climate: scaling up and scaling down in crops[J]. Frontiers in Plant Science, 11: 882.
DOI PMID |
[2] | BONAL D, BOSC A, PONTON S, et al., 2008. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana[J]. Global Change Biology, 14(8): 1917-1933. |
[3] |
D'ORANGEVILLE L, MAXWELL J, KNEESHAW D, et al., 2018. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought[J]. Global Change Biology, 24(6): 2339-2351.
DOI PMID |
[4] | DENG Y, WANG X, WANG K, et al., 2021. Responses of vegetation greenness and carbon cycle to extreme droughts in China[J]. Agricultural and Forest Meteorology, 298-299: 108307. |
[5] | DOUGHTY C E, METCALFED B, GIRARDIN C A J, et al., 2015. Drought impact on forest carbon dynamics and fluxes in Amazonia[J]. Nature, 519(7541): 78-82. |
[6] | DUFFY K A, SCHWALM C R, ARCUS V L, et al., 2021. How close are we to the temperature tipping point of the terrestrial biosphere?[J]. Science Advances, 7(3): 1052. |
[7] | DUSENGE M E, DUARTE A G, WAY D A, 2019. Plant carbon metabolism and climate change: Elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration[J]. New Phytologist, 221(1): 32-49. |
[8] | GASH J H C, HUNTINGFORD C, MARENGO J A, et al., 2004. Amazonian climate: Results and future research[J]. Theoretical and Applied Climatology, 78(1-3): 187-193. |
[9] | HE W, JU W M, SCHWALM C R, et al., 2018. Large‐scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over north America in 2011 and 2012[J]. Journal of Geophysical Research: Biogeosciences, 123(7): 2053-2071. |
[10] | KEENAN T F, RILEY W J, 2018. Greening of the land surface in the world’s cold regions consistent with recent warming[J]. Nature Climate Change, 8(9): 825-828. |
[11] | LI X Y, LI Y, CHEN A P, et al., 2019. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China[J]. Agricultural and Forest Meteorology, 269-270: 239-248. |
[12] | LIU L Y, CHEN X Z, CIAIS P, et al., 2022. Tropical tall forests are more sensitive and vulnerable to drought than short forests[J]. Global Chang Biology, 28(4): 1583-1595. |
[13] | LIU Y, DING Z, CHEN Y, et al., 2023. Restored vegetation is more resistant to extreme drought events than natural vegetation in southwest China[J]. Science of The Total Environment, 866(1): 161250. |
[14] |
PHILLIPS O L, ARAGÃO L E O C, LEWIS S L, et al., 2009. Drought sensitivity of the Amazon rainforest[J]. Science, 323(5919): 1344-1347.
DOI PMID |
[15] | QIAN X, QIU B, ZHANG Y G, 2019. Widespread Decline in vegetation photosynthesis in southeast Asia due to the prolonged drought during the 2015/2016 El Niño[J]. Remote Sensing, 11(8): 910. |
[16] | REICHSTEIN M, BAHN M, CIAIS P, et al., 2013. Climate extremes and the carbon cycle[J]. Nature, 500(7462): 287-295. |
[17] | SALESKA S R, DIDAN K, HUETE A R, et al., 2007. Amazon forests green-up during 2005 drought[J]. Science, 318(5850): 612. |
[18] | SAMANTA A, GANGULY S, HASHIMOTO H, et al., 2010. Amazon forests did not green-up during the 2005 drought[J]. Geophysical Research Letters, 37(5): 2233-2258. |
[19] | SHAO H, ZHANG Y D, YU Z, et al., 2022. The resilience of vegetation to the 2009/2010 extreme drought in Southwest China[J]. Forests, 13(6): 851. |
[20] | SHI P F, ZENG J Y, CHEN K S, et al., 2021. The 20-year spatiotemporal trends of remotely sensed soil moisture and vegetation and their response to climate change over the Third Pole[J]. Journal of Hydrometeorology, 22(11): 2877-2896. |
[21] | SPEHN E. M, JOSHI J, SCHMID B, DIEMER M, et al., 2000. Above-ground resource use increases with plant species richness in experimental grassland ecosystems[J]. Functional Ecology, 14(3): 326-337. |
[22] | VICENTE-SERRANO S M, GOUVEIA C, CAMARERO J J, et al., 2013. Response of vegetation to drought time-scales across global land biomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(1): 52-57. |
[23] | VICENTE-SERRANO S M, BEGUERÍA S, LÓPEZ-MORENO J I., 2010. A Multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index[J]. Journal of Climate, 23(7): 1696-1718. |
[24] |
WOLF S, KEENAN T F, FISHER J B, et al., 2016. Warm spring reduced carbon cycle impact of the 2012 US summer drought[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(21): 5880-5885.
DOI PMID |
[25] | XU P P, FANG W, ZHOU T, et al., 2022. Satellite evidence of canopy-height dependence of forest drought resistance in southwestern China[J]. Environmental Research Letters, 17(2): 025005. |
[26] | YU Z, WANG J X, LIU S R, et al., 2017. Global gross primary productivity and water use efficiency changes under drought stress[J]. Environmental Research Letters, 12(1): 14-16. |
[27] | YUAN W P, CAI W W, CHEN Y, et al., 2016. Severe summer heatwave and drought strongly reduced carbon uptake in Southern China[J]. Scientific Reports, 6(1): 18813. |
[28] | YUAN W P, ZHENG Y, PIAO S L, et al., 2019. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 5(8): eaax1396. |
[29] |
ZHAO M S, RUNNING S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 329(5994): 940-943.
DOI PMID |
[30] | ZHOU T, SHI P J, JIA G S, et al., 2015. Age‐dependent forest carbon sink: Estimation via inverse modeling[J]. Journal of Geophysical Research: Biogeosciences, 120(12): 2473-2492. |
[31] |
曹云, 钱永兰, 孙应龙, 等, 2020. 基于MODIS NDVI的西南森林植被时空变化特征及其气候响应分析[J]. 生态环境学报, 29(5): 857-865.
DOI |
CAO Y, QIAN Y L, SUN Y L, et al., 2020. Spatial-temporal variations of forest vegetation and climatic driving force analysis in southwest China based on MODIS NDVI and climate data[J]. Ecology and Environmental Sciences, 29(5): 857-865. | |
[32] | 姜萍, 丁文广, 肖静, 等, 2021. 新疆植被NPP及其对气候变化响应的海拔分异[J]. 干旱区地理, 44(3): 849-857. |
JIANG P, DING W G, XIAO J, et al., 2021. Altitudinal difference of vegetation NPP and its response to climate change in Xinjiang[J]. Arid Land Geograph, 44(3): 849-857. | |
[33] |
李登科, 王钊, 2022. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 31(6): 1071-1079.
DOI |
LI D K, WANG Z, 2022. Quantitative analysis of the impact of climate change and human activities on vegetation NPP in Shaanxi province[J]. Ecology and Environmental Sciences, 31(6): 1071-1079. | |
[34] | 李美丽, 尹礼昌, 张园, 等, 2021. 基于MODIS-EVI的西南地区植被覆盖时空变化及驱动因素研究[J]. 生态学报, 41(3): 1138-1147. |
LI M L, YIN L C, ZHANG Y, et al., 2021. Spatio-temporal dynamics of fractional vegetation coverage based on MODIS-EVI and its driving factors in southwest China[J]. Acta Ecologica Sinica, 41(3): 1138-1147 | |
[35] | 李雨鸿, 陶苏林, 李荣平, 等, 2021. 辽宁省净初级生产力时空演变及其对地形因子的响应[J]. 气象与环境学报, 37(5): 107-112. |
LI Y H, TAO S L, LI R P, et al., 2021. Temporal and spatial evolution of NPP and its responses to terrain factors in Liaoning province[J]. Journal of Meteorology and Environment, 37(5): 107-112. | |
[36] | 刘世梁, 田韫钰, 尹艺洁, 等, 2016. 云南省植被NDVI时间变化特征及其对干旱的响应[J]. 生态学报, 36(15): 4699-4707. |
LIU S L, TIAN Y Y, YIN Y J, et al., 2016. Temporal dynamics of vegetation NDVI and its response to drought conditions in Yunnan province[J]. Acta Ecologica Sinica, 36(15): 4699-4707. | |
[37] | 罗新兰, 李英歌, 殷红, 等, 2020. 东北地区植被NDVI对不同时间尺度SPEI的响应[J]. 生态学杂志, 39(2): 412-421. |
LUO X L, LI Y G, YIN H, et al., 2020. Response of NDVI to SPEI at different temporal scales in northeast China[J]. Chinese Journal of Ecology, 39(2): 412-421. | |
[38] |
马炳鑫, 靖娟利, 徐勇, 等, 2021. 2000-2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J]. 生态环境学报, 30(12): 2285-2293.
DOI |
MA B X, JING J L, XU Y, et al., 2021. Spatial-temporal changes of NPP and its relationship with climate change in karst areas of Yunnan, Guizhou and Guangxi from 2000 to 2019[J]. Ecology and Environmental Sciences, 30(12): 2285-2293. | |
[39] |
齐贵增, 白红英, 赵婷, 等, 2021. 秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异[J]. 地理学报, 76(1): 44-56.
DOI |
QI G Z, BAI H Y, ZHAO T, et al., 2021. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the northern and southern slopes of the Qinling Mountains in Shaanxi province[J]. Acta Geographica Sinica, 76(1): 44-56. | |
[40] | 朴世龙, 张新平, 陈安平, 等, 2019. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 49(9): 1321-1334. |
PIAO S L, ZHANG X P, CHEN A P, et al., 2019. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Science China Earth Sciences, 49(9): 1321-1334. | |
[41] | 史晓亮, 吴梦月, 丁皓, 2020. SPEI和植被遥感信息监测西南地区干旱差异分析[J]. 农业机械学报, 51(12): 184-192. |
SHI X L, WU M Y, DING H, 2020. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in southwest China[J]. Transactions of the Chinese Society for Agricultural Machinery, 51(12): 184-192. | |
[42] | 王兆礼, 黄泽勤, 李军, 等, 2016. 基于SPEI和NDVI的中国流域尺度气象干旱及植被分布时空演变[J]. 农业工程学报, 32(14): 177-186. |
WANG Z L, HUANG Z Q, LI J, et al., 2016. Assessing impacts of meteorological drought on vegetation at catchment scale in China based on SPEI and NDVI[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(14): 177-186. | |
[43] |
翁升恒, 张玉琴, 姜冬昕, 等, 2023. 福建省森林植被NEP时空变化及影响因子分析[J]. 生态环境学报, 32(5): 845-856.
DOI |
WENG S H, ZHANG Y Q, JIANG D X, et al., 2023. Spatio-temporal changes and attribution analysis of net ecosystem productivity in forest ecosystem in Fujian province[J]. Ecology and Environmental Sciences, 32(5): 845-856. | |
[44] |
叶清, 杨晓光, 解文娟, 等, 2013. 气候变暖背景下中国南方水稻生长季可利用率变化趋势[J]. 中国农业科学, 46(21): 4399-4415.
DOI |
YE Q, YANG X G, XIE W J, et al., 2013. Tendency of use efficiency of rice growth season in southern China under the background of global warming[J]. Scientia Agricultura Sinica, 46(21): 4399-4415. | |
[45] | 杨歆雨, 张容焱, 潘航, 等, 2022. 福建省多维度气象干旱特征时空分布分析[J]. 气象, 48(12): 1565-1576. |
YANG X Y, ZHANG R Y, PAN H, et al., 2022. Spatio-Temporal distribution analysis of multi-dimensional meteorological drought characteristics in Fujian province[J]. Meteorological Monthly, 48(12): 1565-1576. | |
[46] |
于泉洲, 梁春玲, 刘煜杰, 等, 2015. 基于MODIS的山东省植被覆盖时空变化及其原因分析[J]. 生态环境学报, 24(11): 1799-1807.
DOI |
YU Q Z, LIANG C L, LIU Y J, et al., 2015. Analysis of vegetation spatio-temporal variation and driving factors in Shandong province based on MODIS[J]. Ecology and Environmental Sciences, 24(11): 1799-1807. | |
[47] | 余弘泳, 余会康, 2018. 基于MODIS产品的福建省植被NPP变化分析[J]. 亚热带资源与环境学报, 13(3): 82-87. |
YU H Y, YU H K, 2018. Analysis of vegetation ecological variation in Fujian province based on MODIS data[J]. Journal of Subtropical Resources and Environment, 13(3): 82-87. | |
[48] |
张继平, 刘春兰, 郝海广, 等, 2015. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 24(1): 8-13.
DOI |
ZHANG J P, LIU C L, HAO H G, et al., 2015. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data[J]. Ecology and Environmental Sciences, 24(1): 8-13. | |
[49] |
张艳可, 王金亮, 农兰萍, 等, 2021. 基于MODIS时序数据北回归线 (云南段) 地区植被物候时空变化及其对气候响应分析[J]. 生态环境学报, 30(2): 274-287.
DOI |
ZHANG Y K, WANG J L, NONG L P, et al., 2021. Spatio-temporal variation of vegetation phenology and its response to climate in the tropic of cancer (Yunnan section) based on MODIS time-series data[J]. Ecology and Environmental Sciences, 30(2): 274-287. |
[1] | 何沐全, 石艳军, 王晨茜, 罗祖红, 张少通. 广东省植被生态质量演变与气象条件贡献分析[J]. 生态环境学报, 2024, 33(5): 679-688. |
[2] | 张杨, 徐永明, 卢响军, 莫亚萍, 吉蒙, 祝善友. 基于OCO-2遥感数据的新疆维吾尔自治区大气XCO2空间化研究[J]. 生态环境学报, 2024, 33(2): 231-241. |
[3] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[4] | 吴雅睿, 王美景, 王涛, 杨梅焕. 新冠疫情下NO2时空变化特征——以陕西省为例[J]. 生态环境学报, 2023, 32(3): 514-524. |
[5] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[6] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[7] | 孙正, 曹亚非, 王德彩, 刘峰, 宋效东, 张甘霖, 吴华勇. 近30年京津冀电镀场地时空演变特征及趋势预测[J]. 生态环境学报, 2023, 32(1): 183-194. |
[8] | 贺斌, 胡茂川. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 2022, 31(4): 771-776. |
[9] | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158-1167. |
[10] | 王薇, 程歆玥, 胡春, 夏斯涵, 王甜. 城市街道峡谷PM2.5时空分布特征与空气质量评价——以合肥市长淮街道为例[J]. 生态环境学报, 2021, 30(11): 2157-2164. |
[11] | 郑诗禹, 张绿水, 郭晓敏, 黄子峻, 肖以华. 不同森林郁闭度环境内空气负氧离子的时空变化及环境影响要素研究——以广州帽峰山为例[J]. 生态环境学报, 2021, 30(11): 2204-2212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||