生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 853-868.DOI: 10.16258/j.cnki.1674-5906.2024.06.003
宋小龙1(), 马明德2,*(
), 王鹏3, 李陇堂3, 米文宝3, 宋永永4
收稿日期:
2024-02-27
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 马明德。E-mail: mmd311@163.com作者简介:
宋小龙(1991年生),男,副教授,博士,主要研究方向为干旱半干旱地区生态环境可持续发展研究。E-mail: sxlnxyc@163.com
基金资助:
SONG Xiaolong1(), MA Mingde2,*(
), WANG Peng3, LI Longtang3, MI Wenbao3, SONG Yongyong4
Received:
2024-02-27
Online:
2024-06-18
Published:
2024-07-30
摘要:
地表植被是土壤、水体与大气之间重要的连接物质。研究不同地理分区植被覆盖度(Fractional Vegetation Cover,FVC)时空非平稳性对区域生态环境保护与规划建设具有重要意义。基于MODIS13Q1 NDVI数据及其同期气象、地形、土壤、人类活动影响因子,明确不同地理分区FVC时空变化特征及其原因。结果表明:宁夏不同地理分区下的FVC差异显著,南部山区拥有较好的FVC水平。2000—2022年宁夏FVC呈现波动式增长趋势,南部山区FVC变化最为明显,平均增长速率为0.011/a。生长季多年平均空间格局分析说明宁夏高FVC主要集中在六盘山高山区、沿黄流域和清水河流域。23年间宁夏FVC低波动区域重点位于六盘山、沙坡头自然保护区、南华山以及吴忠市和银川市城建区域,中部干旱带高波动明显,Theil-Sen Median趋势分析显示南部山区增长趋势明显,引黄灌溉区有递减趋势,Mann-Kendall显著性检验说明宁夏越往南部FVC改善越显著,Hurst趋势进一步表明了南部山区和引黄灌溉区具有高持续特点,南部山区高山区、沙坡头自然保护区、甘城子以西、贺兰山石炭井、中宁县、贺兰县月牙湖乡等区域未来将维持稳定不变,沙坡头区香山一带反持续性显著,FVC有将会得到改善,贺兰山部分地区FVC较低且持续性较强有维持现状风险。宁夏不同地理分区FVC与影响因素时空非平稳特征明显,空间序列回归系数说明人类活动对FVC产生重要影响,时间序列回归系数说明了历史时期气候因素对FVC影响波动性大。该项研究可为宁夏不同地域生态保护、建设与可持续发展提供差异化对策提供参考。
中图分类号:
宋小龙, 马明德, 王鹏, 李陇堂, 米文宝, 宋永永. 2000—2022年宁夏不同地理分区生长季植被覆盖度时空非平稳性特征[J]. 生态环境学报, 2024, 33(6): 853-868.
SONG Xiaolong, MA Mingde, WANG Peng, LI Longtang, MI Wenbao, SONG Yongyong. The Spatiotemporal Non-stationary Characteristics of Fractional Vegetation Coverage During the Growing Season of Different Geographical Regions in Ningxia[J]. Ecology and Environment, 2024, 33(6): 853-868.
因素类型 | 因素 | 标记 | 单位 | 预处理 |
---|---|---|---|---|
被解释变量 | 植被覆盖度 | FVC | % | 美国航空航天局 ( |
解释变量 | 平均温度 | θ | ℃ | 国家青藏高原科学数据中心 ( |
降水量 | PRE | mm | ||
潜在蒸发量 | PE | mm | ||
海拔 | DEM | m | 中国科学院资源环境科学与数据中心 ( | |
坡度 | Slope | (°) | ||
沙土比例 | Sand | % | 联合国粮农组织 (FAO) 和维也纳国际应用系统研究所 (ⅡASA) 构建的世界和谐土壤数据库 (HWSD) | |
有机碳含量 | OC | % | ||
壤土比例 | Slit | % | ||
碎石含量 | Gravel | % | ||
夜间灯光指数 | Night | % | 国家地球系统科学数据中心 ( |
表1 影响因素数据源及预处理
Table 1 Source and preprocessing of influencing factor data
因素类型 | 因素 | 标记 | 单位 | 预处理 |
---|---|---|---|---|
被解释变量 | 植被覆盖度 | FVC | % | 美国航空航天局 ( |
解释变量 | 平均温度 | θ | ℃ | 国家青藏高原科学数据中心 ( |
降水量 | PRE | mm | ||
潜在蒸发量 | PE | mm | ||
海拔 | DEM | m | 中国科学院资源环境科学与数据中心 ( | |
坡度 | Slope | (°) | ||
沙土比例 | Sand | % | 联合国粮农组织 (FAO) 和维也纳国际应用系统研究所 (ⅡASA) 构建的世界和谐土壤数据库 (HWSD) | |
有机碳含量 | OC | % | ||
壤土比例 | Slit | % | ||
碎石含量 | Gravel | % | ||
夜间灯光指数 | Night | % | 国家地球系统科学数据中心 ( |
等级 | 低植被 覆盖度 | 中低植被覆盖度 | 中植被 覆盖度 | 中高植被覆盖度 | 高植被 覆盖度 |
---|---|---|---|---|---|
植被 覆盖度 | ≤0.20 | 0.20‒0.40 | 0.40‒0.60 | 0.20‒0.40 | ≥0.80 |
表2 植被覆盖度等级分类
Table 2 Classification of vegetation coverage levels
等级 | 低植被 覆盖度 | 中低植被覆盖度 | 中植被 覆盖度 | 中高植被覆盖度 | 高植被 覆盖度 |
---|---|---|---|---|---|
植被 覆盖度 | ≤0.20 | 0.20‒0.40 | 0.40‒0.60 | 0.20‒0.40 | ≥0.80 |
模型 | 普通最小二乘模型 | 地理加权回归模型 | 时间加权回归模型 | 时空地理加权回归模型 |
---|---|---|---|---|
拟合优度r2 | 0.832 | 0.950 | 0.885 | 0.973 |
调节拟合优度r2 | 0.829 | 0.949 | 0.883 | 0.972 |
赤池信息量准则 | −1040 | −1560 | −1150 | −1710 |
表3 OLS、GWR、TWR和GTWR模型赤池信息量准则、拟合优度以及调节拟合优度
Table 3 OLS, GWR, TWR, and GTWR models AICc, r2, and Adjusted r2
模型 | 普通最小二乘模型 | 地理加权回归模型 | 时间加权回归模型 | 时空地理加权回归模型 |
---|---|---|---|---|
拟合优度r2 | 0.832 | 0.950 | 0.885 | 0.973 |
调节拟合优度r2 | 0.829 | 0.949 | 0.883 | 0.972 |
赤池信息量准则 | −1040 | −1560 | −1150 | −1710 |
图3 2000—2022年宁夏不同地理分区生长季FVC年际变化
Figure 3 Interannual variation of FVC during the growth season in different geographical regions of Ningxia from 2000 to 2022
图4 2000—2022年宁夏不同地理分区生长季FVC面积年际变化统计
Figure 4 Inter annual variation statistics of FVC area during the growth season in different geographical regions of Ningxia from 2000 to 2022
图5 2000—2022年宁夏不同地理分区生长季FVC空间分布
Figure 5 Spatial distribution of FVC during the growth season in different geographical regions of Ningxia from 2000 to 2022
图6 2000—2022年宁夏不同地理分区生长季FVC变化稳定性、可持续性和变化趋势
Figure 6 Stability, sustainability, and trends of FVC changes during the growth season in different geographical regions of Ningxia from 2000 to 2022
FVC变异范围 | 变异程度 | 占像元面积的比例/% | ||
---|---|---|---|---|
引黄灌溉区 | 中部干旱带 | 南部山区 | ||
c<0.05 | 低波动 | 8.9 | 4.5 | 0.3 |
0.05≤c≤0.10 | 相对低波动 | 4.6 | 7.6 | 0.9 |
0.10≤c≤0.15 | 中等波动 | 9.7 | 7.2 | 1.8 |
0.15≤c≤0.20 | 相对高波动 | 19.1 | 4.8 | 2.4 |
c>0.20 | 高波动 | 57.7 | 75.9 | 94.6 |
表4 2000—2022年宁夏不同地理分区生长季FVC波动性统计
Table 4 Statistics on FVC Volatility during Growth Season in Different Geographical Regions of Ningxia from 2000 to 2022
FVC变异范围 | 变异程度 | 占像元面积的比例/% | ||
---|---|---|---|---|
引黄灌溉区 | 中部干旱带 | 南部山区 | ||
c<0.05 | 低波动 | 8.9 | 4.5 | 0.3 |
0.05≤c≤0.10 | 相对低波动 | 4.6 | 7.6 | 0.9 |
0.10≤c≤0.15 | 中等波动 | 9.7 | 7.2 | 1.8 |
0.15≤c≤0.20 | 相对高波动 | 19.1 | 4.8 | 2.4 |
c>0.20 | 高波动 | 57.7 | 75.9 | 94.6 |
图7 2000—2022年宁夏不同地理分区生长季FVC变化趋势统计
Figure 7 The proportion of FVC linear trend pixels in different geographical regions of Ningxia during the growth season from 2000 to 2022
图8 宁夏生长季FVC影响因素GTWR回归系数时间异质性
Figure 8 Time heterogeneity of GTWR regression coefficients for FVC influencing factors during the growing season in Ningxia
图9 宁夏生长季FVC影响因素GTWR回归系数空间异质性
Figure 9 Spatial heterogeneity of GTWR regression coefficients for FVC influencing factors during the growing season in Ningxia
[1] | BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E, 1996. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 28(4): 281-298. |
[2] | CHENG X M, WANG Z Q, YANG X X, et al., 2021. Multi-scale detection and interpretation of spatio-temporal anomalies of human activities represented by time-series[J]. Computers Environment and Urban Systems, 88: 101627. |
[3] | EVANS R A, LOVE R M, 1957. The step-point method of sampling[J]. Journal of Range Management, 19: 208-212. |
[4] | GBUREK W J, SHARPLY A N, HEATHWAITE L, et al., 2000. Phosphorus management at the watershed scale: A modification of the phosphorus index[J]. Journal of Environmental Quality, 29(1): 130-144. |
[5] | GITELSON A A, KAUFMAN Y J, STARK R, et al., 2002. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 80(1): 76-87. |
[6] | GREGORY S O, KENNETH D C, MEGAN M L, 2013. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data[J]. Remote Sensing of Environment, 130: 266-279. |
[7] | HUANG B, WU B, BARRY M, 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 24(3): 383-401. |
[8] | HUANG K, ZHANG Y J, ZHU J T, et al., 2016. The influences of climate change and human activities on vegetation dynamics in the Qinghai- Tibet Plateau[J]. Remote Sensing, 8(10): 876-893. |
[9] | KOPPEL V D, RIETKERK M, LANGEVELDE F V, et al, 2002. Spatial heterogeneity and irreversible vegetation change in semiarid grazing systems[J]. American Naturalist, 159(2): 209-218. |
[10] | MENTIS M T, 1981. Evaluation of the wheel-point and step-point methods of veld condition assessment[J]. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa, 16(1): 89-94. |
[11] | SEDDON A W, MACIAS F M, LONG P R, et al., 2016. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature, 531(7593): 229-232. |
[12] | SU T X, ZHANG B Q, HE X G, et al., 2020. Rational planning of land use can maintain water yield without damaging ecological stability in upstream of inland river: Case study in the Hei River Basin of China[J]. Journal of Geophysical Research: Atmospheres, 125(18): 1-17. |
[13] |
TONG S Q, ZHANG J Q, BAO Y H, et al., 2018. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the hurst exponent and influencing factors from 1982-2013[J]. Journal of Geographical Sciences, 28(5): 595-610.
DOI |
[14] | 邓兴耀, 刘洋, 刘志辉, 等, 2017. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 37(9): 2994-3008. |
DENG X Y, LIU Y, LIU Z H, et al., 2017. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China[J]. Acta Ecologica Sinica, 37(9): 2994-3008. | |
[15] | 杜灵通, 田庆久, 2012. 宁夏植被覆盖动态变化及与气候因子的关系[J]. 中国沙漠, 32(5): 1479-1485. |
DU L T, TIAN Q J, 2012. Vegetation coverage variations in Ningxia during 1999-2009 and its relationships with climatic factors[J]. Journal of Desert Research, 32(5): 1479-1485. | |
[16] | 范微维, 杨玲莉, 2023. 四川省近10年植被覆盖度的变化研究——基于夜间灯光和NDVI数据[J]. 灯与照明, 47(2): 20-23. |
FAN W W, YANG L L, 2023. Vegetation Coverage changes in Sichuan province in the past 10 years based on night-time satellite date and NDVI[J]. Light & Lighting, 47(2): 20-23. | |
[17] | 龚建周, 夏北成, 2006. 广州市1990-2005年植被覆盖度的时空变化特征[J]. 生态环境学报, 15(6): 1289-1294. |
GONG J Z, XIA B C, 2006. Spatio-temporal characteristics of vegetation fraction calculation from TM imagines in Guangzhou from 1990 to 2005[J]. Ecology and Environmental Sciences, 15(6): 1289-1294. | |
[18] | 郝家田, 胡云云, 杜一尘, 等, 2022. 基于NDVI的2009-2018年黄河流域林草植被覆盖变化[J]. 林业科学, 58(3): 10-19. |
HAO J T, HU Y Y, DU Y C, et al., 2022. NDVI-based coverage changes of forest and grass vegetation in Yellow River Basin during 2009 to 2018[J]. Scientia Silvae Sinicae, 58(3): 10-19. | |
[19] | 郝鑫怡, 张喆, 郑浩, 等, 2024. 天山北坡经济带植被覆盖度动态变化研究[J]. 中国环境科学, 44(2): 1020-1031. |
HAO X Y, ZHANG Z, ZHENG H, et al., 2024. Dynamic change of vegetation cover in the economic zone of the northern slopes of Tianshan Mountains[J]. China Environmental Science, 44(2): 1020-1031. | |
[20] |
何宝忠, 丁建丽, 张喆, 等, 2016. 新疆植被覆盖度趋势演变实验性分析[J]. 地理学报, 71(11): 1948-1966.
DOI |
HE B Z, DING J L, ZHANG Z, et al., 2016. Experimental analysis of spatial and temporal dynamics of fractional vegetation cover in Xinjiang[J]. Acta Geographica Sinica, 71(11): 1948-1966.
DOI |
|
[21] | 黄悦悦, 杨东, 冯磊, 2019. 2000-2016年宁夏植被覆盖度的时空变化及其驱动力[J]. 生态学杂志, 38(8): 2515-2523. |
HUANG Y Y, YANG D, FENG L, 2019. Spatiotemporal variation in vegetation coverage and its driving forces in Ningxia during 2000-2016[J]. Chinese Journal of Ecology, 38(8): 2515-2523. | |
[22] |
贾坤, 姚云军, 魏香琴, 等, 2013. 植被覆盖度遥感估算研究进展[J]. 地球科学进展, 28(7): 774-782.
DOI |
JIA K, YAO Y J, WEI X Q, et al., 2013. A review on fractional vegetation cover estimation using remote sensing[J]. Progress in Geography, 28(7): 774-782. | |
[23] | 李存厚, 冯克鹏, 2021. 2011-2020年宁夏植被覆盖时空变化分析[J]. 西北水电 (3): 27-33. |
LI C H, FENG K P, 2021. Spatiotemporal changes of vegetation coverage in Ningxia from 2011 to 2020[J]. Northwest Hydropower (3): 27-33. | |
[24] | 李晶晶, 2019. 近30年来中国西部八省NDVI时空变化及驱动力分析[D]. 徐州: 中国矿业大学: 58-64. |
LI J J, 2019. Spatial and temporal changes and driving factors of NDVI eight provinces in Western China over the past 30 years[D]. Xuzhou: China University of Mining and Technology: 58-64. | |
[25] |
李梦华, 韩颖娟, 赵慧, 等, 2022. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 31(7): 1317-1325.
DOI |
LI M H, HAN Y J, ZHAO H, et al., 2022. Analysis on spatial-temporal variation characteristics and driving factors of fractional vegetation cover in Ningxia based on geographical detector[J]. Ecology and Environmental Sciences, 31(7): 1317-1325. | |
[26] | 李茂林, 闫庆武, 仲晓雅, 等, 2021. 干旱半干旱地区植被覆盖度变化及主导因素分析: 以锡林郭勒为例[J]. 生态与农村环境学报, 37(11): 1548-1558. |
LI M L, YAN Q W, ZHONG X Y, et al., 2021. Analysis on evolution and dominant factors of fractional vegetation coverage in arid and semi-arid regions: A case of Xilingol[J]. Journal of Ecology and Rural Environment, 37(11): 1548-1558. | |
[27] | 李鹏傲, 姜永涛, 张珍珍, 等, 2023. 河南省植被覆盖度时空变化及其原因分析[J]. 地理空间信息, 21(11): 76-80. |
LI P A, JIANG Y T, ZHANG Z Z, et al., 2023. Spatio-temporal changes of vegetation coverage and its causes in Henan province[J]. Geospatial Information, 21(11): 76-80. | |
[28] | 李茜荣, 杨东, 冯磊, 等, 2021. 成渝经济圈2000-2018年植被NDVI的动态变化[J]. 生态学杂志, 40(9): 1-15. |
LI Q R, YANG D, FENG L, et al., 2021. Dynamics of vegetation NDVI in Chengdu-Chongqing economic circle from 2000 to 2018[J]. Chinese Journal of Ecology, 40(9): 1-15. | |
[29] | 李晓松, 高志海, 李增元, 等, 2010. 基于高光谱混合像元分解的干旱地区稀疏植被覆盖度估测[J]. 应用生态学报, 21(1): 152-158. |
LI X S, GAO Z H, LI Z Y, et al., 2010. Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition[J]. Chinese Journal of Applied Ecology, 21(1): 152-158. | |
[30] | 李志军, 2010. 宁夏气候变化及其对植被覆盖的影响[D]. 兰州: 兰州大学: 38-39. |
LI Z J, 2010. Ningxia climate change and its effects on vegetation cover[D]. Lanzhou: Lanzhou University: 38-39. | |
[31] | 王得梅, 周冬梅, 方书敏, 2023. 宁夏植被覆盖时空变化对气候因素的响应[J/OL]. 甘肃农业大学学报, [2023-12-06]. https://kns.cnki.net/kcms2/article/abstract?v=n93avYlexq_fS4PDi0my60gK4Gf9ng43VqR0vHbrc6pOcW09lTiMJVtJjgS67NRQ9ihg2FVcyk9o1gcxLxU2xPG9FAatWmtWIb7gNAsmb8OoObPdK7dlC0E5mRMYy55QNdrLBeHhV7s=&uniplatform=NZKPT&language=CHS. |
WANG D M, ZHOU D M, FANG S M, 2023. Response of spatiotemporal vegetation cover to climatic factors in Ningxia[J/OL]. Journal of Gansu Agricultural University, [2023-12-06]. https://kns.cnki.net/kcms2/article/abstract?v=n93avYlexq_fS4PDi0my60gK4Gf9ng43VqR0vHbrc6pOcW09lTiMJVtJjgS67NRQ9ihg2FVcyk9o1gcxLxU2xPG9FAatWmtWIb7gNAsmb8OoObPdK7dlC0E5mRMYy55QNdrLBeHhV7s=&uniplatform=NZKPT&language=CHS. | |
[32] | 汪溪远, 迪丽尼格尔·艾合买提, 师庆东, 等, 2017. 基于空间自相关分析和FVC指数的克拉玛依地区植被覆盖时空变化[J]. 林业资源管理 (4): 97-102. |
WANG X Y, DI LINIGEER, SHI Q D, et al., 2017. Spatial-temporal changes of vegetation cover in Karamay Region based on spatial auto-correlation analysis and FVC[J]. Forest and Grassland Resources Research (4): 97-102. | |
[33] | 王晓蕾, 石守海, 陈江朝霞, 2022. 黄河流域植被覆盖度变化及驱动因素[J]. 中国环境科学, 42(11): 5358-5368. |
WANG X L, SHI S H, CHEN J Z X, 2022. Change and driving factors of vegetation coverage in the Yellow River Basin[J]. China Environmental Science, 42(11): 5358-5368. | |
[34] | 吴云, 曾源, 赵炎, 等, 2010. 基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J]. 资源科学, 32(7): 1417-1424. |
WU Y, ZENG Y, ZHAO Y, et al., 2010. Monitoring and dynamic analysis of fractional vegetation cover in the Hai River Basin based on MODIS data[J]. Resources Science, 32(7): 1417-1424. | |
[35] | 向楠, 2014. 基于生态脆弱性的综合生态系统管理研究——以内蒙古鄂温克旗为例[D]. 北京: 北京林业大学: 45-47. |
XIANG N, 2014. Study on integrated ecosystem management based on ecological vulnerability: A case study in Ewenki County, Inner Mongolia[D]. Beijing: Beijing Forestry University: 45-47. | |
[36] | 肖建勇, 王世杰, 白晓永, 等, 2018. 喀斯特关键带植被时空变化及其驱动因素[J]. 生态学报, 38(24): 8799-8812. |
XIAO J Y, WANG S J, BAI X Y, et al., 2018. Determinants and spatial-temporal evolution of vegetation coverage in the Karst critical zone of South China[J]. Acta Ecologica Sinica, 38(24): 8799-8812. | |
[37] | 袁玉芸, 2017. 克里雅绿洲植被覆盖的空间特征与其环境因子分析[D]. 乌鲁木齐: 新疆大学: 104-108. |
YUAN Y Y, 2017. Analysis on spatial characteristics of vegetation coverage and its environmental factors in Keriya Oasis[D]. Urumqi: Xinjiang University: 104-108. | |
[38] | 张昌顺, 谢高地, 曹淑艳, 等, 2012. 中国县域生态功能格局研究[J]. 资源科学, 34(9): 1636-1646. |
ZHANG C S, XIE G D, CAO S Y, et al., 2012. The Distribution patterns of China's county ecological function[J]. Resources Science, 40(23): 8694-8706. | |
[39] | 张家政, 闵志强, 王得军, 等, 2021. 基于延安市不同植被类型NDVI对气象因子影响及空间异质性[J]. 西北林学院学报, 36(6): 55-64. |
ZHANG J Z, MIN Z Q, WANG D J, et al., 2021. Effects of NDVI on meteorological factors and spatial heterogeneity based on different vegetation types in Yan’an city[J]. Journal of Northwest Forestry University, 36(6): 55-64. | |
[40] |
赵卓文, 张连蓬, 李行, 等, 2017. 基于MOD13Q1数据的宁夏生长季植被动态监测[J]. 地理科学进展, 36(6): 741-752.
DOI |
ZHAO Z W, ZHANG L P, LI X, et al., 2017. Monitoring vegetation dynamics during the growing season in Ningxia based on MOD13Q1 data[J]. Progress in Geography, 36(6): 741-752.
DOI |
|
[41] | 中华人民共和国水利部, 2008. 土壤侵蚀分类分级标准: GB/SL 190—2007 [S]. 北京: 中国水利水电出版社: 3-11. |
Ministry of Water Resources of the PRC, 2008. Standards for classification and grading of soil erosion: GB/SL190—2007 [S]. Beijing: China Water & Power Press. | |
[42] | 周志强, 曾源, 张磊, 等, 2012. 南水北调中线水源区植被覆盖度遥感监测分析[J]. 国土资源遥感, 24(1): 70-76. |
ZHOU Z Q, ZENG Y, ZHANG L, et al., 2012. Remote sensing monitoring and analysis of fractional vegetation cover in the water source area of the middle route of projects to divert water from the south to the north[J]. Remote Sensing for Natural Resources, 24(1): 70-76. | |
[43] | 朱晓雯, 石云, 李建华, 等, 2023. 宁夏不同地理分区乡村聚落时空演变对比研究[J]. 地域研究与开发, 42(4): 155-161. |
ZHU X W, SHI Y, LI J H, et al., 2023. Comparative study of spatial and temporal evolution of rural settlements in different geographical divisions of Ningxia[J]. Areal Research and Development, 42(4): 155-161. | |
[44] | 祝聪, 彭文甫, 张丽芳, 等, 2019. 2006-2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 39(5): 1583-1594. |
ZHU C, PENG W F, ZHANG L F, et al., 2019. Study of temporal and spatial variation and driving force of fractional vegetation cover in upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 39(5): 1583-1594. | |
[45] | 祝萍, 刘鑫, 郑瑜晗, 等, 2020. 北方重点生态功能区生态系统服务权衡与协同[J]. 生态学报, 40(23): 8694-8706. |
ZHU P, LIU X, ZHENG Y H, et al., 2020. Tradeoffs and synergies of ecosystem services in key ecological function zones in northern China[J]. Acta Ecologica Sinica, 40(23): 8694-8706. |
[1] | 冯自贤, 佘璐, 王秀慧, 杨璐, 杨晨. 基于改进遥感生态指数的宁夏生态环境质量时空变化[J]. 生态环境学报, 2024, 33(1): 131-143. |
[2] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[3] | 张鐥文, 杨冉, 侯文星, 王丽丽, 刘爽, 宋汉扬, 赵文吉, 李令军. 生态补水前后永定河两岸植被覆盖度变化及驱动力分析[J]. 生态环境学报, 2023, 32(2): 264-273. |
[4] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[5] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[6] | 孙梦鑫, 张岳, 辛宇, 钟鼎杰, 杨存建. 川西高原近20 a植被物候变化及其对气候变化的响应[J]. 生态环境学报, 2022, 31(7): 1326-1339. |
[7] | 杨媛媛, 佘志鹏, 宋进喜, 朱大为. 2000年以来浐灞河流域不同地貌区植被变化特征及影响因素研究[J]. 生态环境学报, 2022, 31(2): 224-230. |
[8] | 李少宁, 陶雪莹, 李慧敏, 赵娜, 徐晓天, 鲁绍伟. 侧柏和垂柳释放有益BVOCs组分生长季动态变化特征研究[J]. 生态环境学报, 2022, 31(2): 257-264. |
[9] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
[10] | 马炳鑫, 靖娟利, 徐勇, 何宏昌, 刘兵. 2000—2019年滇黔桂岩溶区植被NPP时空变化及与气候变化的关系研究[J]. 生态环境学报, 2021, 30(12): 2285-2293. |
[11] | 王瑞璠, 魏倪彬, 张仓皓, 鲍甜甜, 刘健, 余坤勇, 王帆. 南方丘陵区林下植被覆盖度无人机多角度遥感测量[J]. 生态环境学报, 2021, 30(12): 2294-2302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||