生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 935-945.DOI: 10.16258/j.cnki.1674-5906.2024.06.011
潘家响1,2,3(), 朱明飞1,2,3, 秦念慈1,2,3, 肖晶1,2,3, 刘晨1,2,3, 李秋华1,2,3,*(
)
收稿日期:
2024-01-23
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 李秋华。E-mail: qiuhua2002@126.com作者简介:
潘家响(1999年生),女(水族),硕士研究生,研究方向为水域生态学。E-mail: 3276438092@qq.com
基金资助:
PAN Jiaxiang1,2,3(), ZHU Mingfei1,2,3, QIN Nianci1,2,3, XIAO Jing1,2,3, LIU Chen1,2,3, LI Qiuhua1,2,3,*(
)
Received:
2024-01-23
Online:
2024-06-18
Published:
2024-07-30
摘要:
为了解浮游植物功能群对贵州高原水环境的指示作用和水生态现状,以贵阳市车田河为例,于2020、2021、2022年的3月(枯水期)和8月(丰水期)对浮游植物和水质环境展开调查。利用功能群的概念对车田河浮游植物进行划分,探究浮游植物功能群时空演替特征,运用冗余分析方法(Redundancy analysis,RDA)识别不同水文期下的主要环境驱动因子,揭示浮游植物功能群与其适应生境之间的相互关系;采用Shannon-Wiener多样性指数和Qr指数对水质环境进行评价。结果表明,1)车田河共鉴定出7门70种,浮游植物群落结构总体呈绿藻-硅藻-蓝藻型,占比分别为42.9%、27.1%、18.6%,浮游植物丰度变化范围为1.86×104—1.28×107 cells∙L−1,均值为1.76×106 cells∙L−1,生物量变化范围为0.09—336.3 mg∙L−1,均值为28.9 mg∙L−1;浮游植物优势种主要为小环藻(Cyclotella sp.)、湖泊假鱼腥藻(Pseudanabaena limnetica)和隐藻(Crytomonas sp.)等。2)浮游植物共可归类为23个功能群,其中共同优势功能群为B、S1、Y类型,功能群的组成存在显著时空差异,演替序列表现为枯水期B/S1→丰水期LM/B/H1,水库断面LM→溪流断面MP/Y,反映出生境多变、生产力旺盛的水环境特征。其中,WT、TN和CODMn是影响浮游植物功能群时空分布格局的主要环境变量。3)浮游植物功能群适宜生境指示车田河为中到富营养状态,香农指数(H)枯水期为1.4、丰水期为1.7,属于α-中污型,生态状态指数枯水期为3.1、丰水期为2.9,指示环境为“好—中等”。相对于多样性指数,基于功能群分类的Qr指数质量评价方法更适用于贵州高原车田河水体,研究结果可为贵州高原河流水生态环境保护提供科学依据。
中图分类号:
潘家响, 朱明飞, 秦念慈, 肖晶, 刘晨, 李秋华. 贵州高原车田河浮游植物功能群时空特征及水环境质量评价[J]. 生态环境学报, 2024, 33(6): 935-945.
PAN Jiaxiang, ZHU Mingfei, QIN Nianci, XIAO Jing, LIU Chen, LI Qiuhua. Spatiotemporal Characteristics of Phytoplankton Functional Groups and Water Environment Quality Evaluation of Chetian River in Guizhou Plateau[J]. Ecology and Environment, 2024, 33(6): 935-945.
门类 | 优势种 | 优势度 | |
---|---|---|---|
枯水期 | 丰水期 | ||
蓝藻门 | 湖泊假鱼腥藻 Pseudanabaena limnetica | ++ | +++ |
卷曲鱼腥藻 Anabaena cricinalis | ‒ | + | |
绿藻门 | 四尾栅藻 Scenedesmu squadricauda | + | ‒ |
硅藻门 | 小环藻 Cyclotella sp. | +++ | +++ |
尖针杆藻 Synedra acus | + | + | |
甲藻门 | 飞燕角甲藻 Ceratium hirundinell | ‒ | ++ |
隐藻门 | 隐藻 Crytomonas sp. | ++ | + |
表1 车田河不同季节浮游植物优势种
Table 1 Dominant phytoplankton species in different seasons in Chetian River
门类 | 优势种 | 优势度 | |
---|---|---|---|
枯水期 | 丰水期 | ||
蓝藻门 | 湖泊假鱼腥藻 Pseudanabaena limnetica | ++ | +++ |
卷曲鱼腥藻 Anabaena cricinalis | ‒ | + | |
绿藻门 | 四尾栅藻 Scenedesmu squadricauda | + | ‒ |
硅藻门 | 小环藻 Cyclotella sp. | +++ | +++ |
尖针杆藻 Synedra acus | + | + | |
甲藻门 | 飞燕角甲藻 Ceratium hirundinell | ‒ | ++ |
隐藻门 | 隐藻 Crytomonas sp. | ++ | + |
功能群 | 代表藻种属 | 环境特征 |
---|---|---|
B | 小环藻 (Cyclotella sp.)+* | 中富营养、中小型浅水水体 |
D | 针杆藻 (Synedra sp.)+*、菱形藻 (Nitzschia sp.)+* | 含有富营养盐、透明度低 |
E | 锥囊藻(Dinobryon sp.)+* | 贫营养、混合、浅水 |
F | 蹄形藻 (Kirchneriella sp.)*、月牙藻 (Selenastrum bibraianum)+* | 中到富营养、洁净、水体混合强 |
G | 空球藻 (Eudorina elegans)+*、实球藻 (Pandorina morum)+ | 富营养、停滞水体 |
H1 | 卷曲鱼腥藻 (Anabaena circinalis)+ | 富营养、含氮低、浅水 |
J | 二尾栅藻 (Scenedesmusbicaudatus sp.)+*、四尾栅藻 (Scenedesmu squadricauda)+*、二形栅藻 (Scenedesmus dimorphus)+*、双对栅藻 (Scenedesmus bijuga)*、单角盘星藻 (Pediastrum simplex)+*、二角盘星藻 (Pediastrum duplex)*、直角十字藻 (Crucigenia rectangularis)*、小空星藻 (Coelastrum astroideum)*、四角藻 (Tetraedron sp.)*、三角四角藻 (Tetaedon trigonum)+ | 中到富营养、分层 |
L0 | 平裂藻 (Merismopedia sp.)* | 中到富营养、中到大型水体 |
LM | 纤维藻 (Ankistrodesmus sp.)+*、多甲藻 (Peridinium sp.)+*、飞燕角甲藻 (Ceratium hirundinell)+* | 富到超富营养、中小型水体 |
MP | 舟形藻 (Navicula sp.)+*、曲壳藻 (Achnanthes sp.)+*、桥弯藻 (Cymbella Ag sp.)*、菱形藻 (Nitzschia sp.)+*、异极藻 (Gomphonema sp.)+ | 经常性搅动、浅水、浑浊水体 |
N | 光滑鼓藻 (Cosmarium leave)+、角星鼓藻 (Staurastrum sp.)+ | 持续或半持续混合水体 |
P | 新月藻 (Closterium sp.)*、颗粒直链藻 (Melosira granulata)+*、脆杆藻 (Fragilaria sp.)+* | 持续或半持续的混合水层 |
S1 | 湖泊假鱼腥藻 (Pseudanabaena limnetica)+*、湖丝藻 (Limnothrix sp.)*、束丝藻 (Aphanizomenon sp.)*、 棒胶藻(Rhabdogloea sp.)+* | 混合浑浊、透明度低的水体 |
Sn | 拟柱孢藻 (Cylindrospermopsis raciborskii)*、尖头藻 (Merismopedia sinica)+* | 温度适宜、混合 |
T | 转板藻 (Mougeotia sp.)+* | 混合均匀的深水水体变温层 |
TC | 颤藻 (Oscillatoria sp.)+* | 富营养、静水 |
W1 | 尖尾裸藻 (Euglena gasterosteus)+*、扁裸藻 (Phacus sp.)+* | 有机污染、浅水 |
W2 | 囊裸藻 (Trachelomonas sp.)+* | 中营养、浅水 |
X1 | 小球藻 (Chlorella vulgaris)+ | 超富营养、浅水 |
X2 | 衣藻 (Chlamydomonas sp.)* | 中到富营养、浅水 |
X3 | 弓形藻 (Schroederia setigera)* | 贫营养、浅水、混合水体 |
Y | 隐藻 (Crytomonas sp.)+* | 静水环境、中到富营养 |
Z | 集星藻 (Actinastrum sp.)+* | 清澈的混合层 |
表2 车田河浮游植物功能群代表性藻种
Table 2 Representative algae species of phytoplankton functional group in Chetian River
功能群 | 代表藻种属 | 环境特征 |
---|---|---|
B | 小环藻 (Cyclotella sp.)+* | 中富营养、中小型浅水水体 |
D | 针杆藻 (Synedra sp.)+*、菱形藻 (Nitzschia sp.)+* | 含有富营养盐、透明度低 |
E | 锥囊藻(Dinobryon sp.)+* | 贫营养、混合、浅水 |
F | 蹄形藻 (Kirchneriella sp.)*、月牙藻 (Selenastrum bibraianum)+* | 中到富营养、洁净、水体混合强 |
G | 空球藻 (Eudorina elegans)+*、实球藻 (Pandorina morum)+ | 富营养、停滞水体 |
H1 | 卷曲鱼腥藻 (Anabaena circinalis)+ | 富营养、含氮低、浅水 |
J | 二尾栅藻 (Scenedesmusbicaudatus sp.)+*、四尾栅藻 (Scenedesmu squadricauda)+*、二形栅藻 (Scenedesmus dimorphus)+*、双对栅藻 (Scenedesmus bijuga)*、单角盘星藻 (Pediastrum simplex)+*、二角盘星藻 (Pediastrum duplex)*、直角十字藻 (Crucigenia rectangularis)*、小空星藻 (Coelastrum astroideum)*、四角藻 (Tetraedron sp.)*、三角四角藻 (Tetaedon trigonum)+ | 中到富营养、分层 |
L0 | 平裂藻 (Merismopedia sp.)* | 中到富营养、中到大型水体 |
LM | 纤维藻 (Ankistrodesmus sp.)+*、多甲藻 (Peridinium sp.)+*、飞燕角甲藻 (Ceratium hirundinell)+* | 富到超富营养、中小型水体 |
MP | 舟形藻 (Navicula sp.)+*、曲壳藻 (Achnanthes sp.)+*、桥弯藻 (Cymbella Ag sp.)*、菱形藻 (Nitzschia sp.)+*、异极藻 (Gomphonema sp.)+ | 经常性搅动、浅水、浑浊水体 |
N | 光滑鼓藻 (Cosmarium leave)+、角星鼓藻 (Staurastrum sp.)+ | 持续或半持续混合水体 |
P | 新月藻 (Closterium sp.)*、颗粒直链藻 (Melosira granulata)+*、脆杆藻 (Fragilaria sp.)+* | 持续或半持续的混合水层 |
S1 | 湖泊假鱼腥藻 (Pseudanabaena limnetica)+*、湖丝藻 (Limnothrix sp.)*、束丝藻 (Aphanizomenon sp.)*、 棒胶藻(Rhabdogloea sp.)+* | 混合浑浊、透明度低的水体 |
Sn | 拟柱孢藻 (Cylindrospermopsis raciborskii)*、尖头藻 (Merismopedia sinica)+* | 温度适宜、混合 |
T | 转板藻 (Mougeotia sp.)+* | 混合均匀的深水水体变温层 |
TC | 颤藻 (Oscillatoria sp.)+* | 富营养、静水 |
W1 | 尖尾裸藻 (Euglena gasterosteus)+*、扁裸藻 (Phacus sp.)+* | 有机污染、浅水 |
W2 | 囊裸藻 (Trachelomonas sp.)+* | 中营养、浅水 |
X1 | 小球藻 (Chlorella vulgaris)+ | 超富营养、浅水 |
X2 | 衣藻 (Chlamydomonas sp.)* | 中到富营养、浅水 |
X3 | 弓形藻 (Schroederia setigera)* | 贫营养、浅水、混合水体 |
Y | 隐藻 (Crytomonas sp.)+* | 静水环境、中到富营养 |
Z | 集星藻 (Actinastrum sp.)+* | 清澈的混合层 |
[1] | ABIRHIRE O, NORTH R L, HUNTER K, et al., 2015. Environmental factors influencing phytoplankton communities in Lake Diefenbaker, Saskatchewan, Canada[J]. Journal of Great Lakes Research, 41(2): 118-128. |
[2] | BARONE R, NASELLI-FLORES L, 2003. Distribution and seasonal dynamics of Cryptomonads in Sicilian water bodies[J]. Hydrobiologia, 502(1-3): 325-329. |
[3] |
BECKER V, CAPUTO L, ORDBONEZ J, et al., 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean Reservoir[J]. Water Research, 44(11): 3345-3354.
DOI PMID |
[4] | CHEN Y C, YU X, ZHU D J, et al., 2014. Possible influencing factors on phytoplankton growth and decay in rivers: Review and perspective[J]. Journal of Hydraulics Engineering, 33(4): 186-195. |
[5] | HAQUE M A, JEWEL M A S, AKHI M M, et al., 2021. Seasonal dynamics of phytoplankton community and functional groups in a tropical river[J]. Environmental Monitoring Assessment, 193(11): 704-704. |
[6] | KAMENIR Y, DUBINSKY Z, ZOHARY T, 2004. Phytoplankton size structure stability in a meso-eutrophic subtropical lake[J]. Hydrobiologia, 520(1-3): 89-104. |
[7] | NASELLI-FLORES L, BARONE R, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state[J]. Hydrobiologia, 438(1-3): 65-74. |
[8] | PADIAK J, BORICS G, GRIGORSZKY I, et al., 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index[J]. Hydrobiologia, 553(1): 1-14. |
[9] | PADISÁK J, COSSETTI L O, NASELLI-FLORES L, et al., 2009. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates[J]. Hydrobiologia, 621(1): 1-19. |
[10] | REYNOLDS C S, HUSZAR V, KRUK C, et al., 2002. Towards a functional classification of the freshwater phytoplankton[J]. Journal of Plankton Research, 24(5): 417-428. |
[11] |
RICHTER J, FETTIG I, PHILIPP R, et al., 2016. Determination of tributyltin in whole water matrices under the European Water Framework Directive[J]. Journal of Chromatography A, 1459: 112-119.
DOI PMID |
[12] | SEIP K. L., REYNOLDS C S, 1995. Phytoplankton functional attributes along trophic gradient and season[J]. Limnology and Oceanography, 40(3): 589-597. |
[13] | SPELLERBERG I F, FEDOR P J, 2003. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the ‘shannon-wiener’ Index[J]. Global Ecology and Biogeography, 12(3): 177-179. |
[14] | WANG H, ZHAO D D, CHEN L, et al., 2020. Light, but not nutrients, nrives seasona congruence of taxonomic and functional diversity of phytoplankton in a eutrophic highland Lake in China[J]. Frontiers in Plant Science, 11(179): 1664-1462. |
[15] | XU H, PAERL H W, QIN B, et al., 2015. Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic lake Taihu, China[J]. Environmental Science Technology, 49(2): 1051-1059. |
[16] | XU Y Y, CAI Q H, YE L, et al., 2011. Asynchrony of spring phytoplankton response to temperature driver within a spatial heterogeneity bay of Three-Gorges Reservoir, China[J]. Limnologica, 41(3): 174-180. |
[17] | YAN G H, YIN X Y, HUANG M S, et al., 2023. Dynamics of phytoplankton functional groups in river-connected lakes and the major influencing factors: A case study of Dongting Lake, China[J]. Ecological Indicators, 149: 110177. |
[18] | ZHU G W, JIN Y W, REN J, et al., 2016. Characteristics of diatom blooms in a reservoir-water supply area and the countermeasures in Taihu Basin, China[J]. Journal of Lake Sciences, 28(1): 9-21. |
[19] | 蔡琨, 陆维青, 牛志春, 等, 2018. 洮滆水系湖泊春季浮游植物群落结构和水质生物学评价[J]. 环境监测管理与技术, 30(3): 37-41. |
CAI K, LU W Q, NIU Z C, et al., 2018. Phytoplankton community structure and biological assessment inlakes of Taoge River System in Spring[J]. The Administration and Technique of Environmental Monitoring, 30(3): 37-41. | |
[20] | 陈椽, 龙胜兴, 晏妮, 等, 2011. 贵阳市 “两湖一库” 浮游生物多样性及常见种图谱[M]. 贵阳: 贵州科技出版社. |
CHEN C, LONG S X, YAN N, et al., 2011. Atlas of planktonic biodiversity and common species of “two lakes and one reservoir” in Guiyang City[M]. Guiyang: Guizhou Science and Technology Press. | |
[21] |
程兵芬, 夏瑞, 张远, 等, 2021. 基于拐点分析的汉江水华暴发突变与归因研究[J]. 生态环境学报, 30(4): 787-797.
DOI |
CHENG B F, XIA R, ZHANG Y, et al., 2021. The evolution and mutation attribution of water bloom in Hanjiang River based on mutation test method[J]. Journal of Ecology and Environmental Sciences, 30(4): 787-797. | |
[22] |
邓乐, 戚菁, 宋勇军, 等, 2019. 程海湖夏季浮游植物功能群特征及其影响因子研究[J]. 生态环境学报, 28(11): 2281-2288.
DOI |
DENG L, QI J, SONG Y J, et al., 2019. Characteristics of phytoplankton functional groups and their influencing factors in Chenghai Lake in summer[J]. Journal of Ecology and Environmental Sciences, 28(11): 2281-2288. | |
[23] | 董静, 李艳晖, 李根保, 等, 2013. 东江水系浮游植物功能群季节动态特征及影响因子[J]. 水生生物学报, 37(5): 836-843. |
DONG J, LI Y H, LI G B, et al., 2013. Seasonal dynamic characteristics and influencing factors of phytoplankton functional groups in the Dongjiang River system[J]. Acta Hydrobiologica Sinica, 37(5): 836-843. | |
[24] | 韩丽彬, 王星, 李秋华, 等, 2022. 贵州高原百花水库浮游植物功能群的动态变化及驱动因子[J]. 湖泊科学, 34(4): 1102-1114. |
HAN L B, WANG X, LI Q H, et al., 2022. Dynamic changes and driving factors of phytoplankton functional groups in Baihua Reservoir on the Guizhou Plateau[J]. Journal of Lake Science, 34(4): 1102-1114. | |
[25] | 何利聪, 王东伟, 周彦锋, 等, 2024. 怀洪新河蓄水性河段浮游植物功能群演替及水生态评价[J/OL]. 生态与农村环境学报: 1-18 [2024-05-13]. https://doi.org/10.19741/j.issn.1673-4831.2023.0562. |
HE L C, WANG D W, ZHOU Y F, et al., 2024. Functional groups succession and aquatic ecological evaluation of phytoplankton in the aqueductary seaction of Huaihong River[J/OL]. Journal of Ecology and Rural Environment: 1-18 [2024-06-13]. https://doi.org/10.19741/ j.issn.1673-4831.2023.0562. | |
[26] | 胡鸿钧, 魏印心, 2006. 中国淡水藻类——系统、分类及生态[M]. 北京: 科学出版社. |
HU H J, WEI Y X, 2006. The freshwater algae of China: System, taxonomy and ecology[M]. Beijing: Science Press. | |
[27] | 胡韧, 蓝于倩, 肖利娟, 等, 2015. 淡水浮游植物功能群的概念、划分方法和应用[J]. 湖泊科学, 27(1): 11-23. |
HU R, LAN Y Q, XIAO L Y, et al., 2015. The concepts, classification and application of freshwater phytoplankton functional groups[J]. Journal of Lake Science, 27(1): 11-23. | |
[28] | 黄国佳, 李秋华, 陈椽, 等, 2015. 贵州高原红枫湖水库浮游植物功能分组及其时空分布特征[J]. 生态学报, 35(17): 5573-5584. |
HUANG G J, LI Q H, CHEN C, et al., 2015. Phytoplankton functional groups and their spatial and temporal distribution characteristics in Hongfeng Reservoir, Guizhou Province[J]. Acta Ecologica Sinica, 35(17): 5573-5584. | |
[29] | 贾鹏, 范亚文, 陆欣鑫, 2021. 基于功能类群分析呼兰河口湿地浮游植物群落结构特征[J]. 生态学报, 41(3): 1042-1054. |
JIA P, FAN Y W, LU X X, 2021. Based on functional taxona, the phytoplankton community structure characteristics of Hulan estuary wetland were analyzed[J]. Acta Ecologica Sinica, 41(3): 1042-1054. | |
[30] | 江源, 彭秋志, 廖剑宇, 等, 2013. 浮游藻类与河流生境关系研究进展与展望[J]. 资源科学, 35(3): 461-472. |
JIANG Y, PENG Q Z, LIAO J Y, et al., 2013. Advances and prospects for research into phytoplankton and River Habitats[J]. Resources Science, 35(3): 461-472. | |
[31] |
蓝于倩, 袁一文, 彭亮, 等, 2015. 江谷水库鱼类网箱养殖富营养化及浮游植物功能群的指示作用[J]. 生态环境学报, 24(6): 1028-1036.
DOI |
LAN Y Q, YUAN Y W, PENG L, et al., 2015. Cage cultural eutrophication and phytoplankton functional groups as bio-indicators in Jianggu Reservoir (Zhaoqing City, Guangdong Province)[J]. Journal of Ecology and Environmental Sciences, 24(6): 1028-1036. | |
[32] | 李秋华, 高永春, 2017. 贵州省重要饮用水源地水库常见淡水藻类图集[M]. 北京: 科学出版社. |
LI Q H, GAO Y C, 2017. Atlas of common freshwater algae in reservoirs of important drinking water sources in Guizhou Province[M]. Beijing: Science Press. | |
[33] | 李秋华, 韩丽彬, 马一明, 等, 2021. 贵州高原红枫水库蓝藻组成特征与环境因子之间的关系[J]. 贵州师范大学学报 (自然科学版), 39(6): 1-7. |
LI Q H, HAN L B, MA Y M, et al., 2021. The relationship between and Cyanobacteria composition charac- teristics environmental factors in Hongfeng Reservoir of Guizhou plateau[J]. Journal of Guizhou Normal University (Natural Sciences), 39(6): 1-7. | |
[34] | 李秋华, 马一明, 2022. 桐梓河浮游植物优势种生态位与种间联结性分析[J]. 贵州师范大学学报(自然科学版), 40(2): 11-18. |
LI Q H, MA Y M, 2022. Analysis on niche and interspecific association of dominant species of phytoplankton in Tongzi River[J]. Journal of Guizhou Normal University (Natural Sciences), 40(2): 11-18. | |
[35] | 刘凯, 段金荣, 徐东坡, 等, 2016. 怀洪新河太湖新银鱼国家级水产种质资源保护区生境及渔业群落多样性研究[J]. 长江流域资源与环境, 25(3): 395-403. |
LIU K, DUAN J R, XU D P, et al., 2016. Habitat characters and fishery community in salangichthys tangkahkeii national aquatic germplasm reserve in Huaihong New River[J]. Resources and Environment in the Yangtze Basin, 25(3): 395-403. | |
[36] | 刘洋, 吕俊平, 刘琪, 等, 2018. 太原汾河蓄水区浮游植物细胞密度及其与营养元素的关系[J]. 生态学报, 38(3): 991-1002. |
LIU Y, LÜ J P, LIU Q, et al., 2018. Phytoplankton cell density and its relationship with nutrients in the Fenhe impoundment area of Taiyuan Province[J]. Acta Ecologica Sinica, 38(3): 991-1002. | |
[37] | 刘英龙, 李秋华, 刘晨, 等, 2023. 贵州高原猫跳河流域浮游植物功能群组成特征及其与环境因子之间的关系[J]. 生态学杂志, 42(4): 880-888. |
LIU Y L, LI Q H, LIU C, et al., 2023. Composition characteristics of phytoplankton functional groups and its relationship with environmental factors in Maotiao River Basin of Guizhou Plateau[J]. Chinese Journal of Ecology, 42(4): 880-888.
DOI |
|
[38] | 娄恬, 陆欣鑫, 刘妍, 等, 2023. 拉林河浮游植物三种功能群分布特征及其与环境因子的关系[J]. 海洋与湖沼, 54(4): 1085-1100. |
LOU T, LU X X, LIU Y, et al., 2023. Distribution characteristics of three functional groups of phytoplankton in Lalin River and their relationship with environmental factors[J]. Oceanologia Et Limnologia Sinica, 54(4): 1085-1100. | |
[39] | 娄巍立, 2019. 淮河安徽段水产种质资源保护区渔业生物资源现状及保护策略[D]. 南京: 南京农业大学. |
LOU W L, 2019. Present situation and conservation strategy of fishery biological resources in aquatic germplasm reserve of Anhui Section Huaihe River[D]. Nanjing: Nanjing Agricultural University. | |
[40] | 马芊芊, 2015. 以浮游生物完整性指数评价长江上游干流宜宾至江津段河流健康度[D]. 重庆: 西南大学. |
MA Q Q, 2015. The plankton integrity index was used to evaluate the river health of the Yibin to Jiangjin section of the upper Yangtze River[D]. Chongqing: Southwest University. | |
[41] | 申恒伦, 徐贺, 张鑫儒, 等, 2024. 泉水型城市湖泊浮游植物功能群特征及其生态健康评价——以济南大明湖为例[J/OL]. 湖泊科学: 1-12[2024-06-03]. http://kns.cnki.net/kcms/detail/32.1331.p.20240312.1534.004.html. |
SHEN H L, XU H, ZHANG X R, et al., 2024. Characteristics of phytoplankton functional groups and ecological health assessment in spring type urban lakes: A case study in Lake Daming, Ji’nan City[J/OL]. Journal of Lake Sciences: 1-12[2024-06-03]. http://kns.cnki.net/kcms/detail/32.1331.p.20240312.1534.004.html. | |
[42] | 苏新然, 于潘, 尤庆敏, 等, 2023. 三峡库区浮游植物群落结构特征及水生态评价[J]. 湖泊科学, 35(2): 493-506. |
SU X R, YU P, YOU Q M, et al., 2023. Phytoplankton community structure and water ecological assessment in the Three Gorges Reservoir[J]. Journal of Lake Sciences, 35(2): 493-506. | |
[43] | 唐汇娟, 刘培钦, 伍洁丽, 等, 2022. 广西洪潮江水库浮游植物功能类群及其对环境因子响应[J]. 水生态学杂志, 43(6): 85-91. |
TANG H J, LIU P Q, WU J L, et al., 2022. Phytoplankton functional groups and their response to water physiochemical factors in Hongchaojiang Reservoir in Guangxi[J]. Journal of Hydroecology, 43(6): 85-91. | |
[44] | 王东伟, 陈永进, 周彦锋, 等, 2023. 淮河中游种质资源保护区浮游植物功能群演替特征及其驱动因子[J]. 生态学杂志, 42(11): 2646-2654. |
WANG D W, CHEN Y J, ZHOU Y F, et al., 2023. Succession characteristics and driving factors of phytoplankton functional groups in the germplasm resources reserve of middle reaches of Huaihe River[J]. Chinese Journal of Ecology, 42(11): 2646-2654.
DOI |
|
[45] | 王徐林, 张民, 殷进, 2018. 巢湖浮游藻类功能群的组成特性及其影响因素[J]. 湖泊科学, 30(2): 431-440. |
WANG X L, ZHANG M, YIN J, 2018. Composition and influential factors of phytoplankton function groups in Lake Chaohu[J]. Journal of Lake Science, 30(2): 431-440. | |
[46] | 吴波, 2006. 上海苏州河、黄浦江浮游植物群落结构及其对环境指示作用的研究[D]. 上海: 上海师范大学. |
WU B, 2006. Study on phytoplankton community structure and its role in environmental indicators in Suzhou Creek and Huangpu River in Shanghai[D]. Shanghai: Shanghai Normal University. | |
[47] | 夏莹霏, 胡晓东, 徐季雄, 等, 2019. 太湖浮游植物功能群季节演替特征及水质评价[J]. 湖泊科学, 31(1): 134-146. |
XIA Y F, HU X D, XU J X, et al., 2019. Seasonal succession of phytoplankton functional group and assessment of water quality in Lake Taihu[J]. Journal of Lake Science, 31(1): 134-146. | |
[48] | 杨萌卓, 夏继红, 蔡旺炜, 等, 2022. 饮水型水库浮游植物功能群分布特征及环境驱动因子[J]. 水生态学杂志, 43(2): 37-44. |
YANG M Z, XIA J H, CAI W W, et al., 2022. Distribution of phytoplankton functional groups in a Drinking Water Reservoir and analysis of environmental driving Factors[J]. Chinese Journal of Ecology, 43(2): 37-44. | |
[49] | 张辉, 彭宇琼, 邹贤妮, 等, 2022. 新丰江水库浮游植物功能分组特征及其与环境因子的关系[J]. 中国环境科学, 42(1): 380-392. |
ZHANG H, PENG Y Q, ZOU X N, et al., 2022. Functional grouping characteristics of phytoplankton in Xinfengjiang Reservoir and its relationship with environmental factors[J]. China Environmental Science, 42(1): 380-392. | |
[50] | 张萍, 国超旋, 俞洁, 等, 2022. 钱塘江干流夏季浮游植物群落结构特征及其对水文气象的响应[J]. 湖泊科学, 34(2): 418-432. |
ZHANG P, GUO C X, YU J, et al., 2022. Phytoplankton community structure characteristics and its response to hydrometeorology in summer in the main stream of the Qiantang River[J]. Journal of Lake Science, 34(2): 418-432. | |
[51] | 张萍, 王炜, 朱梦圆, 等, 2024. 富春江水库浮游植物功能群变化的成因[J]. 环境科学, 45(1): 181-193. |
ZHANG P, WANG W, ZHU M Y, et al., 2024. Factors influencing the variation of phytoplankton functional groups in Fuchunjiang Reservoir[J]. Environmental Science, 45(1): 181-193. | |
[52] | 张艳会, 李伟峰, 陈求稳, 2016. 太湖水华程度及其生态环境因子的时空分布特征[J]. 生态学报, 36(14): 4337-4345. |
ZHANG Y H, LI W F, CHEN Q W, 2016. Temporal and spatial distribution characteristics of bloom degree and eco-environmental factors in Taihu Lake[J]. Acta Ecologica Sinica, 36(14): 4337-4345. | |
[53] |
张怡, 胡韧, 肖利娟, 等, 2012. 南亚热带两座不同水文动态的水库浮游植物的功能类群演替比较[J]. 生态环境学报, 21(1): 107-117.
DOI |
ZHANG Y, HU R, XIAO L J, et al., Comparative analysis of succession of the phytoplankton functional groups in two reservoirs with different hydrodynamics in Southern China[J]. Ecology and Environment Sciences, 21(1): 107-117. | |
[54] | 章宗涉, 黄祥飞, 1995. 淡水浮游生物研究方法[M]. 北京: 科学出版社: 18-356. |
ZHANG Z S, HUANG X F, 1995. Freshwater plankton research methods[M]. Beijing: Science Press: 18-356. | |
[55] | 赵耿楠, 2020. 渭河干流及其秦岭北麓典型支流浮游藻类和固着藻类群落结构特征与环境分析[D]. 西安: 西安理工大学. |
ZHAO G N, 2020. Community structure characteristics and environmental analysis of phytoplankton and periphyton in the sediment-laden weihe river and its tributaries from the northern foot of the Qinling Mountains[D]. Xi’an: Xi’an University of Technology. | |
[56] | 赵耿楠, 潘保柱, 丁一桐, 等, 2021. 渭河干流和秦岭北麓典型支流浮游植物功能群特征及水质评价[J]. 生态学报, 41(8): 3226-3237. |
ZHAO G N, PAN B Z, DING Y T, et al., 2021. Characteristics and water quality evaluation of phytoplankton functional groups in the Weihe River mainstem and its tributaries in the northern foot of the Qinling Mountains[J]. Acta Ecologica Sinica, 41(8): 3226-3237. | |
[57] |
赵奇, 毛文, 2020. 雁鸣湖湿地浮游植物结构及其对水质特征的响应[J]. 生态环境学报, 29(8): 1654-1661.
DOI |
ZHAO Q, MAO W, 2020. The distribution of phytoplankton in Yanming Lake wetland and its response to water quality characteristics[J]. Journal of Ecology and Environmental Sciences, 29(8): 1654-1661. | |
[58] | 周彦锋, 宋江腾, 刘凯, 等, 2017. 怀洪新河浮游植物群落结构与水环境因子的关系研究[J]. 生态科学, 36(1): 35-42. |
ZHOU Y F, SONG J T, LIU K, et al., 2017. Study on the relation between phytoplankton community structure and aquatic environment factors in Huaihong River[J]. Ecological Science, 36(1): 35-42. | |
[59] | 朱广伟, 金颖薇, 任杰, 等, 2016. 太湖流域水库型水源地硅藻水华发生特征及对策分析[J]. 湖泊科学, 28(1): 9-21. |
ZHU G W, JIN Y W, REN J, et al., 2016. Analysis of diatom bloom occurrence characteristics and countermeasures in reservoir-type water sources in Taihu Lake Basin[J]. Journal of Lake Science, 28(1): 9-21. |
[1] | 刘泽碧, 毛旭锋, 吴艺, 宋秀华, 于红妍, 金鑫, 杜凯, 谢顺邦. 海湖湿地水体蓝藻水华期浮游生物群落特征及其影响因素[J]. 生态环境学报, 2024, 33(6): 946-957. |
[2] | 肖扬岚, 沈惠柔, 许一涵, 尤添革, 郑艺婧, 谢候展, 宁静. 基于GBDT-LSTM的闽江流域水质预测[J]. 生态环境学报, 2024, 33(4): 597-606. |
[3] | 王源哲, 华春林, 赵丽, 樊敏, 梁晓盈, 周乐乐, 蔡璨, 姚婧. 山地城市主要河流水质评价及预测研究——以四川省绵阳市为例[J]. 生态环境学报, 2023, 32(8): 1465-1477. |
[4] | 胡芳, 刘聚涛, 温春云, 韩柳, 文慧. 抚河流域浮游植物群落结构特征及其水生态状况评价[J]. 生态环境学报, 2023, 32(4): 744-755. |
[5] | 于菲, 曾海龙, 房怀阳, 付玲芳, 林澍, 董家豪. 典型感潮河网浮游藻类功能群时空变化特征及水质评价[J]. 生态环境学报, 2023, 32(4): 756-765. |
[6] | 程鹏, 孙明东, 郝韶楠. 基于最简水质综合评价指数的官厅水库上游河流水质评价[J]. 生态环境学报, 2023, 32(2): 372-380. |
[7] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[8] | 肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||